
ParaView-based Applications

From ParaQ Wiki

Applications based on ParaView have grown since the release of ParaView 3.0. In
spite of best of our intentions we soon realized that it's not very easy to create
applications that use ParaView core without subscribing to an user interface
identical to ParaView's. The infamous pqMainWindowCore ended up being
copy-pasted for every application and then tweaked and modified breaking every
possible rule for good programming practices. Also it is hard to create
ParaView-clone with limited user interface components, since various
components have cross dependencies among each other and it becomes hard to
ensure that all signals/slots are connected correctly for them to work.

To address these issues, we've been working on a re-factoring inspired by
OverView's branding mechanism. The main goals we set out to address are:

Facilitate creation of applications radically different from ParaView in
work-flow, such as OverView.
Facilitate creation of ParaView-variants that use most of ParaView
functionality with minor behavioral or user-interface changes.

I've started working on a design based on OverView and other applications to
address these goals. The latest state of this development can be checked out
from git-hub repository (branch: Branding):

 > git clone git://github.com/utkarshayachit/ParaView.git

The new architecture pivots around two new concepts:

Reactions -- these are action handlers. They implement logic to handle the
triggering of an action. They also implement logic to keep the enable state
for the action update-to-date based on current application state. eg.
pqLoadStateReaction -- reaction of load state action, which encapsulates
ParaView's response for load state action. Reactions require the QAction to
which they are reacting to. Any custom user interface that wants a QAction
to be behave exactly like Paraview's, simply instantiates the reaction for it
and that's it! The rest it managed by the reaction.

Behaviors -- these are abstract application behaviors eg. ParaView always
remains connected to a server (builtin by default). This gets encapsulated
into pqAlwaysConnectedBehavior. If any custom application wants to a
particular behavior, simply instantiates the corresponding behavior! We'll

ParaView-based Applications - ParaQ Wiki http://www.paraview.org/ParaView3/index.php/Para...

1 of 12 11/19/2009 03:37 PM

see examples and it should hopefully become clearer.

Now let's look at some example applications to see how all this helps us.

Contents

1 Radically different Application based on ParaView core
2 ParaView-based Applications
3 Interesting Side-effects
4 Resource Space
5 Configuration XML Formats

5.1 ParaViewReaders: Reader Factory Configuration
5.2 ParaViewWriters:Writer Factory Configuration
5.3 ParaViewFilters : Filters Menu Configuration
5.4 ParaViewSources : Sources Menu Configuration

6 Application Initialization Sequence
7 TODO List

Radically different Application based on
ParaView core

First consider an application which is a totally new client based on ParaView
core i.e. ServerManager. It has it's own custom everything. Here's how such an
application's main.cxx will be:

 #include <QApplication>
 #include "pqApplicationCore.h"
 #include "myCustomMainWindow.h"

 int main(int argc, char** argc)
 {
 QApplication app(argc, argv);
 pqApplicationCore appCore(argc, argv);
 myCustomMainWindow window;
 window.show();
 return app.exec();
 }

As you can see, this is exactly like creating a Qt application, except that after
creating a QApplication, we are creating pqApplicationCore. pqApplicationCore
enables access to the pqObjectBuilder, pqServerManagerModel among other
things, which is the thin Qt-layer over ServerManager. No more
ProcessModuleGUIHelper, or PVMain or any such whimsical, hard to understand
devices. Just create the pqApplicationCore and you are all set.

ParaView-based Applications - ParaQ Wiki http://www.paraview.org/ParaView3/index.php/Para...

2 of 12 11/19/2009 03:37 PM

ParaView-based Applications

Now lets consider applications that are variants of ParaView that use elements
for the pqComponents library such as the pipeline browser, object inspector,
selection inspector etc. Such applications fall under the purview of branding.
There's a new Cmake macro "build_paraview_client" that can be used for this
purpose. This macro will be of the following form. Note all parts aren't
implemented yet namely the plugins etc. but it's getting there.

ParaView-based Applications - ParaQ Wiki http://www.paraview.org/ParaView3/index.php/Para...

3 of 12 11/19/2009 03:37 PM

 build_paraview_client(
 # The name for this client. This is the name used for the executable created.
 paraview_revamped

 # This is the title bar text. If none is provided the name will be used.
 TITLE "Kitware ParaView"

 # This is the organization name.
 ORGANIZATION "Kitware Inc."

 # PNG Image to be used for the Splash screen. If none is provided, default
 # ParaView splash screen will be shown.
 SPLASH_IMAGE "${CMAKE_CURRENT_SOURCE_DIR}/Splash.png"

 # Not sure how useful this is, but since OverView was using it, we are
 # providing an option to change the text color used when showing the splash
 # screen. Optional, of course.
 SPLASH_TEXT_COLOR "black"

 # Provide version information for the client.
 VERSION_MAJOR ${PARAVIEW_VERSION_MAJOR}
 VERSION_MINOR ${PARAVIEW_VERSION_MINOR}
 VERSION_PATCH ${PARAVIEW_VERSION_PATCH}

 # Icon to be used for the Mac bundle.
 BUNDLE_ICON "${CMAKE_CURRENT_SOURCE_DIR}/Icon.icns"

 # Icon to be used for the Windows application.
 APPLICATION_ICON "${CMAKE_CURRENT_SOURCE_DIR}/Icon.ico"

 # Name of the class to use for the main window. If none is specified,
 # default QMainWindow will be used.
 PVMAIN_WINDOW QMainWindow
 PVMAIN_WINDOW_INCLUDE QMainWindow

 # Next specify the plugins that are needed to be built and loaded on startup
 # for this client to work. These must be specified in the order that they
 # should be loaded.
 # Currently, only client-based plugins are supported. i.e. no effort is made
 # to load the plugins on the server side when a new server connection is made.
 # That may be added in future, if deemed necessary.
 REQUIRED_PLUGINS PointSpritePlugin

 # Next specify the plugin that are not required, but if enabled, should be
 # loaded on startup.
 # These must be specified in the order that they
 # should be loaded.
 # Currently, only client-based plugins are supported. i.e. no effort is made
 # to load the plugins on the server side when a new server connection is made.
 # That may be added in future, if deemed necessary.
 OPTIONAL_PLUGINS ClientGraphView ClientTreeView

 # Extra targets that this executable depends on.
 EXTRA_DEPENDENCIES blah1 blah2

 # GUI Configuration XMLs that are used to configure the client eg. readers,
 # writers, sources menu, filters menu etc.
 GUI_CONFIGURATION_XMLS <list of xml files>
)

So for the new ParaView client which is a branded -paraview application itself,
this looks like (the code is in Applications/Client2):

ParaView-based Applications - ParaQ Wiki http://www.paraview.org/ParaView3/index.php/Para...

4 of 12 11/19/2009 03:37 PM

 #--
 # Build the client
 build_paraview_client(paraview_revamped
 TITLE "ParaView (Revamped)"
 ORGANIZATION "Kitware Inc."
 VERSION_MAJOR 3
 VERSION_MINOR 7
 VERSION_PATCH 1
 SPLASH_IMAGE "${CMAKE_CURRENT_SOURCE_DIR}/PVSplashScreen.png"
 PVMAIN_WINDOW pqClient2MainWindow
 PVMAIN_WINDOW_INCLUDE pqClient2MainWindow.h
 EXTRA_DEPENDENCIES pqClient2
 GUI_CONFIGURATION_XMLS
 ${CMAKE_CURRENT_SOURCE_DIR}/ParaViewSources.xml
 ${CMAKE_CURRENT_SOURCE_DIR}/ParaViewFilters.xml
 ${CMAKE_CURRENT_SOURCE_DIR}/ParaViewReaders.xml
 ${CMAKE_CURRENT_SOURCE_DIR}/ParaViewWriters.xml
)

Here the pqClient2MainWindow is the main window which uses a ui file for the
GUI design. It has empty menus as place holders for the File/Sources/Filters and
other menus. Now since this client needs a pipeline browser, in the designer, we
simply create a QWidget and promote it to pqPipelineBrowser and place it
however we want and that's it. No more signal/slot connections or any such
nonsense. pqPipelineBrowser is now a first class QWidget subclass that is
autonomous in the sense that it relies on pqApplicationCore and works on it's
own on simple instantiation. Exactly same is the case with pqProxyTabWidget
(which is the object inspector) or pqSelectionInspector etc. etc. All these are
QWidget subclasses that you merely need to instantiate in the ui file and you will
get those in your application. These components have no cross dependencies. So
pipeline browser doesn't depend on object inspector and vice-versa. Thus
making it easier for custom clients to include only those components from the
ParaView client that they are interested in.

Now lets move on to the menu/toolbars in general QActions. If my custom client
has it's own File menu with just once action "Open Data", and I want this action
to behave like paraview' open data where it prompts the user for the file to load
based on supported readers, I do the following in my MainWindow subclass (or
an auto-start plugin's initialization where the UI is being initialized)

 new pqLoadDataReaction(ui.actionLoadData);

This will automatically enable/disable the action based on whether paraview is
connected to a server; add action handlers to popup the file dialog listing all
readers supported etc. Now how to define the supported readers? The
GUI_CONFIGURATION_XMLS !!! Just list the readers under a <ParaViewReaders
/> xml element and those file formats will be listed in this dialog.

Now if my application wants a File menu exactly like ParaView's, then we do:

ParaView-based Applications - ParaQ Wiki http://www.paraview.org/ParaView3/index.php/Para...

5 of 12 11/19/2009 03:37 PM

 pqParaViewMenuBuilders::buildFileMenu(*ui.menu_File);

pqParaViewMenuBuilders has helper methods to create the actions and
reactions for those actions for all standard paraview menus. Looking at the
implementation of those, custom-app writers can pick and choose the reactions
for their custom menus.

Finally, behaviors. If our client needs to stay connected to a server always, like
ParaView, simply instantiate the pqAlwaysConnectedBehavior in the main
window constructor or an auto-start plugin.

The MainWindow implementation for the new ParaView-client currently looks as
follows:

ParaView-based Applications - ParaQ Wiki http://www.paraview.org/ParaView3/index.php/Para...

6 of 12 11/19/2009 03:37 PM

 #include "pqClient2MainWindow.h"
 #include "ui_pqClient2MainWindow.h"

 #include "pqParaViewMenuBuilders.h"
 #include "pqParaViewBehaviours.h"

 class pqClient2MainWindow::pqInternals : public Ui::pqClient2MainWindow
 {
 };

 //---
 pqClient2MainWindow::pqClient2MainWindow()
 {
 this->Internals = new pqInternals();
 this->Internals->setupUi(this);

 // enable automatic creation of representation on accept.
 this->Internals->proxyTabWidget->setShowOnAccept(true);

 // Populate application menus with actions.
 pqParaViewMenuBuilders::buildFileMenu(*this->Internals->menu_File);

 // Populate sources menu.
 pqParaViewMenuBuilders::buildSourcesMenu(*this->Internals->menu_Sources);

 // Populate filters menu.
 pqParaViewMenuBuilders::buildFiltersMenu(*this->Internals->menu_Filters);

 // Define application behaviours.
 // pqParaViewBehaviours simply creates all the behaviour instances used by ParaView by default.
 // Currently equivalent to following, but will change as new behaviors are added.:
 // new pqDefaultViewBehaviour(this);
 // new pqAlwaysConnectedBehavior(this);
 // new pqNewSourceActiveBehaviour(this);
 new pqParaViewBehaviours(this);
 }

 //---
 pqClient2MainWindow::~pqClient2MainWindow()
 {
 delete this->Internals;
 }

Using behaviors and reactions makes it possible to avoid ending up with a huge
monolith as pqMainWindowCore where all application logic gets concentrated. It
also makes it possible to pick-and-choose when writing custom apps, avoiding
duplication whenever possible.

Please take a look at the ui file and C++ code in ParaView3/Application/Client2
in the git repository to understand how this works.

Interesting Side-effects

As I am implementing more and more stuff, I am realizing neat (and not so neat)
advantages of this restructuring. Here's a list of those:

Often we have two disconnected sections of the gui wanting to the same

ParaView-based Applications - ParaQ Wiki http://www.paraview.org/ParaView3/index.php/Para...

7 of 12 11/19/2009 03:37 PM

thing eg. the pipeline browser's context menu has a "Change Input" action
as well as the "Edit" menu. In such cases we either end up duplicating the
code or hacking to have a cross reference (in current ParaView, the Edit
menu calls the pqPipelineBrowser::changeInput(). Hence now edit menu
requires the pqPipelineBrowser to work! A nice thing with implementing
reactions is that they provide a logical place to put such logic that can be
reused by whoever is interested. So now I have a
pqChangePipelineInputReaction which handles change of input, including
when change input action is enabled etc. and I instantiate the reaction for
both the Edit menu as well as the PIpeline browser's context menu. As a
result both behave exactly the same with no code duplication and less bug
prone since there's only one place to fix how an input changes! And
because reactions even manages the enable/disable state it's just works
nicely together -- I am eulogizing I know.

Reactions make it easier to avoid undo-redo related issues. As a rule of
thumb, every reaction does work within an undo-block. So just use the
helper functions BEGIN_UNDO_SET("name for undo-set") and
END_UNDO_SET() and the start and end of your reaction crux and you are
golden!

Resource Space

The Resource space has some reserved directories/files which are used to load
brand specific configurations.

Location Role

:/<app-
name>/SplashImage.img

Splash Image used for splash screen and About
dialog

:/<app-
name>/Configuration/*.xml

GUI configuration XML files which includes
readers, writers, filters menu, sources menu etc. If
muliple xml files are present, then all are loaded.

:/<app-
name>/Documentation
/*.qch

Application documentation. If multiple Qt
compressed help files are detected, then all are
loaded.

Configuration XML Formats

Some components of the application can be configured using configuration
xmls. These xmls must either have the root element as the tag required for
configuring the component or that tag must a first-level child element under the
root element i.e. for configuring the reader-factory, your configuration xml can

ParaView-based Applications - ParaQ Wiki http://www.paraview.org/ParaView3/index.php/Para...

8 of 12 11/19/2009 03:37 PM

be:

<ParaViewReaders>
</ParaViewReaders>

OR

<SomeRoot>
 ...
 <ParaViewReaders>
 ...
 </ParaViewReaders>
 ..
</SomeRoot>.

ParaViewReaders: Reader Factory Configuration

Reader Factory is used by FileOpen dialog/recent files and the like. Configure
the reader factory to specify the support readers and file-formats. The
identification tag for this configuration is <ParaViewReaders>. The format of
this xml is as follows:

 <ParaViewReaders>
 <Proxy group="[sm-proxy-group]" name="[sm-proxy-name]" />

 </ParaViewReaders>

ParaViewWriters:Writer Factory Configuration

Writer factory is used when writing datasets. Configure the writer factory to
specify the supported writers. The identification tag for this configuration is
<ParaViewWriters> and the format is same as that for the reader-factory.

 <ParaViewWriters>
 <Proxy group="[sm-proxy-group]" name="[sm-proxy-name]" />

 </ParaViewWriters>

ParaViewFilters : Filters Menu Configuration

This is useful only if you are using the standard filter's menu provided by
ParaView. The identification tag for this configuration is <ParaViewFilters />.

ParaView-based Applications - ParaQ Wiki http://www.paraview.org/ParaView3/index.php/Para...

9 of 12 11/19/2009 03:37 PM

 <ParaViewFilters>
 <Category name="[category name]" menu_label="[label for category sub-menu"
 preserve_order="[optional, when 1, the filters are not sorted alphabetically in this sub-menu]"
 show_in_toolbal="[optional, when 1, a toolbar is created for this category]">
 ...
 <Proxy group="sm-group" name="sm-name" icon="optional, icon resource name" />
 ...
 </Category>

 <Proxy group="sm-group" name="sm-name" icon="optional, icon resource name" />

 </ParaViewFilters>

ParaViewSources : Sources Menu Configuration

This is useful only when you are using the standard sources menu provided by
ParaView. The identification tag is <ParaViewSources /> and the format is same
as that for the ParaViewFilters.

Application Initialization Sequence

When an ParaView-based application is created using the build_paraview_client()
mechanism described here, following are sequence in which different main
operations are performed.

The applicationName, applicationVersion and organizationNAme as
specified in the macro, are set using the static QCoreApplication API. This
happens before any objects are instantiated.
QApplication instance is created. This is required for any Qt-based
application.
pqPVApplicationCore instance in instantiated.

This first initializes the server-manager application i.e. the process-
module is set up, the proxy-manager is set up.
This results in creation of the various managers such as the
pqPluginManager, pqPQLookupTableManager, pqAnimationManager,
pqSelectionManager etc.

The QMainWindow subclass specified in the macro or QMainWindow if none
is specified, is instantiated. Once the core components are initialized, the
main window is created. So if you write your own QMainWindow subclass,
you are free to use any of the server-manager or pqPVApplicationCore
components as needed in your initialization code.
Next, we try to load the required and optional plugins are listed in the
macro. If a required plugin could not be located or loaded, then the
application quits with an error. If an optional plugin could not be located or
loaded, then they are quietly skipped. Note this is happening after the
mainWindow has been created. So do not use any components that will be

ParaView-based Applications - ParaQ Wiki http://www.paraview.org/ParaView3/index.php/Para...

10 of 12 11/19/2009 03:37 PM

brought in by the plugins in your mainWindow initialization code. The
locations where these plugins are searched are as follows in the given
order:

executable-dir (for Mac *.app, it's the app dir)
executable-dir/plugins/pluginname
*.app/Contents/Plugins/ (for Mac)

This is bound to change. Please refer to the documentation of Qt/Core
/pqBrandPluginsLoader.h for a complete and updated list.

Once the plugins are loaded, the next step is to load the configuration xmls
specified in the macro. All these xmls get compiled into a qt-resource that
is then processed one after the other by calling
pqApplicationCore::loadConfiguration(). Any GUI components that
processes such configuration files listen to the
pqApplicationCore::loadXML() signal and process the configuration xml as
and when it is loaded. Since the configuration xmls are loaded after the
plugins are loaded, your plugins can rely on configuration xmls.
Finally, the mainWindow's window-title is updated to match that specified
in the macro and then the mainWindow is shown and the Qt event loop is
begun.

TODO List

Undoing apply should re-enable Apply button -- fixed.
The buttons on the top of the View in the pqViewManager need to be
customizable -- fixed.
Pipeline browser-eyeball and renaming doesn't work yet -- fixed.
pqStandardViewModules is instantiated in the pqApplicationCore, that's
wrong. It must become a behavior that applications can employ -- fixed.
Missing Toolbars: Common Filters toolbar, Axes toolbar -- fixed
Python shell reactions --fixed
Help doesn't seem to work on Mac, can't seem to locate the assistant -- fixed
paraview_rebased -dr comes up totally crappy -- fixed
About dialog -- maybe build_paraview_client macro should provide
mechanism to specify custom about dialog -- fixed.
toggling eye visibility is broken when trying to toggle the visibility of item
not currently selected (fixed).
redo broken for redoing of creation of a source -- apply button doesn't get
enabled. (fixed)
Test playback with surface selection not working -- fixed.

Make ParaView's standard GUI configuration xmls easily available to custom
apps.

ParaView-based Applications - ParaQ Wiki http://www.paraview.org/ParaView3/index.php/Para...

11 of 12 11/19/2009 03:37 PM

Fix install rules for custom applications as well as the new libraries added
in the process (and also for the assistant stuff -- qt.conf etc.)
Progress Widget - need a new progress widget that directly listens to the
progress events from the vtkProcessModule. Also capability for disabling
the full GUI when playing animation etc.
Add a ton of examples for custom application using different styles for
doing different things including changing display policies, changing how
representations are created etc.
Help from plugins -- register *.qch files at run-time with the application
main help collection file (*.qhc).
This has nothing to do with branding: paraview application should have
some mechanism (maybe a config file) that can be used to list the plugins
that should be loaded by default) thus making it possible to create variants
of standard paraview by simply changing the set of plugins loaded. This will
be suitable for cases where the application wants all the standard paraview
stuff, just with additions that be made using plugins.

Retrieved from "http://www.paraview.org/ParaView3/index.php/ParaView-
based_Applications"

This page was last modified on 23 September 2009, at 15:16.
Content is available under Attribution.

ParaView-based Applications - ParaQ Wiki http://www.paraview.org/ParaView3/index.php/Para...

12 of 12 11/19/2009 03:37 PM

