A ASCENSION TECHNOLOGY CORPORATION

Matking Minimally Invasive Possible

3D Guidance
MedSAFE

Installation and Operation Guide

3D Guidance medSAFE
Installation and Operation Guide

REVISION NUMBER:
940034 Rev F6
2/12/10

TRADEMARKS
Microsoft Windows XP® and Windows Vista®
are registered trademarks of Microsoft Corporation.
All other products mentioned in this guide are trademarks
or registered trademarks of their respective companies.

3DGuidance medSAFE is a trademark of Ascension Technology Corporation

© 2010 Ascension Technology Cotporation. All rights resetved.
P.O. Box 527
Burlington, VT USA 05402

Phone (802) 893-6657 * Fax (802) 893-6659

Table of Contartts

INEFOAUCTION ...ttt b et bbbttt b e bbb beene e i
ADOUL THIS GUITE ...ttt b et a e esbe e e e nreenes i
HOW this GUITE IS OFGANIZEUouiiiiiiiieeee bbbttt i
LC 10T [@0] 1Y =T o1 o 1TSS iii
GEEEING ASSISTANCE ...ttt ettt et e e st e b e bt e ne e s be e be e st e sbeenbeaneeeneenrs ii
Chapter 1: Preparing for Setup and Safe Performance...........ccccooevirininencncniniseee, 1
YA T I =0 (VLT =T T=]] R 1
INtENAEd USE SEALEMENToiiii ettt e st et beeneese et e e seesbesaesbeereaneeneeneens 1
SOTIWAIE REQUITEIMIENTSevevititei ettt bbb bbbt bbbt bbbt 1
HardWare REGUITEIMENTS.iviitiiitiieeiete ettt b et b bbbt b bbb e bbb bt ens 2
UNPACKING ThE TTACKETeeee ettt be et e e e stees e seeereeneeneeeneenee e 2
Safe Performance & Handling PreCautioNScccviiv ittt 6
ENVIronmental CONGITIONS.cviiiiiiiiieie ettt ne e 8
TOIMPEIALUIE ...ttt e e bRt b E et e e bRt b e b e et e s e n e b bttt e e e 8

[(0T 0T 11 YOOV URUSURTTN 8
Chapter 2: Setup and CRECKOUL ..ot 9
INSEAIL the SOTIWATE ..ot bbbttt sb et et 9
(OF: o] T=T @0 0T g =Tt A o] TSR 12
INSEAITING ThE DIIVET ...ttt ettt st n e see et e besaeene e beeaeeneeseeeneenneas 14
YA T IO T 0 | SRR 15
Running the USB DEemO SOTIWAIEcuiiiiiiiieieieiie ettt 15
Running the RS232 DEMO ULHHLYcviiiiiiiiece e 17
Chapter 3: Configuration and BasiC OpPeration............cocooviiiinineienene e 20
(2] 70| L] Y 10 0T LA o] R 20
Configurable POWEN-UDP SEELINGS: ... c.viviirieiterietirteieiest ettt bbbttt nn s 21

Default REFEIENCE FIaMES.......cciiieieie ettt sttt ae et e e saesbesbeseeereaneeneeneens 24

Mid and Short-Range Transmitter Reference Frame ... 24

FIAE TEANSIMIEEIS ...ttt bbbkt h et e e e b e bt b e s b e e bt e bt et e n b ne e b e nb e ebe s b e e bt e b e e e eneeee 25
ChangiNg YOUE SEEINQScouieuieiiie ettt sttt e bbb e b e bt e b e et et se et e sbe bt st e neeneenennas 25
MOUNEING the HAIGWAIE........oieie ettt se e te s e saeseeenee e 26
Mid-Range Transmitter Mounting and LOCALIONccccveviiiieieniie s 26
Short-Range Transmitter Mounting and LOCAtIONcccvcveiirieieni e 27

LT S0 Y, o TU T4 1o PSS 27
Locating Your EISCIIONICS UNIt.......ccoiiiiiiiiiiieccrese et 28

Flat TranSmittel MOUNTINGcovoiiiiiiieieei ettt ettt bbbt sb e et sbennene s 28
Pre-amplifier MOUNTINGoooiiiiie bbbttt sr et et sbeneere s 28

REAr PANEI CONNECIONS ... eeiieeiee ettt ettt ettt s eesteeseeseeere e teseeeneeteseeeneeneas 28
0T PO P PSP PP PRRP 28

RS 2 e R R R R e R e Rt e e R e aR e Rt e r e r e nnrenreenre s 28

L0] = TP P PSP PR 29

SWWITCH .ot b Rt b bbb e et bbbt b e b e ar et e bt n e s 29

BaSIC OPEIALION ...tttk b et b bbb et bbbttt n e 29
(D] 1] Lo VAT 4T USSR 29

N LT BT 1o o W L (=T USRS 30

(61D 1@ YT 4o ST TSP PP PP PROPR 30

OO SBNSON ...tttk b bbb bbb e Rt b e bt bt nE R R SR bRt e e r R R Rt bt n e 30
e AN 001] 1T OSSR 30
EIECEIONICS ...ttt et bbbkt b ettt s e bbbt b e e b et b e b et b et 30
MEASUIEMENT CYCIE ...ttt bbbt b ettt 31

(08 110 11 o] [P RO T OSSR 31
PerfOrMANCE FACIOIS.....uiiiii e ettt e e be e be e s be e sbeesaaesbe e bestaeenteeteeas 32
Electromagnetic and Other Interference in TraCkingc..ccocveiiieiieiie i s 32
EXCESSIVE EIBCIIICAI NOISE......eveiviiieieiiiteiist ettt b ettt sttt bbb s e 32

O U T o] NN (0T OO 32
Lo U ToTT g T T\ T -SSR 33
Yo A= (o DTSy (o i o o PSS 33
CAUSES OF DISLOITIONveviieiiiie ettt bbbt b et b et b sttt st bt 33
REAUCTNG DISTOMTION. ...ttt b bbbt bbb s bttt b b b e 34

Y o Ul =] (=Tt o [OOSR 34
Tracker as the Cause Of INTEITEIENCEooviieieeec e et 34
FACLOIS 1N TTACKET ACCUIACYcuveteteiteitieteeieeite ettt st sttt ebe et et e e s e besbeebesbe e bt ebeaseenbeseesbesbesbeabeaneeneennens 35

LT U T o TP TP U PR RRUROP PPN 35
Default MEaSUIEMENT RALEc.iiiiiie ittt e b et b et e et e s e e e b e bbb e e bt b e e e e e e 35

o [T o Lo AL AN L (=T €= o o PSS 35
Power Grid MagnetiC INTEITEIENCEccvciviieie ettt s r e be s aeer e e e e e s 35
PerformanCe MOLION BOXcuiiiiiirieieiisieieiisesie sttt bbbt se bt n st b ne st b neeee 36
Chapter 4: Software Operation: Tools for Successful Tracking............ccccceeveiveeieciennnnnn 39
oL 10T L EC R @ AV =T VAT SRR 39
K1 1] U YT F= ot A SRR 39
T V0] o1 L= 0T 0 Uy 3PS 40
ASCENSION RS232 INTEITACEviivieiictece ettt et e st e s ta e e e sbeereeraenre s 41
ASCENSTION RS232 DIFIVEN ... ettt ittt sttt bttt b bbb e bt et e et e s b e se e b e nbesbe st e bt ere e e et ee 41
Direct Communication: Ascension’s RS232 ProtOCONooiiiiiiiiiiiiece e 41
RS232 SAMPIE PIrOGIAIM... .ottt bbbttt b e s bt bt et b e e et e besb e b e bt e b e e e e e e 42
Chapter 5: 3DGuIdance AP REFEIENCE.ccoveiiiiiecece et 43
Using 3D GUIdANCE MEASAFEcooiiiiiiiieeee bbbt 43
(@01 T0) S =Y =T =T T OSSR 44
SYSTEM ..ottt sttt ettt et e e b e b et et e s e s b e b e et e R e R e b b et bR e R e bR e e bt e R et et e R ettt e e r b ne s bns 44

5] N LS = TSRS 45
BOARD ..ottt bRttt R Rt R R e A bR e ARt et R et et e et e R ettt e et nenrerens 49
TRANSMITTER .ottt ettt et e b ettt s e bt e et e te s e st et e e s eten e s b be e nnenere e 49
SYStEM INIEAIIZALIONeviiice ettt e et e testesresresneeneeeenees 50
ATCIDGMLINT FIIE oo bbbttt b et b e 51
BT C=] IST= (o O 52
SBNSOE SEEUD .ttt e R b bR e E e R Rt e e n e r Rt 54
TRANSIMITEET SELUD. ¢ttt bbbtk b bbbt b bbbt bbbt 56
ACUITING TrACKING DALAveveieiieeicieee ettt bbbttt 57

g o] gl F= o To | 1T oo TSSO TURURURURRRRN 58

K1 LU To F= ot A SRRSO 59

SDGUIAANCE APT FUNCLIONSeeiviiiieie ettt ettt ettt sttt s st st e s s be s st e s st e s st e s sabessbbessaaeeseeas 60

INITTAIIZEBIRDSYSIEM ... vttt ettt bbbttt b e bbbtk b ettt eb et et e b et e b nnene 61

GetBIRDSYStEMCONTIGUIALION ..ottt bttt st 63
GetTranSMItterCONTIGUIALIONoiuiiiiiiiiie et bbbttt e bbb bbbt e e enee e 64
GetSENSOTCONTIGUIALION ...ttt bbbt bttt e e e e e be b b e sbe bt ebe e e eneeneen 65
GetBOoardCONTIGUIALIONcoueiiieiee et et b e bbbt st et e e e besbe b e nbe bt et e e neeneennen 66
GLSYSIEMPAIAMETET ..ii.vtieiiieittt ettt ettt rb et e b bt b e ek e e be e e b e e e be e e be e e be e e bbeenbee e baeenben et 67
LT e o] oL 111 [=] (-] PSR RPU RS OUPPTRIN 68
Gt T rANSIMITIEIPAIAMELETicvieeeie ettt ettt e e et e e e e s e e besbesbeeteeneesee e esbeseestesbesreereenseneennens 70
LCTCT LT 0| U= 1] -] SRS 72
LYY (=] gL T U0 1] (=T S 74
Y T g T =T T 4] T SR 76
SEETrANSMITIEIPAIAMELEL ...e.viiiieiece ettt et e st e s be e s be e sbe e abeeae e ebeeebeeabeesbeeteesbeesbeesbeeeesneeanes 78
SEEBOAITAPAIAMELETc.viiveiiie ettt ettt ettt e et e et e et e s te e s beesbeebesaeesbeesbe e beenbeeabeebsesbeesbeesbesteesbaesbeeeesneennes 80
GEtASYNCNIONOUSRECONT.......cviieiietiee ettt e e bbbt b e s e e e e besbesbesbesbe et e eneeneennen 82
GEtSYNCRIONOUSRECOIT ...ttt bttt s e e b b e bt s b e bt e st e e et e neeebesbesbe et e eneeneennen 84
LCTcL ST L] o] USROS 87
LTy o] =Y PP TP PU SR OUPPTRPNS 88
LT 1= (0] 3] £= L T PSPV PU RS OUPROTPIN 90
GOt T TANSIMITIEISTALUSvecveceecie ettt st te et e e e et e te st e s beebeebeeseesbeee st e sbeseesbestesneetaeneeneennens 92
LCT=1 20T L0] LU SRS 94
LC TS R0V (=] NS 1= 1 SO S 96
SaVeSYStEMCONTIGUIALIONeivieicc et et re e e s e e e et e saestestesneereeneeneennens 98
RestoreSYStemMCONTIGUIATIONc.viiiiiiiiee bbbttt 100
ClIOSEBIRDSYSIEIM ..ottt ettt ettt bbbt bbbt bbbt bbbt e et bbbt 102

3D GUIANCE APT SITUCTUIES.....cvveitie ettt ettt ettt ettt s e e s te e be s eesaeesbeesbeesbeenbeentesasestaesteestes 103
SYSTEM_CONFIGURATION.......cittiitiitiietisieietistete sttt sae et se s e betasesbesasesbesenenns 104
TRANSMITTER_CONFIGURATION.ottt ettt sttt sttt st s ete b e 106
SENSOR_CONFIGURATION ..ottt ettt be st s besbe s abesbensasesbeneane 107
BOARD_CONFIGURATION ...ttt sttt sttt sttt sese st stesesbesnesesbenseneans 108
ADAPTIVE_PARAMETERSooiit ittt sttt sttt sttt st sttt seeresbeseerens 110
QUALITY_PARAMETERS ..ottt sttt ettt s bbbt 111
VPD_COMMAND_PARAMETER ..ottt ettt sttt ettt sb e sbe e et 112
BOARD_REVISIONS ...tttk bbbttt b bbb nn 113
SHORT _POSITION_RECORD ..ottt eieeeie sttt e e ste st stesbessesseeseensesaessessessessessesnsenes 115
SHORT_ANGLES RECORDociiiiiitiieiieiee sttt sttt st e e saesbe st stesseenaeneeneeneenes 117
SHORT_MATRIX_RECORDcuoiiiiiite sttt sttt sttt st st see e te st b stesneeneaneeneees 119
SHORT_QUATERNIONS_RECORD..........citiiriiiitiiiiises ettt sttt ssensssessenenns 121
SHORT_POSITION_ANGLES _RECORDccccititiiiiiitiiieisiesiee sttt ssensssassessssenes 122
SHORT_POSITION_MATRIX_RECORDcouctiiiiitiiiiieitsiesise sttt ssessssassessssenes 123
SHORT_POSITION_QUATERNION_RECORDccciitiiiitiiieiisienieiesie e nes 124
DOUBLE_POSITION_RECORD........cotitiitiittiieiste ettt sttt sttt seenessensanenns 125
DOUBLE_ANGLES _RECORDcittiiiitiieiiiteieie sttt sttt be st se st s b ssesesbessesessesseseans 127
DOUBLE_MATRIX_RECORDc.oitiitiitiietisieieie sttt sttt b sttt st abe e abesseneans 128
DOUBLE_QUATERNIONS_RECORD........cctitiitiniiieierieieie sttt nae e e e 130
DOUBLE_POSITION_ANGLES _RECORDcocctiiiitiiiiiite ettt st 131
DOUBLE_POSITION_MATRIX_RECORDcoiiiiiiiiiesieeeieie ettt s nee s 132
DOUBLE_POSITION_QUATERNION_RECORD.......cccoeiiiinieriisesesie it 133
DOUBLE_POSITION_TIME_STAMP_RECORD.......cccotiiiiiieit sttt 134
DOUBLE_ANGLES_TIME_STAMP_RECORDcccoviiiiiiiinisisesiet st nsns 135
DOUBLE_MATRIX_TIME_STAMP_RECORDcociiiiiiiiieiste ettt sve et snesessenns 136
DOUBLE_QUATERNIONS_TIME_STAMP_RECORD........ccoctitiirieiitisieisesieeseie s seesssssseens 137
DOUBLE_POSITION_ANGLES_TIME_STAMP_RECORDcccceoiiiriiinienieiise et 138

DOUBLE_POSITION_MATRIX_TIME_STAMP_RECORDcccccviiiiiiiiii e 140

DOUBLE_POSITION_QUATERNION_TIME_STAMP_RECORD.........ccccoiiiiiiiiiiicn e 141

DOUBLE_POSITION_TIME_Q RECORDccoiitiiititiietee ettt sttt bene s 142
DOUBLE_ANGLES TIME_Q RECORD.......ccii ittt ettt sttt sttt sttt aveeaas 144
DOUBLE_MATRIX TIME_Q RECORD.......ccicictittiietecte ettt ettt ettt sttt be st ereenas 145
DOUBLE_QUATERNIONS TIME_Q RECORDc.coocoiiiittiteiete ettt sttt va s 146
DOUBLE_POSITION_ANGLES TIME_Q RECORD........cccciiiiiittitiiete et 147
DOUBLE_POSITION_MATRIX_TIME_Q RECORD......c.cceciititiiieicte ettt 149
DOUBLE_POSITION_QUATERNION_TIME_Q RECORDccccceoviiiiiectecteeete ettt 151
SHORT _ALL_RECORDcoiitiiitiitietse ettt bbbttt b s et et ne bt neete b ene e 153
DOUBLE_ALL _RECORDccuiiittiietett ettt sttt st sa et b esa et s sa e b e s ss st e s esestesnenesbesnennans 155
DOUBLE_ALL_TIME_STAMP_RECORDccivititiiittiieeste ettt ns 157
DOUBLE_ALL_TIME_STAMP_Q RECORDc.cciiictetitctctets ettt 159
DOUBLE_ALL _TIME_STAMP_Q RAW RECORDccceiiiiiieiitiitetsetee ettt 161
DOUBLE_POSITION_ANGLES TIME_Q BUTTON RECORDcccoooveiiiicteccecte e 163
DOUBLE_POSITION_MATRIX_TIME_Q BUTTON_RECORD.......cccccoeiitiieieeceeceeee e 165
DOUBLE_POSITION_QUATERNION_TIME_Q BUTTON_RECORD.......cccoovetiiiieecceeecee e 167
3D Guidance APl ENUMEIAtION TYPES...cuiiiiiieiriiiesieitisieeteeeeseestessestestessessesssessessessessessessessesssssssssessessens 169
BIRD_ERROR _CODESc.oci ittt ettt ettt sttt b et ba et st te et et et e et et ete st et ebesbe s ensebesrensans 170
SENSOR_PARAMETER _TYPE......co ittt sttt st b bs bt e bt ns bt ne e 175
IMESSAGE _TYPE......o oottt sttt sttt st e et st et te st et e te e b e e e teebe st e beebe s ebesbe e etesbe e etesbe e eteabeseateas 181
TRANSMITTER_PARAMETER_TYPE ...ttt ettt st 182
BOARD_PARAMETER _TYPE ..ottt sttt sttt besn e ens 184
SYSTEM_PARAMETER _TYPE ..ottt sttt ettt 185
HEMISPHERE _TYPE ...ttt ettt ettt b ettt b ettt e st et se st et et bene s 187
AGC IMODE _TYPE ...ttt ettt sttt b et st b et e bt se st et se e b et et st ebese et et e s s ebese et 188
DATA FORMAT TYPE.. ..ottt ettt ettt ettt ettt ettt ettt e et et be et et beste s essebe st ebestensanas 189
BOARD _TYPES ... oottt ettt ettt et ettt et e st te et e et e st et et aeebe et eas et e st essebe st essebe st essebestensabesrensanas 192
DEVICE _TYPES ... oottt ettt ettt ettt et st b e et et et e et et ete et et ebe et et ebs st et ebeebestessebestensanis 193
3D Guidance API Status/Error Bit DEfINILIONScoivviiieiieiiicte ettt re s 195
ERRORCODEoi ittt sttt ettt ettt st e et e e b e e bt e b e et et e st et esbe s b e s beebeera et e sbe st e sbesbesbesbesreereeeentes 196
DEVICE _STATUS ..ottt sttt ettt sttt b e b e et e et et ete et et ebe et et ebe st et ebesbesaensebesrennans 197
3D Guidance INItIAlIZAtioN FlESccviiiiiiiiecie ettt s sbe e be st e s reesbe s 198
3D Guidance Initialization File FOrmat REFEIENCEc.viiiiieiicce et 198
153 1] 1] [P SO T T OTO TP P TSSO P P PP PRPRTPTORPRPRPOPIN 199
LS 110 o [OO TP PP PO P PP PRTPTRPRTPPOPIN 201
LTTANSIMITEEIX] .ttt ettt bbbtk b etk b et ekt b et et eb e e et e sb e e et e abenn b 203
Chapter 6: Ascension RS232 Interface ReferenCecccooeveiiiiiiiininiceec e 204
RS232 Signal DESCIIPLIONecveciiccii ittt e e be s e aeste e e e sresteeneenrens 204
USING the "TESEt ON CT S FRALUIE......c.eitiieiiiiei ettt bbb bbb 205
RS232 COMMANGSeiiitiei ittt ettt e et e st e e st e e et e e st a e e sab e e e beeesbaeesbeeesabeesabesesteeesbaeesarenans 205
COMMANT SUMIMEIY ...ttt b et e bt eb e e st e s e e sae b e s besbe et e eseemeeseeebesbesbesbeaneeneennens 206
ComMmMAN ULHHIZATIONeoiviiiieiciecee ettt st be e be e eae e s be e s be e ebeebeenbestbesbaesbeesbes 208
e 00 KT o] 4T L O PP UPPTR 208
Position/Orientation Data FOIMAL.........ccivuiiiiiiiie ettt re e sbe e e sreesbeeebeebe e 209
RS232 CommMaNd RETEIENCEvviviectiictie ettt ettt sttt e be e be e ebe e sbeesatesnbeebesreas 211
AANGLES. ...ttt ettt et e et e bt bttt et et et e e e b e r e bt bt et et e e e et e beebeeb e e et e stetes 212
ANGLE ALIGN ..ottt ettt ettt sttt et ettt et e st s st e st e st e et e et e st e sa s et e s be st e sbesreareeseears 213
210 =] (€] I T 214
BORESIGHT REMOWE ..ottt sttt sttt sttt st s b sttt st e st sbe b e be et 215
BUTTON MODE ..ottt ettt ettt st ettt e bt st st e s b s b s s b e s b e e bt et s b e sb s st e sbesbesba et ente s 216

BUTTON READ ...t bbb 217

CHANGE VALUE ...t n bt 218

EXAMINE VALUE.......coi bbb n et 218
TRACKER STATUS ..ottt 221
SOFTWARE REVISION NUMBERcooiiiiiiic e 221
TRACKER COMPUTER CRYSTAL SPEED ..ottt 222
POSITION SCALING ..ot 222
FILTER ON/OFF STATUS ..ottt bbbt 222
MEASUREMENT RATE ... e 223
DISABLE/ENABLE DATA READY OUTPUT ..ot 224
SET DATA READY CHARACTER ..ottt 224
ERROR CODE ..ottt et nn s et r et nn e n e nn e nenn e enn 224
DC FILTER TABLE VM ..ot 224
DC FILTER CONSTANT TABLE ALPHA_MAX ...ttt 225
SUDDEN OUTPUT CHANGE LOCKociiiiiiiiiieie i e 226
SYSTEM MODEL IDENTIFICATION ..ottt s 226
XYZ REFERENCE FRAME ..ot 227
FILTER LINE FREQUENCYooiiiiiiiiii e 227
HEMISPHERE ... e 227
ANGLE ALIGN ...t e 228
REFERENCE FRAMEoi it 228
TRACKER SERIAL NUMBER.......c.ociiiiii ittt 228
SENSOR SERIAL NUMBERcooitiiiiiiise st 228
TRANSMITTER SERIAL NUMBERooiiiiiiie e 228
IVIET AL ettt bbbtk et E e E R e Rt bR R R Rt n R 229
REPORT RATE ..ottt bbbt an bt ar bt e e e 229
GROUP MODE ...t bbb bbbt 229
SYSTEM STATUS L bbbt 230
AUTOCONFIG ... bbb bbbt r e ar bbb 230
SENSOR OFFSET ...ttt bbb bbb s 231
BOOT LOADER FIRMWARE REVISIONccoociiiiiiiiii s 232
MDSP FIRMWARE REVISIONocoiiiiiiiiii i s 232
NON DIPOLE POSERVER FIRMWARE REVISIONccciiiiiiiiiiiinceceneene e 232
FIVE DOF FIRMWARE REVISIONooiiiiiiiiiiiieere s 232
SIX DOF FIRMWARE REVISIONooiiiiiiiicic st 232
DIPOLE POSERVER FIRMWARE REVISION........ccoiiiiiiiiiiii s 232

HEMISPHERE ... et b e nr e n et 233

IMATRIX e e r e b bbb et e b e bbb 235

IVEET AL . ot E e e bR 237

O ST .ttt 239

POINT . e e e s 240

POSITION .o e bbb bbbt e s 241

POSITION/ANGLES ..ottt bbbttt bbbt 242

POSITION/MATRIX .ottt 243

POSITION/QUATERNION ..ottt 244

QUATERNION ...ttt ettt r e et et ear et e r e e en e s re e erenreneene s 245

READ _VPD.... .o bbbt 246

REFERENCE FRAME ...ttt bbb 247

REPORT RATE ...t r bbbt e e n e an b r s 248

RE S E T e 249

RS232 TO FBB......oooieiiti e e 250

RUN .t E bbbt R bbb e e ne e b b r b et 251

SLEEP .t e 252

STREAM STOP ..ot b et e e n et bt b e e 254

WRITE _VPD ...ttt ettt ettt b e bt bttt eae e e ae e e bt e bt e bt e st e e sbenbeesbeenbeeneeaneenees 255

o] =T o104 [o PRSPPI 256
g o] g @ [T 1 [o[RS 257
Chapter 7: TroubleSNOOTINGccoiiiiiie e e 259
g o] O o [P RSS 260
Chapter 8: Maintenance, Repair and DiSposal ..., 261
USEE IMTBINTENAINCE ...ttt bbb etttk b e bbbt s e e b e e bt et et st e e e s eneene s 261
Maintenance Prior t0 EACH USE.......ccii oottt sttt n e 261

Periodic Maintenance (AS NEEUE)ciiiiiiiiieie e et 261
Cleaning and DiSINFECTING.........ooviieiiiiie e ettt be e bbb b e neeneennens 262

SENSOP STEITIZALION ...ttt bbb b et b e bt bt b e e et e b bt sbe bt e b e e e e e e 262
Broad Guidelines When Considering the Cidex (Glutaraldehyde) ProCess.........ccccoverereiirenceenieennenns 262

Broad Guidelines When Considering the EtO Sterilization ProCESScccveviverieseneseseseeeeee e 263
Software and FIrMWare UPAAteS.........c.ciiiiiiiieiieieicie st e et sve st sne et e e besresbestesnesreeneens 263

0 U SO SS 263
{TA L 14 2 PP PPUPROTRRRTRI 264
D1 0| SR 264
Chapter 9: Regulatory Information and Specifications............ccccevevieneiienienc e 265
EC Declaration of CONTOMMILYcocciiiiiiiie s st saesra e e nre s 266
FCC Compliance StAEMENTooviiiieiciiee e 267
(T [o AT o T=T o] | o=] S 268
PEITOMMANCE ...ttt ettt bbb bbb bbb b e bbb e bt sb et et e s b et et beneeee 268
PRYSICAL ...ttt bbb bbb bbbt bbbt 269
AppendixX I: MEASAFE ULHITY........coo e 271
RUNNING MEASAFE ULHITY ..c..eeiieeec ettt te e st ennae e 271
S o TSP 271

RUN TNE ULHTILY ...ttt bbbttt 271
Appendix T1: APPHCAtioN NOTES.......c.ciiiiiieieciese e re e ns 274

Computing Stylus Tip COOITINALEScccveeiieieesie e re e se e see et re e re e reeanreeneeenee e 274

Introduction

Congratulations on your purchase of our 3D Guidance medSAFE tracking device. We are proud of the
quality of all our tracking products and want to meet your expectations. Please contact us immediately if
you encounter any problems with its use.

medSAFE is a medically compliant guidance and localization device for instruments and tools. It
employs pulsed DC magnetic field generation and sensing to safely and accurately track the position and
orientation (five and six degrees-of-freedom) of a variety of sensors. Multiple field transmitter and
sensors options are available to provide the best performance for various medical procedures. Tracking
locations are determined in real time and are instantly reported to your host computer via a RS232 or
USB interface.

This guide will help set up and install the medSAFE hardware and software and configure the system
for optimal tracking.

About This Guide

This Installation and Operation Guide contains all the information you need to install and run the tracker. It
contains simple steps to operate, communicate with, and test your tracker. You’ll also find many helpful
tools to configure the tracker for your particular application.

Howv this Guide is Organized

Information is presented in eight chapters.
Chapter 1: Preparing for Setup and Safe Performance
= States the intended use.
= Lists system software and hardware requirements.
= Outlines the components of your system.
» Details safe performance and handling precautions.
Chapter 2: Quick Start: Setup and Checkout

= Directs you on connecting your system components.

= Enables a quick checkout running our demonstration software.
Chapter 3: Configuration and Basic Operation

« Outlines default configuration parameters and reference frames.
» Provides component mounting information.

= Discusses basic principles of tracker operation.

= Describes factors that affect tracker performance to include electromagnetic and other
interference.

Chapter 4: Software Operation — Tools for Successful Tracking

= Overviews the system software.

» Provides a few sample programs.

Chapter 5: 3DGuidance API Reference

= Gives you an overview of the 3D Guidance APL

» Describes sample programs included on your CD-ROM that illustrate the tracker’
communication structure.

= Details the 3D Guidance Application Programming Interface (API) for
communicating with the tracker using USB.

Chapter 6: Ascension’s RS232 Interface Reference

= Describes an alternate method for communicating directly with the tracker follows our
popular and often-used Ascension RS232 Interface protocol

Chapter 7: Troubleshooting

» Lists common setup problems and solutions.

Chapter 8: Maintenance, Repair and Disposal

» Offers user maintenance prior to each use and other period maintenance.
= Addresses cleaning and disinfecting methods.

= Lists replacement part numbers.

» Provides details of the warranty.

» Identifies disposal guidance.

Chapter 9: Regulatory Information and Product Specifications

« Lists applicable standards, symbols, specifications, and certifications for the

medSAFE.

Guide Conventions

This Guide uses a number of conventions to explain procedures and present information clearly.

Notes: Notes describe important hardware or software features.

Tips: Tips will help you get the best performance out of your tracker.

Caution! These messages alert you to important operating instructions. If
unsure about an action you are about to take, contact our Technical Support
Group.

/ Note: This

call-out explains
important
information about
the features of your
tracker.

& Tips: This

call-out provides
advice for
maximizing the
performance of
your tracker

@ CAUTION!

This call-out points
out steps that
should be avoided
to prevent damage
to-your tracker.

Names of files, directories and programs: These are italicized (for example, ATC3DGz.lib)

Getting Assistance

If you are experiencing a problem with the installation, setup, or operation of your tracker, we suggest
your first consult the Troubleshooting Table in Chapter 7. It describes potential setup problems and

how to resolve them. If you continue to experience problems, contact us as follows:

World Wide Web: http://www.ascension-tech.com/technical/
E-mail: mailto:support@ascension-tech.com

Telephone: (802) 893-6657 (U.S. Eastern Standard Time: 9AM — 5PM)
Fax: (802) 893-6659

http://www.ascension-tech.com/technical/�

Chapter 1: Preparing for Setup
and Safe Performance

This chapter describes everything youn will need to setup your 3D Guidance
medSAFE tracker

System Requirements

Intended Use Statement

medSAFE is designed to allow real-time tracking or measurement of an object’s position and
ofientation in free space.

Software Requirements

The following Windows- based utilities are included on the 3DGuidance CD-ROM:

1. medSAFE Deno - a demonstration utility that communicates
using USB and the 3DGuidance USB APL / e

2. winBIRD -a demonstration utility that communicates via Wi be s
required for running

RS232 using the 3D Guidance RS232 interface. the utilities or

communicating with
the tracker using one

3. medSAFE Utlity - a utility for changing default configuration of the Windows APs.
parameters of your tracker Communicate directly
with the 3DGuidance

These utilities and communication with the tracker via the Windows APIs | using our3D
Guidance RS232

require: Interface. See
. . . Chapter 6
Windows XP or Windows Vista

Note: medSAFEDemo was formerly known as PCICubes and medSAFEUtility was formerly known
as the medical tracker utility.

1: Preparing for Setup and Safe Performance

Hardware Requirements

USB port: medSAFE reports data serially to your host computer through a USB cable. An unused
USB 2.0 port is required for the tracker.

COM port: medSAFE reports data serially to your host computer through a RS232 cable. An
unused COM port is required for the tracker.

Power: The trackers” power supply will operate from 100 to 240V AC, at frequencies of 50-60 Hz
using up to 60 VA of power.

CD-ROM drive: You need this only for accessing utilities and drivers, described above. These
utilities may also be conveniently downloaded from the Internet by visiting the FIP site on our
website: ftp://ftp.ascension-tech.com/

Unpacking the Tracker

Your medSAFE tracker is packaged in one shipping box. Inside, you will find the following items
needed to set-up and operate your tracker:

= 3D Guidance medSAFE Electronics Unit:

A Ascension

http://www.ascension-tech.com/�
ftp://ftp.ascension-tech.com/�

1: Preparing for Setup and Safe Performance

= Sensor Options:

Model 800 Model 180, 130, 90 Sensors

® Pre-amplifier Options:

Model 800 Model 180, 130, 90

1: Preparing for Setup and Safe Performance

Transmitter Options:

Mid-Range Transmitter: Short-Range Transmitter

4-Axis Flat Transmitter or 9-Axis Flat Transmitter

1: Preparing for Setup and Safe Performance

= (Cables:

1- AC Power cord

RS232 Cable USB Cable

If you notice any missing components or the shipment is damaged, please contact Ascension
Technical Support.

1: Preparing for Setup and Safe Performance

Safe Performance & Handling Precautions

Ascension sensors and transmitters, along with their attached cables and connectors, are sensitive
electronic components. To obtain consistent performance and maintain your warranty, treat them
carefully.

= Read this Guide.

* Handle the section of cable near the sensor head or transmitter housing with care. Repeated
bending of the cable near the sensor head or transmitter housing is the most common cause of
tracker failure.

* When power is applied or the system is running, do not touch exposed
clectronic components. Contact with exposed components could canse

mjury.

® CAUTION!

» If you insert the sensor or transmitter in a mounting bracket or holder, be careful when you
remove them. Do not yank or pull on the cable.

= Sensors and transmitters can be damaged if you carry, throw, or swing them by their cables or
if you let them drop against hard surfaces.

* Sensor and transmitter cables have been precisely bundled, shielded, and calibrated to minimize
noise and ensure accurate performance. Do not tamper with them. If you attempt to add your
own extension cables or connectors, you may well compromise performance and, of course,
void both regulatory approvals and your warranty.

* To clean your equipment, use a cloth to wipe components with a general purpose cleaning
solution such as soap and water, isopropyl alcohol, etc. Do not immerse the transmitter,
sensors, or cables in any liquids.

= Keep the transmitter, sensors, and cables away from sources of heat.

* If mounting a mid-range or short-range transmitter inside an enclosure,
be sure to provide adequate ventilation. Mid-range and short-range
ransmitters should not be mounted beneath mattresses, pillows, or any
other object that will curtail air circulation in the immediate vicinity. Flat transmitters are
excluded from this restriction.

® CAUTION!

= Never power up the system or place the transmitter in an explosive atmosphere.

= Tracker components may be subject to interference from or may interfere with other
electrical equipment in your environment. Be sure to identify sources of interference in

1: Preparing for Setup and Safe Performance

your particular environment before using this tracker. See Electromagnetic and Other
Interference in Tracking.

Do not hang the mid-range transmitter upside down by its rear mounting holes. They
are not designed to hold the full weight of the transmitter. Such a set-up could cause
damage to the transmitter, nearby equipment, and even human injury.

Care should be taken to avoid spillage on the electronics unit and components.

Do not overly flex or twist the sensor cable.

Do not allow the sensor or any cables to be crushed or subjected to undue strain and
stress. The connectors can become warped if stepped on; the internal wires in the sensor
cable can break or become weakened if pinched; and the sensor head may be damaged if
trapped under heavy weights.

Do not drop or smack the sensor head against a hard surface. Such impacts can produce
internal damage and adversely affect tracking accuracy.

Be sure to implement a strain relief if you embed a sensor and its cable in an instrument
or tool. The point where the sensor cable exits from your tool needs protection. Your
sensor will last a long time if you take steps now to distribute forces over an extended
region of the cable.

To extend tracker life, be sure to shut down the transmitter when not in use. You can do
this in several ways:

a. Select “No Transmitter” by setting the System parameter:
SELECT TRANSMITTER value to —1 in the 3D Guidance API.

b. Recycle the power on the electronic unit (if independent access is available to the
unit’s power).

c. Disconnect and reconnect the USB cable.

d. Hold the system in reset using the CTS Reset feature or SLEEP command, if using
the RS232 mode.

1: Preparing for Setup and Safe Performance

Environmental Conditions

The medSAFE must be used and maintained in the following ranges only:

Temperature

The tracker operates within specification when the ambient air temperature is between 15 degree C and 35
degree C. The medSAFE can be packaged and shipped in environments with an ambient air temperature
between -40 degree C and 70 degree C without degradation of its components.

Humidity

The tracker operates in non-condensing environments with relative humidity between 10% and 90%. Itis
capable of being packaged and shipped in environments with a relative humidity between 5% and 95%.

Chapter 2: Setup and Checkout

This chapter demonstrates how to install the software and connect your
components so that you can quickly checkout your device and begin tracking.

Install the Software

The medSAFE CD-ROM has an installer that will copy all required software / i

(utilities, sample code, API, etc) and user documentation onto your host PC. | install the

Note that you must have administrator priveledges for the installer to run. g(gtl\:NOa;{eE
connecting the

*INSTALL THE SOFTWARE BEFORE CONNECTING THE | tracker.

TRACKER**

1. To begin the installer, place the CD-ROM in the tray, and close the drive door. NOTE: If the
installer does not start (drive not set to ‘Autoplay’), then browse to the CD-ROM folder and run

the Serp.exe’ file.

i 3D Guidance (Rev D)

Welcome to the 3D Guidance (Rev D) Setup
Wizard D

The inztaller will guide you through the steps required ta install 30 Guidance [Rev D] on your
computer.

WARNIMG: This computer program iz protected by coppright law and international treaties.
Unauthorized duplication or distibution of this program, or any portion of it, may result in severe civil
or criminal penalties, and will be prosecuted to the maximum extent possible under the law.

Cancel

2: Setup and Checkout

2. Follow the prompts in the Setup Wizard, confirming the target folder and selecting the user access
(install for everyone or just current user).

i 3D Guidance (Rev D) |E\E| i& 3D Guidance (Rev D)
Select Installation Folder Confirm Installation 4
'J L '? L
The irstaller willinstall 3D Guidance [Rev D] to the following folder The installer is ready to install 3D Guidance (Fev D) on your computer.
To install in this folder, click "Mext". To install to & different folder, enter it below ar click "Browse". Click. "Mext'' ta start the installation.
Folder:

C:%\Program Files\dscension\3D Guidance (Rev D)y Browse

Install 30 Guidance (Rev D) for yourseff, or for anyone who uses this computer:
®Everpone
O Just me

[Cancel] [< Back I [Mext > 1 [Cancel] [< Back] | Mext »

3. After the installer has copied over the software, it will ask you to select a USB driver.

Ascension 3DG USBE device driver installation

Disconnect all 3D Guidance units before proceeding

Select the appropriate USE device driver to installl:

() Windows SE device driver {default)
(32/64 bit USE device driver for XP and Vista)

(") Cypress LUSE device driver
{Legacy 32 bit USB device driver for XP and Vista)

Uninstall all previous 3DG USE device driver

[ok |[Cancel l

a. For new installations, and systems running a 64-bit operating system, select the “Windows
USB driver device driver’ (winusb.sys).

b. For continued use of the legacy USB driver (cyusb.sys), select the ‘Cypress USB device
driver’.

4. Note that Windows may then indicate that the software has | §\ muse s ee s st e o

testing to verty its compatibiity with Windows XP. (Tell me why

not passed the ‘Windows Logo Testing’. Select ‘Continue e
Anyway’ to proceeed with the installation. o el ha ottt rtton o v sy

either immediately or in the future. Microsoft strongly
recommends that you stop this installation now and
contact the software vendor for software that has
passed Windows Logo testing.

Continue Amyway | | STOP Instalation |

10

2: Setup and Checkout

After the necessary installation files have been copied over, the Readme.rxt file will be displayed and
provide important information about the software.

i# 3D Guidance (Rev D) EJE& | @ 30 cuidance (Rev D)

Installing 3D Guidance (Rev D) 3D Guidance (Rev D) Information

3D Guidance (Rev D) is being installed Tuly 16, 2009 ¥
P/N: 940038 Rev C1

Please wait
R R

This CD-ROM contains the relevant device drivers for the
ATC trakSTAR system.

It also contains currently available Utilities.

Hote:

For Multi-Unit-Sync (MUS) Cperation, see the MUS
Installlation Guide Addendum for

guick setup and checkout instructions.

See the trakSTAR Installation and COperation Guide for
full description of API and

tracker operation.

Cancel

5. Note that Windows XP and Vista32-bit systems may prompt the user to run the Driver Installation
Wizard. Follow the prompts in the Wizard to copy over the required driver installation files.

3
Device Driver Installation Wizard

Completing the Device Driver
Installation Wizard

Device Driver Installation Wizard

Welcome to the Device Driver
Installation Wizard!

This wizard helps you install the software drivers that some

Uters devi d in onder to work
bt The drivers were successfully installed on this computer,

You can now connect your device to this computer. f your device
came with instructions, please read them first.

Driver Name Status
~ Ascension (WinUSB) US... Readyto use

To continue, click Next.

Next > Cancel | Back Firish Cancel |

11

2: Setup and Checkout

Cable Connections

medSAFE hardware can be setup and prepared to operate in five easy steps:

1. Connect the transmittet:

Plug the transmitter cable into the 37-pin connector on the electronics unit. Tighten the
screws on this connector.

2. Connect the sensor(s) to the pre-amplifier(s):

Plug the connector of each sensor into the receptacle in the pre-amplifier module. Be sure to
tully insert the connector until an audible ‘click’ is heard.

/ Note:

The sensor connector
and pre-amp
receptacle are
specifically keyed to
mate. You may need
to rotate the sensor
connector before it
will click into place.

3. Connect the pre-amplifier(s) to the electronics unit:

Plug the connector of each pre-amplifier into the receptacles on the tracker’s electronics unit.

12

2: Setup and Checkout

/ Note:

Model 800 (8mm)
sensors use a blue
pre-amp: (hot shown)
with a different keying
from the standard
pre-amp.

Connect the AC power cord to the electronics unit:

The AC power cord plugs into the rear panel of the electronics unit. Plug the prong end into
an AC source (wall outlet). Locate the power switch on the rear panel and turn it ON. The unit
will not communicate until the front panel LED turns green, and the unit completes an internal
initialization.

/ Note: When you tum the

power switch on, the processors
begin their initialization routines and
read data stored in the transmitter
and sensor proms. Commands
should not be sent until the front
panel LED is green. A blinking
orange LED indicates that no valid
transmitter was attached.

Connect the USB or RS232 interface cable.

a. If you wish to communicate using the 3DGuidance API (USB interface), connect the USB
Cable to the Electronics Unit and to a USB port on the your host PC.

b. If you will communicate with the tracker using Ascension RS232 protocol, connect the
RS232 cable to the electronics unit and a COM port on the Host PC.

13

2: Setup and Checkout

Installing the Driver

After plugging in the USB cable, your computer’s operating system will indicate it has
detected new hardware and start the New Hardware Wizard. (Note that Vista
systems will initiate the driver install automatically)

1. Follow the New Hardware Wizard prompts, allowing Windows to
Automatically search for a suitable driver. This is the default option. Note that
if you inserted the CD-ROM and ran the installer prior to connecting the
hardware, the Wizard will find these automatically.

Found New Hardware Wizard

Welcome to the Found New
Hardware Wizard
This wizard helps you install software for:

Ascension USE Device for 3D Guidance trak STAR
(WinlJSE)

f\-} if your hardware came with an installation CD

& orfloppy disk, insert it now.

What do you want the wizard to do?

(O Install from a list or specific location {Advanced)

Click Mext to continue.

MNexd >][Cancel]

/ Note:

If you're going
to.communicate
with the tracker
directly using
the RS232
interface, you
do not need to
install these
drivers — go to
next section.

v

The latest
driver/DLLs can
be downloaded
from the
Ascension
website or by
contacting
technical
support.

2. Follow the steps in the New Hardware Wizard, allowing Windows to install the USB driver.
When notified that the software has not passed ‘Windows Logo’ testing, select ‘Continue

Anyway’.

3. When the Wizard completes installing the appropriate files, close the New Hardware Wizard.

14

2: Setup and Checkout

System Checkout

Running the USB Demo Software
With the tracker running and the drivers and utilities installed, you are now ready to run the demo
software and checkout your system.

1. Start the demo application by selecting 7edSAFE Denw from the Ascension Technology
program group in the Windows Start menu.

If you have installed the hardware and drivers correctly, there will be a brief pause (~3 seconds)
while the application establishes communication with the tracker. Then the main window of
the utility will be displayed.

I Accessories

Programs -
& Internet Explorer

_;z! Doourments L3 Picrasaft Excel
Cetitgs . fdicrazaft Werd
I allance ¥
Seardh v i@ Pentalogix

G Ascension Technology

Halp and Suppart

Windows XP Professional

2. To start collecting data from the tracker, press the Run button in the toolbar.

If the medSAFEDemo application does not run, consult the troubleshooting table for
assistance.

The following is what you will see when the demo is running:

15

2: Setup and Checkout

- e dSAFEDwmo:
Pl v CORCMN Graghis M
=F5Hwn # ront Elrull Zorwn | Brrag 13y Birity T alxns Bk
i Fismciikcaiate erlage % " z Aot alEwEion el ausiby
458.65 -94.43 3494 14656 -86.16 8590 Z
50988 -83.54 -5.80 16398 218 -1.10 2
na na na na na na
na na na na na na
2
Eystem Sanear)| Sensor 2 | Berser 3| Seacar 4| min 1| Eros Lag | Sawe Ta Fils |
s Tyremtin Froms L Pty Hpmuererd flwe Vomn S arpie Sk Tarerim terrm
- B gl R Remaze [[
1 ¥ tpah
¥ Tusanasils *"""r"":"u" =] itk iuee %ﬁ-ﬁﬂ

30 bz icronaR . | g -0 0 Gl [= Bl by

The top of the window displays numerically reported position and orientation data for each
sensor attached to the tracker electronics unit. Each color-coded row contains tracking data
for a single sensor. The first three values in a row represent sensor position in millimeters,
relative to the transmitter. The next three values in the row represent sensor orientation in

degrees.

The last column in each row presents reported QUALITY number. & Tip: See the
It gives you an indication of the degree to which position and angle AP Reference for
: . : additional information
measurfzments are in error. E.rror§ may often be attributed to metal in | 247200 Dl
the environment. See Magnetic Distortion. using the QUALITY
number.

The center of the window displays a colored cube for each sensor
attached to the electronics unit. Note that colors correspond with the

preceding rows of text values. ¥ Tip: For
additional information

The bottom of the window allows you to configure and adjust some on using
medSAFEDemo,; see

tracker parameters. the program'’s Help
menu.

Use the demo utility to acquaint yourself with the sensot's motion

volume (i.e., motion box) and the tracker's measurement capabilities. If the utility does not run
or the tracker does not operate as described, please consult the troubleshooting table for
assistance.

16

2: Setup and Checkout

Running the RS232 Demo Utility

1. Start the demo utility by selecting ##BIRD from the Ascension Technology program group in
the Windows Start menu.

Pichure Itl Express

Progeams
e 3) Windows Exploser
Favorites » (=3 Adebe Actobat 4.0 2
WirZip b
k Fn
Qe = Backup Exec Deskiop Pro k
Setlirgs ¥ \.@ Alkance L4
(B Adobe 2
Find Y (B} CD Stomper - MicroMision g
Help rﬁ Ascension Technology L ‘ Flying Cubes
(=) Miciosolt Office Tols { A winBIRD
Run.. Miciosolt Access B LasesBird Lt
& Microsoft FrontPage
Log Off Cstevens... Miciosolt PowerPoint :
Shet D (5} TestTeack Pro vl
D @] Outiook BRSO e
t|| & Z B & @ (F Norton Antivius Corporste Ediion » |Ib240manual doc

This will open the wnBIRD window. The top of the screen contains the menu bar and
toolbars, providing links to main »#BIRD functions. At the beginning of a session most of
these will be disabled, each becoming available as procedures are fulfilled.

2. Click Setup on the menu bar, and select RS232.

A winBIRD - [winBIR1] = B
File Edit | Setllp | Take Data Options Miew MWindow Help = E’lil

> o v R Bk d7T a6 >
Ecl
TCRIP
Shut Do
Sets up for RS232 | INUM A

17

2: Setup and Checkout

3. Change the 'Baud Rate' to setup your COM port for the tracker’s default setting: 115200

RS232 Setup

/ Note:

Mumber of Devices Bawd Rate 115200 baud is the

|1 1115200 "] only baud rate

currently supported
by the medSAFE

FRead Timeout s

IEI]EIEI

1152400

ak. i Cancel

4. If you have more than one sensor connected, enter the total number in the “Number of
Devices” field. If one sensort, see note at left.

5. In the next pop-up window (Device 1) enter the correct Com Port for the tracker. Leave the
default radio button enabled for ‘Device 1’.

Device 1 i
% Note: For a

Corn Fort single sensor you

must still configure

i 1 the tracker to- Not
Standalone mode.
Connechon 'Not Standalone' or

: : R -
& Direct {" FBE accessible forr(z)au‘zrg:j:)’ifls use

trackers or multi-

sensor systems
Cancel i y

6. For the remaining devices (sensors), leave the ‘FBB accessible’ radio button enabled.

Device 2 i
Com Port
]
Connechon
" Direct {* FEE accessible
Cancel I

When you click OK the main screen will indicate that the utility is establishing communication
with the system: "Waking up bird...'

18

2: Setup and Checkout

After a brief pause, the text will change to indicate 'Setup complete', and several of the icons
on the toolbar will be enabled.

Select "T'ake Data' from the menu bar and choose the option you would like for displaying the
data.

A winBIRD - [winBIR1]

File Edit Setlp | TakeData Options |

‘—) @ |_(5 Stieam
Pairit

A

¥ Animate

Eouncing ESll

What you'll see:

If you have selected 'Animate’, the screen will display a set of tri-color axes. (one axis per
sensor) This axis graphically represents the sensor’s translations and rotations in the motion
region.

If you have selected 'Stream' mode, the screen will continuously update two rows of data for
each sensor. The three values in the first row of each sensor block represent sensor position, in
inches, relative to the transmitter. The three values in the second row give sensor orientation in

degrees.

'"Point' mode is a snap-shot form of the 'Stream' mode.

Use the demo utility to become familiar with the sensot's motion region and the tracker's
capabilities. If the utility does not run or the tracker does not operate as described, please
consult the Troubleshooting Table for assistance.

19

Chapter 3. Configuration and
Basic Operation

You will find a method for configuring the tracker in this chapter. It also
contains a description of basic operating principles and factors that affect
performance.

When the tracker is configured at the factory, settings are optimized to meet the needs of most
applications. However, you may find that it is helpful to customize the power-up behavior of your
tracker to better meet your specific application requirements.

Follow these steps to customize your system:
1. Review the list of configurable default settings.
2. Determine which (if any) of the settings you would like to change.
3. Follow the steps in the 'Changing Your Settings' section to change the power up defaults with
the medSAFE Ultility.

Default Configuration

The following settings are installed as power-up defaults. MedSAFE Utility may / _
be used to alter this default power-up configuration for Non-Dipole e

power-up

Transmitters only. Those settings not accessible with the #edSAFE Utility may configuration for
be changed during normal operation through the appropriate software Srg,r?slfnitters
command. Dipole transmitters include the short and mid-range transmitters. cannot be
Non-dipole transmitters include 4-axis and 9-axis flat transmitters. changed.

Settings must be
reconfigured at
runtime using a
software
command.

20

3: Configuration and Basic Operation

Dipole (Cubic Non Dipole (Flat | Utility | SW call
Transmitter) Transmitter) N
Baud Rate: (RS232) 115200 v
Measurement Rate: 80.0 Hz 40.5 Hz (4 Axis) v v
22 Hz (9 Axis)
Update Rate 205 Hz (dipole) 162 Hz (4-Axis) 198 Hz (
(Solutions/Second) 9 axis)

Scale: 36 inches (91.4 cm) v v
Sensor Offsets (deg): x=0,y=0,2=0 v v
Angle Align (deg): az=0,el=0,11=0 v v
Reference Frame (deg): az=0,el=0,t1=0 v v
XYZRef: False v v
Hemisphere: Front ‘ N/A v v
Sleep on Reset: Enabled v

Port Type: N/A | 6DOF v

Report Rate: 1 v v
AC Wide Notch: Enabled v v
AC Narrow Notch: Disabled v v
Adaptive Filter (DC): Enabled Disabled v v
Alpha Min: 0.02 v v
Alpha Max: 0.90 v v
Vm Table: 30,15,1,1,1,1,1,1,1,1 v v
Data Record Type: DOUBLE POSITION ANGLE v

Configurable Power-up Settings:

The following may be re-configured using the medSAFE Utility for non-dipole (flat) transmitters only.

IP Address IP Address for TCP/IP communications. Not supported.

Mask Mask for TCP/IP communications. Not supported.

Port Port for TCP/IP communications. Not supported. / Note:
Currently the
only supported

Baud Rate Establishes the default RS232 communication rate for Baud Rate is

power-up. 115200,

21

Measurement
Rate

Report
Rate

Hemisphere

Scale

Data Format

Sensor Offsets

Angle Align

3: Configuration and Basic Operation

Sets the acquisition rate for the tracker. This can be altered to optimize
susceptibility to distortion from certain metals. See Environment section below.
Note: this is not the same as the tracker’s Update Rate. Update Rate is the
number of full tracking solutions iteratively computed by the tracker each
second and available for your use.

Sets how many times the tracker should update the tracking solution before
reporting a new data record. Thus, with a report rate of 1, every update is
reported. With a report rate of 2, every other update is reported, etc. The
report rate only applies to streaming data (GetSynchronousRecord).

Defines the hemisphere (region), centered about the transmitter, in which the
sensor makes measurements. There are six hemispheres from which to choose: the
FRONT (forward), BACK (rear), TOP (uppet), BOTTOM (lower), LEFT, and the
RIGHT. If no HEMISPHERE parameter is specified, the FRONT is used by
default. The HEMISPHERE parameter has no effect on non-dipole (flat) tracking

solutions.

Sets the scale factor used by the tracker to report the position of the sensor with
respect to the transmitter. Valid values of 36 and 72 represent the full-scale position
output in inches.

Sets the default data format for returned data records.

By default, the tracker outputs the X, Y, Z position of the magnetic center of the
sensor coil (approximate center of sensor housing) with respect to the transmitter
origin. The Sensor Offsets allow you to configure the position outputs so the
tracker is reporting the position of a location that is offset from the center of the
sensor. See the Sensor Parameter SENSOR OFFSET for details.

Allows you to mathematically align the sensor(s)” coordinate frame to the
coordinate frame of the object being tracked. This is beneficial if you find the angle
outputs for the object being tracked are not zero when in the normal 'resting’
position.

Reference Frame Defines the reference frame centered at the transmitter’s X, Y, and Z-axes (See

Default Reference Frames). Reference Frame settings allow you to enter the angles
required to mathematically align the axes of the transmitter with those of a new
reference frame.

22

Sleep on Reset

Port Type

AC Wide Notch

AC Narrow
Notch

Adaptive Filter

Kalman Filter

3: Configuration and Basic Operation

When enabled, this setting will cause the tracker to enter SLEEP mode after
completing a reset or following power-up. In the SLEEP mode, the transmitter is
turned off, but the unit will continue to respond to commands. Issue the RUN
command (or 3DGuidance API equivalent) to resume normal operation. See the
SI.EEP command description in the RS232 Command Reference section for
details.

When using a non-dipole (flat) transmitter, each sensor port can either track a single
6DOF sensor or up to three 5SDOF sensors. The tracking mode is chosen at
startup based on this setting. There are three options: 6DOF - the port always
computes a 6DOF tracking solution; 5DOF — the port always computes a SDOF
tracking solution; Auto — the port will configure itself at startup based on what
sensor is plugged into the port. A 6DOF sensor will cause the port to be
configured for 6DOF tracking. A 5DOF sensor or no sensor will cause the port to
be configured for SDOF tracking.

An eight tap finite impulse response (FIR) notch filter that is applied to the
sensor data to eliminate sinusoidal signals with a frequency between 30 and 72
HZ.

A two-tap FIR notch filter that is applied to signals measured by the tracker’s
sensor. You can use this filter in place of the AC WIDE notch filter when you want
to minimize the delay between the measurement and outputs of the sensor data.
The transport delay of the AC NARROW notch filter is approximately one third
the delay of the AC WIDE notch filter.

When ON, it is a low pass filter applied to sensor data that eliminates high
frequency noise. Generally, this filter is always ON, unless your application permits
noisy outputs. When the filter is ON, you can modify its noise/lag charactetistics by
changing ALPHA_MIN and Vm.

These parameters are used to tune the static and dynamic tracking performance for
non-dipole transmitters. These settings are to be altered by the factory only. If you
think that tuning these parameters may be appropriate for your application, please
contact us first.

23

3: Configuration and Basic Operation

Default Reference Frames

Mid and Short-Range Transmitter Reference Frame

Front
Hemisphere

MicroSensor Model +X
180 and 130
+Y +Z +Z

Model 800 Sensor

Default Transmitter/Sensor Coordinate Frames

The origin of the short and mid-range transmitters’ default Reference Frame is an approximate location
at the center of the transmitter’s coil set.

You can locate the reference frame origins for mid and short-range transmitters at their surface
housings as follows:

Mid Range: (cable exits lower rear face)
= 1.88 inches from bottom left edge

= 1.60 inches from the top face

= 1.80 inches from bottom front edge

Short Range: (cable exits lower rear face)

= 1.21 inches from front face /1.51 inches from rear face
= 1.05 inches from the left and top faces

» 1.05 inches from right and bottom face

24

3: Configuration and Basic Operation

Flat Transmitters

Models 600760 and 600760-9C

v

Top of +Y

Transmitter

N\

Flat Transmitter Coordinate Frame

4 Axis Flat Transmitter Origin: In the middle of the square that defines the top surface
* 11.0” from left/front edge
* 11.0” from right/rear edge
= 07 from the top face

Changing Your Settings
The Medical Tracker Utility may be used to alter power-up defaults for Non-Dipole Transmitters only.
See Appendix I, medSAFE Utility.

25

3: Configuration and Basic Operation

Mounting the Hardware

Mid-Range Transmitter Mounting and Location

Mount the mid-range transmitter on any non-metallic surface, such as wood or plastic. Be sure to use
non-metallic bolts or 300-seties stainless steel bolts.

@31
2%
2000
bl
376 k./;
N
f\ L ® CAUTION!
i The mounting
N B holes are not
R275 strong enough to
% hold the transmitter
upside down
4125
T B
TRANSMITTER
340
i
| |
'i L]
L os

2K

Mid-range Transmitter Mounting Dimensions (inches)-top and side views

As mentioned eatlier, the mid-range transmitter’s mounting holes are not designed to support the
transmitter’s weight when mounted upside down. If you choose to mount the transmitter upside down,
use hardware that firmly holds the flanges along the front and both sides of the transmitter in addition

to bolting the two mounting holes.

Never mount the transmitter on the floor (including concrete), ceiling, or walls as they may contain
hidden metal objects that may affect accuracy of measurements.

Your transmitter should be located at least 24 inches from the electronics unit. It should not be placed
within 10 feet of another operational transmitter since the two may interfere with one another. Contact
us if you need to synch transmittersat closer ranges than described above.

26

3: Configuration and Basic Operation

Short-Range Transmitter Mounting and Location

Mount the short-range transmitter on a non-metallic surface, such as wood or plastic. Again, be sure to
use non-metallic bolts or 300-series stainless steel bolts.

The mounting provisions for the short-range transmitter are located in the base of its housing. The four
threaded inserts molded into its base accept an M4 threaded screw. Remember to never mount the
short-range transmitter on the floor (including concrete), ceiling, or walls to avoid the danger that
hidden metals might cause distortions in measurements.

The short-range transmitter should be located at least 24 inches from its electronics unit.

Again, keep it at least 10 feet away from another transmitter to avoid poss1ble interference.

Approx. Magnetic Canter
[ORIGIN] 1.101[27.97] — .480[12.19]

Y

1.790[45.47 | * \
895[22.73 {—:l__

]

S

fe———— 4.333[110.05 | ——= — .495[12.57]

0z23[25.97 M4 % &rmm THREAD TYP 4
7231835 | ————— @(

olo | — |

F23118.38
02325.97

e

£
1 k|

o O =t b
=t =T 0 e
=
[[T}
L1 = W30
ua | |
i Mmoo
] 0m—
’ |m=n
— oy

Compact Transmitter Mounting Dimensions (inches)

Sensor Mounting

Mount the sensors on non-metallic surfaces (such as wood or plastic). Do not / i
place sensors near power cords, power supplies, or other low frequency current To ensure
nerati 1 f + exam 1 R’ ispl: . proper sensor
generating devices (for example, CRT displays) L
the sensor

When tracking with multiple Model 800 sensors try to maintain a center-to-center cabl? \Illery
separation of approximately 1.3 inches. If they get too close, you may notice e
some distortion in the measurements.

27

3: Configuration and Basic Operation

The cables used in the Model 130 and 180 sensors are designed for integration into many instruments,
including medical devices. No matter how you use them, always treat them as delicate electronic
devices — sensor and the cable too. Repeated bending, pulling, or yanking of the cable will result in
damage and failure of the sensor. You can also run the risk that bending, pulling or yanking the sensor
- especially near its head - can tear the assembly away from its cable. The junction between the sensor
head and the cable is a potential failure point and bending at this junction should be always avoided.

Locating Your Electronics Unit

For best performance, always make sure that the electronics unit is at least 24 inches from the
transmitter.

Flat Transmitter Mounting

The flat transmitter should lie on an even surface such that it is fully supported. To provide optimal
shielding, the flat transmitter should be positioned directly above the distorter.

Pre-amplifier Mounting

The pre-amplifier is a potential distortion source because of its magnetic shielding. For maximum
accuracy, it should be located as far from the tracking volume and the magnetic transmitter as practical.

Rear Panel Connectors

There are 5 connectors on the rear panel of the electronics unit.

90-264V 50/60 Hx

= Unit
= Sync Switch Etharmet

= @ @ . {Optional)

gl & Bl L Multi-Box
= riamv o ; Free]

Power

Standard 3-prong AC power inlet. Accepts power from 100 to 240V, at 50/60Hz.

RS232

This is one of the two communication interfaces for the tracker. A pinout and
signal description of the RS-232C interface is included in Chapter 6. Note that the / i
tracker requires connections only to pins 2, 3 and 5 of the 9-pin interface | Seethe RS232

connectot. Skl
Description in
Chapter 6.

28

3: Configuration and Basic Operation

uSB

The USB 2.0 connector is a standard USB TYPE B -Female for peripheral devices.

PIN: 1: VCC +5VDC
PIN: 2: DATA-

PIN: 3: DATA+
PIN: 4: GROUND

SYNC

/ Note:

The SYNC connector provides inputs/outputs for synchronizing measurements SIaTn
not an active

from an external source. TTL input is accepted. function at time
of manual

writing: Contact
us for more info.

SWITCH

The SWITCH connector may be used as an input from any analog switch. The / Mo
contact closure (such as a button or footswitch) should be connected between the §Z?etrr:1§apflor
center conductor and the barrel of a mating BNC connector, and exhibit less than | data formats
50 ohms total when in the closed position. To be correctly detected and reported | fhét include the

. I button state.
by the unit, the switch must be closed for not less than 17mS.

Basic Operation

The tracker determines the six degrees-of-freedom (6DOF) position and orientation (X, Y, Z,
Azimuth, Elevation, and Roll) of one or more 6DOF sensors and/or five degrees of freedom (SDOF)
position and orentation (minus Roll) with one or more 5DOF sensors referenced to a fixed
transmitter. The transmitter sequentially generates magnetic fields and the sensor instantly measures
the transmitted field vectors at a point in space. From theoretical knowledge of the transmitted field,
the tracker accurately deduces the real-time location of the sensor(s) relative to the transmitter. The
medSAFE tracker is designed to work with two basic types of transmitters: dipole and nondipole.

Dipole Transmitter

Dipole transmitters consist of a high permeability core with three concentric sets of coils, each coil
having an axis at right angles to the other two. Magnetic fields along the X, Y, and Z-axes of the

29

3: Configuration and Basic Operation

transmitter are created when current flows in their respective windings. The strength of the magnetic
field is highest near the transmitter and falls off with the cube of distance from the transmitter.

Only 6DOF sensors can be used with dipole transmitters.

Non-Dipole Transmitter

Non-dipole transmitters contain 4 to 9 coils arranged in complex geometries within their planar
housing. They employ advanced tracking algorithms to track sensors in the volume above their
surfaces. These algorithms and proprietary construction techniques are designed to shield the tracking
volume from magnetic distorters below the transmitter and prevent performance degradation.

6DOF sensors can be used with all non-dipole transmitters. 5DOF sensors can only be used with 9-
coil non-dipole transmitters.

6DOF Sensor

A 6DOF sensor uses three receiving coils to provide a tracking solution that includes the position
in three dimensions and the orientation of the three sensor axes relative to the tracker reference
frame. 6DOFY sensors are factory-calibrated and the calibration data is stored on a memory chip
in the sensor’s connector housing.

5DOF Sensor

A 5DOF sensor uses a single receiving coil to measure the position in three dimensions and the
pointing direction of the sensor relative to the tracker reference frame. The roll of a 5SDOF
sensor is not tracked. 5DOF sensors do not require factory calibration. Identifying data such as
part number and serial number can be stored in an optional memory chip in the sensor’s
connector housing. Because of the simplicity of their design, SDOF sensors can be fabricated in
much smaller form factors than 6DOF sensors.

Pre-Amplifier

Sensor signal strength decreases as coil size decreases. For micro-miniature sensors to track
movement with high accuracy, we must amplify their signals. This is accomplished with
preamplifier devices that are factory-calibrated for interchangeability. Calibration data is stored in
a memory chip in the pre-amplifier connector. Pre-amplifiers are both electrically and
magnetically shielded to minimize noise.

A special reduced-gain preamplifier is required for use with the model 800 sensor to prevent
saturation. This preamp is keyed specifically to accept only model 800 sensors.

Electronics

In addition to computing tracking solutions, the electronics unit contains the transmitter drive
circuitry, sensor signal processing, data conversion, processing, power conditioning, and host
interface functions.

30

3: Configuration and Basic Operation

The transmitter drive is a precision current source, with a maximum output of 3.0A. The system
detects the absence of a transmitter by monitoring the current. If current is interrupted, the

transmit driver will be turned off until a valid transmitter EEPROM is detected. This ensures that

the connector is de-energized when open. Also, the transmitter is fault-protected for ground
shorts. In the event of a short to ground on any transmitter pin, no damage will result to the

tracker nor will the tracker create a hazardous current.

The sensor signal processing circuitry acquites the signal from the sensor for each of the 3 axes and
continuously converts it to a digital value. This input digital value is summed in an accumulator (digital
integrator) and the final value is output and used by the algorithm to derive a tracking solution. The
sensor connector is also fault protected for ground shorts. No damage to the system or excessive

current hazards will result from shorting any sensor connector pin to ground.

The electronics unit contains six onboard processors:

e POServer: It handles all communications to and from the host PC as well as computes the

tracking solutions.

e Acquisition/MDSP: It performs all acquisition and digital signal processing of the sensor data.

e PODSP: When using non-dipole transmitters, an additional co-processor per sensor port

computes the tracking solutions.

Measurement Cycle

The tracker electronics unit activates transmitter coils sequentially and outputs a
data record at the end of each cycle. Once each transmitter coil has been
activated, a measurement cycle is complete and a new cycle begins. Thus, the
update rate for a dipole (3-coil) transmitter running at measurement rate of 50 Hz
will be 150 tracking solutions per second (3 coils x 50 Hz = 150 solutions per
second). A non-dipole transmitter with 9 coils running at 20 Hz will output 180
tracking solutions per second.

See the Default Measurement Rate paragraph below for a discussion of
measurement rate effects on performance.

Calibration

Each component is manufactured within tight tolerances, but differences still
exist between components. These differences are measured, recorded, and
adjusted for in the system through the tracking algorithm. Calibration values
represent the measured difference between any particular component and the
ideal for that component.

/ Note: The

update rate
available from
the tracker with
a dipole
transmitter is
always 3 times
its measurement
rate.

/ Note:

5DOF sensors
do not require
factory
calibration:

Calibration allows components to be interchanged with minimal effect on the resulting tracking values.
The calibration values for each component are stored within the hardware of the individual
component. For the Transmitter and Sensor, the values are stored in an EEPROM at the connector.

31

3: Configuration and Basic Operation

For the Electronics unit, the calibration values are stored in an EEPROM mounted on the printed
circuit board. Non-dipole Transmitters include an additional Flash memory chip in the connector.
The calibration data in each component is programmed at the factory and is read-only.

Performance Factors

Electromagnetic and Other Interference in Tracking
Other electrical and magnetic devices sharing the immediate volume with the tracker may
influence tracking data.

The following factors may affect the stability of the tracking area and thus the tracking accuracy:

= Excessive electrical noise
® Magnetic distortion

Excessive Electrical Noise

If the background magnetic field is not constant during the measurement cycle, the tracking data will
contain noise. Noise is the seemingly random jumps in position and orientation.

When the sensor is at rest, evaluation of noise in the data will show that the jumps are random and
centered on a stable position. Calculation of the mean of the position data will provide the true sensor
position.

CAUSES OF NOISE

There are two conditions that cause noise in tracking data. These are noise generated from
internal sources and noise generated from external sources.

The most prevalent is noise from external sources. External sources of electrical noise include
electrical motors, switching power supplies, fluorescent lighting, video CRT monitors,
uninterruptible power supplies, and wiring or devices which use or carry large amounts of
electrical current that vary over time.

External factors can alter the background magnetic field from one moment to the next. This makes
absolutely correct magnetic background subtraction in the tracking device impossible, resulting in
slightly unstable results.

Internal sources include factors such as small variations in measurement timing, amplified electronic
component thermal activity, algorithm division by very small numbers, and unsuppressed electrical
power line noise.

32

3: Configuration and Basic Operation

REDUCING NOISE

Powering off suspect electrical equipment is often the best method of determining sources of noise.
Once a source of noise is discovered, removal of the device from the area or turning the power off
during tracking is effective in reducing noise. Critical equipment may be shielded as long as the
shielding does not result in metal distortion (see “Distortion” section below).

Increasing the distance between the noise source and the sensor or decreasing the sensor distance from
the transmitter will reduce the noise. These actions will result in an increase of measured signal from the
transmitter relative to the noise level (increased signal-to-noise ratio).

Magnetic Distortion

Distortion is a constant deviation from the correct value. Unlike noise, distortion is a constant deviation
as a function of position. The distorted tracking values are incorrect and averaging the data does not
improve the values.

When the sensor takes measurements in the presence of distortion, the tracking device continues
to calculate position and orientation based on theoretical knowledge of the undistorted
transmitted field. The resulting difference between the calculated location and orientation, and the
actual location and orientation, is distortion.

CAUSES OF DISTORTION

Most often the cause of distortion is magnetic and/or electrically conductive metal near the tracking
volume or motion box. The ferrous magnetic property of the metal, the electrical conductivity of the
metal, the physical orientation, and other physical features will all alter the level of tracking distortion.

The ferrous magnetic property of the metal will distort the transmitted magnetic field from the tracker.

The electrical conductivity of the metal may distort the transmitted magnetic field. Our pulsed
DC- tracking technology has a high immunity to distortion caused by residual eddy currents. Note
though that physical factors, such as electrically complete loops, can sustain eddy current loops
long enough to interact with the tracking field during sensor measurements.

The metal will interact with the transmitted fields, altering the field relative to the tracking system
algorithm expectation.

Another common source of distortion is altered tracking components. For example, sensor and
transmitter extension cables can cause a change in the electrical characteristics of the device. If this
alteration is performed without the direction of Ascension, the change will not be compensated for in
calibration. Any physical change to the core tracking electronic components or in the physical
connection of the system has the potential of causing distortion.

33

3: Configuration and Basic Operation

REDUCING DISTORTION

As noted, metal is the primary cause of distortion. Removal and reduction of the amount of metal in
and around the tracker is most effective means of controlling distortion in measurements. Sources of
metal distortion cannot be shielded, as is often the case with noise sources. You can however choose
our flat transmitter as a means of controlling distortions from metal contains beneath its flat surface.
Contact us for more information about optimizing performance in metallic environments with this
transmitter.

If metallic distortion is an issue, consider replacing nearby metal objects with non-metallic ones.
Structural fiberglass, plastics, woods, and ceramics are good replacements. Of the metals available,
nonmagnetic and high electrically resistive metals are the next desirable. Some alloys of stainless steel
(300-seties - medical grade) can be used near the tracker with minimal effect on performance. Brass and
aluminum are less desirable and are not recommended, but they may be used in some situations. Care
must be observed, as machined metal may become magnetic. All nearby metals should be tested with
the tracker before finalizing design or use.

As mentioned, eliminating or reducing metals in the tracking volume is recommended. Since the tracker
is not a line-of-sight device, care must be taken that the whole volume around the transmitter is
considered with regard to metal. The area behind and under the transmitter should be examined and
modified as closely as the area between the sensor and the transmitter.

METAL DETECTION

Distortion due to metal may be monitored through the use of an extra sensor mounted a fixed distance
from the transmitter. Mount the fixed sensor at or near the maximum distance used by the unhindered
sensors. Monitor the fixed sensor’s position and orientation for significant deviations. Situations that
distort the fixed sensor’s measurements will distort the rest of the system. The application should flag
the user during one of these distortion events.

QUALITY/ METAL NUMBER

Alternatively, you may wish to experiment with the use of our QUALITY number. Also referred to as
the METAL error or Distortion number, its returned value will give you an indication of the degree to
which the position and angle measurements are in error. See the Quality Sensor Parameter Type for
details.

Tracker as the Cause of Interference

Just as some tracker components may be subject to interference from electrical equipment in the
immediate environment, so too the tracket’s magnetic fields may possibly interfere with nearby
electrical systems, e.g., an EKG. Itis up to you to identify nearby devices and make sure their
performance is not degraded when you are simultaneously using the tracker. If you rely on life-
sustaining equipment, such as a pacemaker or defibrillator, be sure to consult with your physician prior
to powering up this tracking device.

34

3: Configuration and Basic Operation

Factors in Tracker Accuracy

Warm-up

As with most electrical components, the tracker goes through a period of drift as it reaches a thermal
equilibrium. The system shall meet accuracy specifications within two (2) minutes. For effective warm
up, the transmitter must be running.

A previously unused sensor may be swapped without worry about sensor warm-up drift.

Default Measurement Rate

Mid and short-range transmitters: The selected measurement rate will have a small effect on accuracy.
The system is calibrated at the default measurement rate of 80.0 Hz measurements per second. At this
rate, the tracker will be most accurate.

In some cases, you may not want to use the default measurement rate. Here are a few reasons why:

* The application requires a specific measurement rate (e.g. it must be in synchronization
with video update rate or another measurement tool).

* The environment is electrically unstable at the default measurement rate or significantly
more stable at another measurement rate.

Measurement rates that significantly differ from the default rate will reduce the system accuracy.
Furthermore, the measurement rate for the tracker cannot be set below 20Hz.

Equipment Alteration

Each tracking component has been calibrated to measure the difference between it and the ideal
component of that type. This calibration information is stored on an EEPROM in the respective
component.

Any alteration that will affect the electrical properties of a component or change the access to the
calibration data should be avoided. Changes in cable length through addition of an extension
cable, adding a connector, or cutting and shortening any cable will result in tracking problems.
Altering any of the board jumpers or settings will degrade accuracy. Changing any component on
the tracking board will degrade accuracy.

Power Grid Magnetic Interference

The power grid frequency in North America is 60 Hz. In Europe, it is 50Hz. Magnetic radiation from
the power grid can interfere with the tracker measurements.

Advanced software filters are now implemented in medSAFE to reduce this effect without
compromising dynamic performance, but it is still a potential source of noise in the system. Highest
performance will be achieved by operating the system away from walls, floors, or other structures in
which electrical wiring is routed. Also, high current devices such as heaters, motors, and transformers

35

3: Configuration and Basic Operation

should be kept as far away from the system as practical. The filter coefficients used to reduce power
grid magnetic interference require the correct power line frequency value to operate effectively. The
application developer and the user should thus input the correct frequency to the tracker through the
APL

Performance Motion Box

All tracking components are subjected to a calibration procedure that optimizes performance over a
given region. This region is referred to as the Performance Motion Box. In these regions, tracking
accuracy is the greatest. If you are developing an application that requires high tracking accuracy, be
sure to position the transmitter such that critical measurements are taken in these regions. Tracking
outside the box may not yield results with equivalent accuracy.

Y=-28cm Y=+28cm
X=66cm Z=+30cm

X=20cm
Start pt: i
X=20 |

- i -
Y=0 Z=-30cm
Z=0

+X
> +Y

+Z

Performance Motion Box: Mid-Range Transmitter and 8mm Sensor

Dimensions in each axis for the mid-range transmitter are:

For Model 800 sensors:
X = 20 to 66¢cm from the transmitter center

Y = +28 cm from the transmitter center

Z. = £30 cm from the transmitter center
For Model 180 sensors:
X = 20 to 51cm from the transmitter center

36

3: Configuration and Basic Operation

Y = 123 cm from the transmitter center

Z = +15 cm from the transmitter center
For Model 130 and 90%* sensors:
X = 20 to 36cm from the transmitter center

Y = +20 cm from the transmitter center

Z. = +20 cm from the transmitter center
*Note —Recommended max range for the Model 90 sensor with the mid-range
transmitter is 36cm (147)

For the Short-Range Transmitter:

For Model 800 sensors:
X =15 to 41cm from the transmitter center
Y = #12 cm from the transmitter center

Z = +12 cm from the transmitter center

Flat Transmitter Motion Box

When operating the tracker with a Flat Transmitter, it is important to note that the /
Note: The

motion box for the tracked sensors is smaller than the area covered by the :
motion box for

dimensions of the transmitter’s housing. It also does not start immediately the flat
above the transmitter’s top sutface. HASIIRSL S
smaller than the
)))) dimensions of
Specified accuracy will only be achieved over the motion box: that meets the the housing.
s Specified
followmg. accuracy will
. . . only be
* Motion Box begins 10.2cm (4.0 inches) above the top surface of G
the transmitter the motion box
. hi :
* Motion Box is 7.6cm (3.0 inches) in from each side of the oy
transmitter

* Motion Box ends 40.6cm (16.0 inches) above the top surface of the transmitter

37

3: Configuration and Basic Operation

/ Note:: For

specified
accuracy, keep
sensor operation
at least 10cm
(~4”) above the
top surface of
the transmitter:

46cm (18.07)

20cm (8.0”)

10cm (4.0”)

4-Axis Flat Transmitter Motion Box

In these regions, you will find the best tracking accuracy. If you are developing an application that
requires high tracking accuracy, be sure to position the transmitter such that critical measurements are
taken in these regions. Tracking outside the box may not yield results with equivalent accuracy.

In the performance motion box, you will find the best tracking accuracy. If you are developing an
application that requires high tracking accuracy, be sure to position the transmitter such that critical
measurements are taken in this region. Tracking outside the performance motion box may not yield
results with equivalent accuracy.

38

Chapter 4. Software Operation:
Tools for Successful Tracking

This chapter outlines the interfaces and methods for communicating with the
3D Guidance medSAFE. 1t also includes sample programs for the USB and
RS$232 interface protocols.

Software Overview

You can communicate with 3D Guidance medSAFE by using either of two Ascension interface
protocols: 3D Guidance Windows API or the Ascension RS232 interfaces.

3DGuidance API

You will use our 3D Guidance API to communicate with the tracker via USB.. This intetrface is
standard among older Ascension tracking devices and has been continued for the new generation of
3D Guidance trackers. If you have developed an application using the pciBIRD /3D Guidance driver
for PCI bus-based trackers, you will find integration of 3D Guidance medSAFE virtually seamless.

If you are new to the 3DGuidance API, you will find several tools on the CD-ROM to assist in
experimenting with the tracker’s capabilities and in quickly creating custom code. These tools include
two demo applications, medSAFE Demo and medSAFE API Test, and two programs containing
sample C++ project files. The tables below describe both the tools available and their location on the
CD-ROM. See 3DGuidance API Reference for further details.

APl Components Description Location

Header file that contains the definitions of the constants,
structures, and functions needed to make calls to the API.
ATC3DGm.h Calls defined here can be used in a developer's code by CD-ROM:
including this file in the project that makes calls to the API ATC 3DGuidance API
Or

Library file required during compiling of any code that makes

ATC3DGm.lib Program Files\Ascension\3D
calls to AP GuidanceXXXX\3D Guidance
Dynamic Link Library - This file is needed in the Windows AP

System folder (or DLL search path) to support all the function

ATC3DGm.DLL calls described in the header file.

39

4: Software Operation: Tools for Successful Tracking

Applications

Description

Location

medSAFEDemo.exe

A Demo Windows application that displays tracking data (both
test and graphical representation) for up to 12 sensors (see
ATC3DGm.ini File for information on configuring for more
than 4 sensors.) Supports the following functions:

1. TX On/off -turn the transmitter on or off

2. System RESET - reset/re-initialize the tracker

3. System settings - change measurement rate, line
frequency, AGC mode, English vs. metric units

4. Sensor settings- change quality parameters, angle align,
and filter settings

5. Transmitter - change reference frame

6. Graph Mode - Plot up to 3 parameters

7. Noise Statistics - Collects X samples and shows AVG, pk-
to-pk and RMS deviation

CD-ROM:
medSAFEDemo
Or Program Files\Ascension\3D
GuidanceXXXX\
medSAFEDemo

medSAFEAPITest.exe

A Windows application that allows the user to send any
command defined in the API to the tracker, and to view the
associated response. All function calls and the possible
arguments for those calls are selected via pull-down menus,
so re-compiling/re-build is not necessary. This allows user to:
1. Check response to particular command without
implementing in your own code

2. Check response using a particular non-default setting
(filter, etc) without implementing in their code

3. Confirm/Debug hardware and their code by reproducing
chosen settings and viewing response

4. Save system settings that have been tried to an .ini file
(using SaveSystemConfig call)

NOTE: It's important to know how commands are defined and
sequence of commands to send for this tool to be used
effectively.

CD-ROM:
medSAFE API Test
Or Program
Files\Ascension\3D
GuidanceXXXX\ medSAFE
API Test

Sample Programs

Sample Code

Description

Location

Sample.exe

This C++ project contains sample code for a very simple
console application that demonstrates fundamental
communication with the tracker using the 3DGuidance™ API.
Specifically, it:

1. Initializes the Tracker

2. Reads in the system configuration (status of board,
sensors, TX, etc)

3. Turns on the transmitter

4. If all above is valid, collects 100 records (POS/ANG format)
from each of the sensors and streams them to the screen.

5. Error Handler - A simple error handler is included. It just
takes any error codes returned from the DLL/Tracker, and
sends them to the screen

6. TX Off - Before closing the application, shows how to turn
off the TX

All necessary source files to re-build and run the application
are included, and each of the above steps are accompanied
by detailed comment descriptions directly in the code.

CD-ROM:
\Samples\Sample\
Sample.dsp
or
Program Files\Ascension3D
GuidanceXXXX\Samples\
Sample\Sample.dsp;

40

4: Software Operation: Tools for Successful Tracking

Sample Code Description Location
This C++ project also contains sample code for a very
simple console application using the 3DGuidance™ API. It
is more comprehensive than "Sample", in that it shows how
to use each of the GETXXX/SETXXX calls appropriately.
These calls give access to all configurable tracker CD-ROM:
parameters. \Samples\Sample\ Sample2.dsp
Sample2.exe An additional feature: also shows command for saving or
’ configuration settings to an .ini file Program Files\Ascension3D
GuidanceXXXX\Samples\
Sample2\Sample2.dsp;
All necessary source files to re-build and run the
application are included, and each of the above steps are
accompanied by detailed comment descriptions directly in
the code.
This C++ project also contains sample code illustrating the CD-ROM:
usage of the new data record streaming functionality \Samples\
provided by the GetSynchronousRecord command. This GetSynchronousRecordSample\
new command allows the user to easily acquire each data GetSynchronousRecordSample.
record from the tracker without missed or duplicate dsp
GetSynchronousRec
ordSample.exe records. or .
' Program Files\Ascension3D
All necessary source files to re-build and run the GuidanceXXXX\Samples\

application are included, and each of the above steps are
accompanied by detailed comment descriptions directly in
the code.

GetSynchronousRecordSample\
GetSynchronousRecordSample.
dsp

Ascension RS232 Interface

You can communicate 3D Guidance medSAFE via RS232 by using the Ascension RS232 protocol. It

will give you instant access to a wide range of applications.

There are two options to access the 3DGuidance via this RS232 interface:
1. Use an existing driver for the 3DGuidance (i.e. SGI, Win32)

2. Communicate directly via the Ascension RS232 protocol

Ascension RS232 Driver

The Ascension RS§232 Windows driver provides an interface to trackers for WIN32 applications. With
the exception of the initialization routines, this interface is standardized across many platforms and
devices. The following trackers support this driver: Flock of Birds, pcBIRD, miniBIRD, MotionStar,
MotionStar Witeless, laserBIRD, phasorBIRD, and 3Dguidance medSAFE. To use the driver, simply
include the header file Bird.h in your source code, link with the library module Bird.lib, and put the
dynamic-link library Bird.dll anywhere on the DLL search path. Definitions for the data structures and
API calls documented here are in the file birdh. The Windows Driver User Manual and driver files

ate located in the \FOB_IWIN32 directory on your 3DGuidance CD-ROM.

Direct Communication: Ascension’s RS232 Protocol

The Ascension RS232 protocol involves interpreting RS232 commands sent directly to your tracker.

41

4: Software Operation: Tools for Successful Tracking

RS232 Sample Program

An example of the basic structure that applications should follow to communicate with the medSAFE
using this interface can be found in the sample program Terminal. This program utilizes the basic
elements (RS232 commands) required to establish communication, configure the data format, and
output data to the HOST screen display. Users will find the source code and the executable file located
in the \IFOB_Direct subdirectory on the 3DGuidance CD-ROM.

NOTE: You should use this program as an example only. Follow the description included with each
command in the RS232 Command Reference section of Chapter 6 for details of Command usage in
your specific application.

Azcension Technology Corporation — 3D Guidance RE-232 Example ag 282009

A ¥ Z A E R
+11.72 —1.86 -5.58 +25.6 -13.5 +32.5

Prezs any key to exit

42

Chapter 5: 3DGuidance API
Reference

This chapter will show you how to write an application that will access the
tracker using the 3DGuidance API provided in ATC3DGm.dll 1t also
describes the setup of the tracker's various parameters.

Using 3D Guidance medSAFE

These sections describe how to use the 3DGuidance API to perform the following operations:

Quick Reference

System Setup

Transmitter Setup

Sensor Setup

Acquiring Position and Orientation Data

Error Handling

43

3DGuidance API Reference

Quick Reference

SYSTEM

The following system setup operations are available. All these parameters may be setup or the
current status may be interrogated by calling SetSystemParameter and GetSystemParameter. All of
these parameters affect the operation of all transmitters and sensors in the system and cannot be
modified on a sensor-by-sensor or transmitter-by-transmitter basis. The power up system defaults
for short and mid-range transmitter configurations are as follows:

e Select Transmitter: No transmitter selected

e Power Line Frequency: 60.0 (Hz)

e AGC Mode: Sensor AGC Only

e Measurement Rate: 80.0 (Hz)

e Report Rate: 1 (Report every update)

e Maximum Range: 36.0 (inches, Maximum range)

e Metric: True (floating point output representation is in inches)

e SELECT TRANSMITTER

This command allows us to turn on next transmitter or turn off the current transmitter in the
medSAFE tracker. A full description of the operation is found at SELECT_TRANSMITTER.

e POWER LINE FREQUENCY

This parameter represents the frequency of the AC power source used by the system. It is
necessary to set this for proper operation of the AC_Wide_Notch_Filter.

e AGC_MODE
medSAFE has two modes of operation.

1) TRANSMITTER_AND_SENSOR _AGC

(Not currently supported) In this mode, an automatic gain control (AGC) system implemented
in the firmware will dynamically adjust the gain of the input variable gain amplifier (VGA)

44

3DGuidance API Reference

AND the power level of the transmitter in order to keep the sensor input signal within the
dynamic range of the system.

2) SENSOR AGC_ONLY

In this mode, the firmware will only adjust the gain of the VGA. The power level of the
transmitter is never altered and remains set at full power.

MEASUREMENT_RATE

The measurement rate is the tracker’s sample rate. For the mid-range transmitter system
configuration the measurement rate is nominally set at 80.0 measurements/second. You can
increase the tracker’s measurement rate to a maximum of 125 measurements/sec. The
downside of selecting a rate faster than 103 measurements/sec is that you may notice
increased noise and distortion errors in measurements. . You can decrease the tracker’s
measurement rate to no less than 9 measurements/sec. Decreasing the measurement rate is
useful to reduce errors resulting from highly conductive metals such as aluminum. If you
have low-conductive, highly permeable metals in your environment, such as carbon steel or
iron, changing the measurement rate will not change the distortions. For low-conductive, low
permeability metals such as 300-series stainless steel or nickel, you do not need to lower the
default measurement rate to achieve maximum metal immunity.

REPORT_RATE

The report rate determines how many times the tracker will update its solution before
reporting a new data record. The report rate can be an integer from 1 to 127. E.g., a report
rate of 3 will result in the tracker reporting a new data record for every 3rd
acquisition/update.

MAXIMUM_RANGE

This represents the scale factor for position data returned as signed binary integers. The position
scaling can be set to either 36 or 72 inches. The value set will be the maximum possible full-scale
value returned by the tracker.

METRIC

This tracker option allows the data to be formatted in double precision floating point for outputs
pre-scaled to either inches (the default) or millimeters. Setting the METRIC flag true will cause
output to be in millimeters.

SENSOR

The following operations and set up can be performed individually for each sensor. The
parameters can be set and read by making calls to SetSensorParameter and GetSensorParameter.
Upon power up, each sensor channel is setup with the following defaults:

45

3DGuidance API Reference

Data Format: Double precision floating point Position/Angles

Angle Align: 0,0,0

Filters: All values in Alpha max table = 0.9000, all values in alpha min table =
0.0200, Vm table values = 2, 4, 4, 4, 4, 4, 4 (This is for the mid-range transmitter. Vm

values depend on the type of transmitter and sensors)

Hemisphere: Front hemisphere (in front of the ATC logo on the
transmitter)

Metal Distortion: Filter alpha = 12, Slope = 0, Offset = 0 and Sensitivity = 2.

DATA FORMAT

The following data record formats are available in integer and floating point representation.
Combinations of these formats are also available in the same data record.

e}

ANGLES:

Data record contains 3 rotation angles. See SHORT ANGILES RECORD,
DOUBLE ANGLES RECORD

POSITION:

Data record contains X, Y, Z position of sensor. See SHORT POSITION RECORD,
DOUBLE, POSITION RECORD

MATRIX:

Data record contains 9-element rotation mattix. See SHORT MATRIX RECORD,
DOUBLE MATRIX RECORD

QUATERNION:

Data record contains quaternion. See SHORT QUATERNIONS RECORD,
DOUBLE _QUATERNIONS RECORD

TIME,_ STAMP and METAL DISTORTION status:

Some data formats include a TIME, STAMP and/or a METAL_DISTORTION status
field. See DOUBLE POSITION TIME STAMP RECORD,
DOUBLE POSITION TIME Q RECORD

BUTTON status:

46

3DGuidance API Reference

Data tecord contains a Button field. This field gives the open/close state of a contact closure
connected to the BNC connector on the rear panel of the tracker labeled SWITCH. See
DOUBLE POSITION ANGILES TIME Q BUTTON RECORD,

DOUBLE POSITION MATRIX TIME Q BUTTON RECORD,

DOUBLE POSITION QUATERNION TIME BUTTON RECORD

Using the SetSensorParameter command these data formats can be set up for each individual
sensor.

See DATA FORMAT TYPE for all available data format combinations.

ANGLE ALIGN
Aligns sensor to reference direction

These parameters can be set up for each individual sensor by using the SetSensorParameter
command. The current setting of ANGLE ALIGN can be accessed using the
GetSensorParameter command.

FILTER _ALPHA PARAMETERS

This is an adaptive alpha filter. It is initialized to a default condition but changing the values in 3
tables, which are contained in the ADAPTIVE PARAMETERS, can modify its operation. These
parameters are changed through use of the SetSensorParameter function call and the current state
of the alpha filter parameters may be observed by calling the GetSensorParameter function call.

FILTER AC_NARROW_ NOTCH

This is a 2-tap finite impulse response (FIR) notch filter that is applied to signals measured by the
tracker’s sensor to eliminate a narrow band of noise with sinusoidal characteristics. This filter can
be selected/deselected and interrogated through the SetSensorParameter and GetSensorParameter
function calls.

FILTER_AC WIDE NOTCH

This is a 6 tap finite impulse response (FIR) filter that is applied to the senor data to eliminate
signals with a frequency between 30 and 72 Hz. Note: for this filter to work propetly the system
parameter: POWER LINE FREQUENCY must be set correctly using the SetSystemParameter
function call.

EILTER LARGE CHANGE

If selected this filter will lock the output data to the current position and orientation if a sudden
large change in position or orientation is detected.

HEMISPHERE

47

3DGuidance API Reference

The HEMISPHERE command lets you establish the hemisphere in which you will be tracking
sensors. It determines which of the 6 possible hemispheres of the transmitter in which your

sensor(s) are tracking. It can be set up for each sensor by using the SetSensorParameter command.
The current HEMISPHERE TYPE can be accessed using the GetSensorParameter command.

QUALITY

This command adjusts the behavior of the “Quality” accuracy degradation indicator contained in
several of the data record formats. See DOUBLE POSITION TIME Q RECORD,
DOUBLE ANGLES TIME Q RECORD,

DOUBLE POSITION ANGLES TIME Q RECORD for examples. See also
DATA FORMAT TYPE for a list of all data formats. Those format types containing “_(Q_"
indicate the presence of the “quality” value.

The user can modify the sensitivity and response of the quality number returned. These parameters
can be set up for each individual sensor by using the SetSensorParameter command. The current
setting of The METAL DISTORTION parameters can be accessed using the GetSensorParameter
command. See QUALITY for a description of the meaning and usage of the
QUALITY PARAMETERS.

POINT

The API internally calls this low-level command when the GetAsynchronousRecord function call is
issued. It is not directly accessible via the APL. In response to the POINT command, the tracker
immediately transmits one data record containing its last known tracking solution.

Note that a record containing data with the same timestamp from all sensors can be obtained by
setting the sensor ID to ALL_SENSORS.

STREAM

The API internally calls this low-level command when the GetSynchronousRecord function call is
issued. It is not directly accessible via the API. After the STREAM command is issued, the tracker
begins sending continuous data records to the host PC (API) without waiting for the next data
request, thus ensuring that each and every data record computed by the tracker is sent. While this
prevents the occurrence of duplicate records (as can occur when calling the
GetAsynchronousRecord faster than the tracker update rate), it does not guarantee that records are
not overwritten. The buffer available to the system for each sensor is 8 records long. If the host
application does not keep up with the constant stream of data being provided in this mode, this
buffer will overfill and records will be lost.

Note that issuing commands (other than GetSynchronousRecord) that must query the unit for a
response, will cause the unit to come out of STREAM mode.

48

3DGuidance API Reference

Also note that hot-swapping sensors during STREAM mode operation will introduce delay in data
for all sensor channels, as the unit must be taken out of this mode to detect and process info from
the inserted sensor, then commanded to resume the STREAM mode operation.

The rate at which records are transmitted when using the GetSynchronousRecord can be changed
through use of the REPORT_RATE system parameter. See the Configurable Settings section in
Chapter 3 for details.

As with the GetAsynchronous call, a record containing data with the same timestamp from all
sensors can be obtained by setting the sensor ID to ALL,_SENSORS.

e SERIAL _NUMBER_RX

The sensor’s serial number can be obtained by calling GetSensorParameter.

BOARD

Some specific information of interest to the user concerning the PCB hardware is available. Apart

from this information there are no operations necessary or available for interacting directly with
the PCB.

e SERIAL_NUMBER_PCB

The board’s serial number can be obtained by calling GetBoardParameter.

e BOARD_SOFTWARE REVISIONS

The tracker’s firmware version number is stored as a 2-digit revision number. You can access it by
issuing the GetBoardConfiguration command for the specified board.

TRANSMITTER

The following operations apply only to transmitters. REFERENCE_FRAME and
XYZ_REFERENCE_FRAME are both used to set up the transmitters reference frame for all
sensors using that transmitter. The reference frame must be set up for each transmitter separately and
may be set up differently for each one. Upon power up the Reference Frame is initialized to 0,0,0 and
the XYZ Reference Frame is disabled. Note: No transmitter is selected at power up.

e REFERENCE FRAME

Defines new measurement reference frame. The new reference frame is provided as 3 angles
describing the azimuth, elevation and roll angles. There is no offset component and the reference
frame is still centered on the transmitter. This parameter is changed or examined by using the
SetTransmitterParameter and GetTransmitterParameter function calls. See
REFERENCE FRAME for full description and details.

o XYZ REFERENCE_ FRAME

49

3DGuidance API Reference

When the transmitter REFERENCE_FRAME is changed, it will cause the azimuth, elevation and
roll angles of all the sensors to change to a new reference frame but it will not cause the x, y and z
position coordinates to change unless the XYZ Reference Frame flag is set. This flag is changed
and examined with the SetTransmitterParameter and the GetTransmitterParameter function calls.
See XYZ REFERENCE FRAME for full description and usage.

e SERIAL NUMBER

The transmitter’s serial number can be obtained by using GetTransmitterParameter

e NEXT TRANSMITTER

This command allows us to turn on next transmitter or turn off the current transmitter in tracket.
A full description of the operation is found at SELECT TRANSMITTER.

System Initialization

The first operation that must be performed before the system can be used is initialization. Calling
InitializeBIRDSystem performs this function. The call takes no parameters and returns no information
except for a completion code. The only acceptable code is BIRD_ERROR_SUCCESS. All other
codes are fatal errors that either indicates a condition that has prevented the system from initializing or
they indicate a prevailing condition that disallows the system from completing the initialization. For
example, the error code: BIRD_ERROR_COMMAND_TIME_OUT probably indicates a non-
responding board. This is a hard failure. The error code BIRD_ERROR_INVALID_DEVICE_ID
indicates that although the board is functional, initialization will not be allowed to proceed because the
board is incompatible with the driver and API. The error codes are provided as a diagnostic and
indicate a system condition that needs to be rectified before initialization can complete. Without a
complete and successful initialization the system cannot be used.

Note: Initialization is an all-inclusive operation. Internally, the first task it performs is to enumerate
your tracker’s unique signature. Secondly, your electronics unit is queried for status and functionality.
An internal database is then constructed of the current state of the system. The synchronization
hardware is initialized and enabled.

The initialization may be invoked as follows:

#include “ATC3DGm.h”
int errorCode;

errorCode = InitializeBIRDSystem() ;

if(errorCode!:BIRD_ERROR_SUCCESS)
{

// place error handler here
}

50

3DGuidance API Reference

Note: In order to use any 3DGuidance API calls it is necessary to include the header file ATC3DGz.h.
The returned value errorCode must be declared as a variable of type #z.

Note: The application should terminate, as no further progress is possible without successful
initialization. Calling any function except a GetxxxStatus() function before initialization has been
performed will result in the function returning the error code
BIRD_ERROR_SYSTEM_UNINITIALIZED. The response to a GetxxxStatus() call is for the
UNINITIALIZED bit field to be set. The GetErrorText call is the only function that can be called at
any time. (It may be used to decode the BIRD_ERROR_SYSTEM_UNINITIALIZED response and
generate a message string.)

ATC3DGmM.ini File

The 3D Guidance API for medSAFE wuses an .ini file, ATC3DGm.ini, during calls to
InitializeBIRDSystem. The .ini file is automatically created in the same local directory as the API
library, ATC3DGm.dJl. The .ini file currently supports the following keys:

Autoconfig:=4

InitializeBIRDSystem tries to configure the tracker for the number of tracked objects specified by
the the Autoconfig key. For a Dipole transmitter, the tracker will disregard this request and
configure for 4 tracked objects. This key should be changed to 12 for operation of multiheaded
5DOF sensors.

Logging=no

When the logging key is set to yes, the API will create a file, IggF7le.7xt, containing the bytes sent
and received between the API and the tracker.

51

3DGuidance API Reference

System Setup

The system setup involves setting the sensor measurement rate, selecting the AGC mode, power line
frequency and maximum range, setting the metric/English flag and turning on a transmitter. All of
these operations are performed using the SetSystemParameter call. All parameters have a default value
associated with them so unless the default is unsuitable the parameter need not be changed.

The following code fragment shows how all the parameters may be changed to a new value:

#include “ATC3DGm.h” // needed for enumerated types and calls

int errorCode;

double pl = 50.0; // 50 Hz
AGC_MODE_TYPE agc = SENSOR_AGC_ONLY; // tx power fixed at max

double rate = 86.1; // 86.1 Hz

double range = 72.0; // 72 inches

BOOL metric = true; // metric reporting enabled
short tx = 0; // tx index number 0 selected

errorCode = SetSystemParameter (POWER LINE FREQUENCY, &pl, sizeof (pl));
if (errorCode != BIRD ERROR SUCCESS)
{

// error handler

}

errorCode = SetSystemParameter (AGC_MODE, &agc, sizeof (agc));
if (errorCode != BIRD ERROR SUCCESS)
{

// error handler

}

errorCode = SetSystemParameter (MEASUREMENT RATE, &rate, sizeof (rate));
if (errorCode != BIRD ERROR SUCCESS)
{

// error handler

}

errorCode = SetSystemParameter (MAXIMUM RANGE, &range, sizeof (range));
if (errorCode != BIRD ERROR SUCCESS)
{

// error handler

}

errorCode = SetSystemParameter (METRIC, &metric, sizeof (metric));
if (errorCode != BIRD ERROR SUCCESS)
{

// error handler

}

errorCode = SetSystemParameter (SELECT TRANSMITTER, &tx, sizeof (tx));
if (errorCode != BIRD ERROR SUCCESS)
{

// error handler

}

An alternative approach is to use an exception handler for the error handler.

Another way to setup the system is to use the RestoreSystemConfiguration. This together with the
SaveSystemConfiguration call provide a convenient way for the user to save the current state of

52

3DGuidance API Reference

the total system to an information file (.inf) and then use that file at a later time to re-initialize the
system to that exact state. These calls allow the user to save or restore all settable parameters used
by the system, sensors and transmitter. The following code fragment illustrates the usage of the
RestoreSystemConfiguration call.

//

// Initialize system from ini file

//

errorCode = RestoreSystemConfiguration ("oldconfig.ini");
if (errorCode!=BIRD_ERROR_SUCCESS) errorHandler (errorCode) ;

The system searches initially for the .ini file in the <Windows Directory>\inf directory. If it doesn't find it, it then
looks for it in the <Windows Directory>\system32 directory unless the filename’s path was fully specified. In the
above example the system will search for “newfile.ini” first in the \inf directory then the \system32 directory. If

not found an error will be generated. In the following sample the file will be looked for at the given location only.

errorCode = RestoreSystemConfiguration ("c:\pcibird\oldconfig.ini");
if (errorCode!=BIRD_ERROR_SUCCESS) errorHandler (errorCode) ;

The simplest way to create a system configuration file is to let the system do it for you by using
the SaveSystemConfiguration call. This call will create a file with the required format and
including the current value for every system, sensor and transmitter parameter available. These
files are saved as text files and can be edited using a text editor such as notepad.exe. See the
section on configuration file format for details. The following code fragment shows how to save
the current system configuration.

errorCode = SaveSystemConfiguration ("c:\pcibird\newconfig.ini");
if (errorCode!=BIRD_ERROR SUCCESS) errorHandler (errorCode) ;

The RestoreSystemConfiguration call is capable of setting every system, sensor and transmitter
parameter available but it cannot and will not initialize the system. As with all other API, calls the
InitializeBIRDSystem call must be made before RestoreSystemConfiguration can be used.

53

3DGuidance API Reference

Sensor Setup

The sensor setup involves selecting a data format, setting the filter and quality parameters,
determining the sensor angle alignment and hemisphere of operation. All of these parameters
have an associated default value. The parameter only needs to be changed if the default is
inappropriate.

The default filter and quality parameters will be found to provide adequate performance for most
applications. Unless the sensor is going to be attached to something that would cause it to be
tilted while in its reference position then the angle align parameters will not need to be changed.
The hemisphere will need to be changed if the sensor is going to operate anywhere other than the
forward hemisphere that is the default. Typically the user will only have to set up the data format
if something other than position/angles in double floating point is required. At a minimum
nothing need be changed and the system will still operate successtully.

Note: It is necessary to set or change the parameter for each of the sensors individually as
required. This allows each sensor to have its parameters set to different values.

The following code fragment gives an example of how to call the set parameter function in this
case to set the data format to a double floating point value of position and matrix:

USHORT sensorID = 2;
int errorCode;
DATA FORMAT TYPE format = DOUBLE POSITION MATRIX;

errorCode = SetSensorParameter (
sensorlD, // index number of target sensor
DATA FORMAT, // command parameter type
sformat, // address of data source buffer

sizeof (format) // size of source buffer
)

if (errorCode!=BIRD_ERROR_SUCCESS) errorHandler (errorCode) ;
// user must provide an error handler

The following code fragment shows how all the parameters may be changed to a new value. First
a macro is defined which handles the different types of parameters which may be passed to the
basic SetSensorParameter call.

#include “ATC3DGm.h”

L1777 077777777777777777777777777777777777771777777177777717777771777
L1717 007 077777707 777777777777777777777777771777777177777717777771777

//

// SET_ SENSOR PARAMETER macro

//

#define SET_SENSOR_PARAMETER (id, type, value) \

{ \
type## TYPE buf = value; \
errorCode = SetSensorParameter (id, type, &buf, sizeof (buf));\
if (errorCode!=BIRD_ERROR_SUCCESS) errorHandler (errorCode) ; \

}

// In order for the above macro to compile without error it is
// necessary to provide typedefs for all the XXX TYPEs that are
// generated by "type## TYPE"

54

3DGuidance API Reference

// DATA FORMAT TYPE already defined as an enumerated type

typedef DOUBLE ANGLES RECORD ANGLE ALIGN TYPE;

typedef DOUBLE ANGLES RECORD REFERENCE FRAME TYPE;
typedefbool XYZ REFERENCE FRAME TYPE;
// HEMISPHERE TYPE already defined as an enumerated type

typedef bool FILTER AC WIDE NOTCH TYPE;
typedef bool FILTER AC NARROW NOTCH TYPE;
typedef double FILTER DC_ADAPTIVE TYPE;

typedef ADAPTIVE_ PARAMETERS FILTER _ALPHA PARAMETERS TYPE;
typedef bool FILTER LARGE CHANGE TYPE;
typedef QUALITY PARAMETERS QUALITY TYPE;

YNy,
Yy,
//

// Main program

//

int errorCode;

sensorID = 0;

SET_SENSOR PARAMETER (sensorID, DATA FORMAT, DOUBLE POSITION_ANGLES TIME STAMP) ;

// initialize a structure of angles
DOUBLE_ANGLES RECORD anglesRecord = {30, 45, 60};
SET_SENSOR PARAMETER (sensorID, ANGLE ALIGN, anglesRecord);

// initialize a structure of angles
DOUBLE_ ANGLES RECORD anglesRecord = {60, 45, 30};
SET_SENSOR PARAMETER (sensorID, REFERENCE_ FRAME, anglesRecord);
SET SENSOR PARAMETER (sensorID, XYZ REFERENCE FRAME, true);
SET SENSOR_ PARAMETER (sensorID, HEMISPHERE, TOP);
SET_SENSOR_PARAMETER (sensorID, FILTER AC WIDE NOTCH, true);
SET_SENSOR_PARAMETER(SensorID, FILTER _AC_NARROW_NOTCH, false);
SET SENSOR PARAMETER (sensorID, FILTER DC ADAPTIVE, 1.0);
// initialize the alpha parameters
ADAPTIVE PARAMETERS adaptiveRecord = ({

500, 500, 500, 500, 500, 500, 500,

20000, 20000, 20000, 20000, 20000, 20000, 20000,

2, 4, 8, 16, 32, 32, 32,

true
SET SENSOR PARAMETER (sensorID, FILTER ALPHA PARAMETERS, adaptiveRecord) ;
SET SENSOR PARAMETER (sensorID, FILTER LARGE CHANGE, false);

// initialize the quality parameter structure
QUALITY PARAMETERS qualityParameters = { 15, 20, 16, 5 };
SET SENSOR PARAMETER (sensorID, QUALITY, qualityParameters):;

55

3DGuidance API Reference

Transmitter Setup

The transmitter setup consists solely of setting up the transmitter reference frame. The default
reference frame is (0, 0, 0) using Euler angles. The transmitter reference frame can only be
changed by rotation there is no position offset available. The parameters only need to be changed
if the default is inappropriate

Once set the transmitter reference frame will apply to all sensors. The reference frame setup is
usually used to compensate for a transmitter whose installation results in it being tilted relative to
the desired angular reference frame.

The following code fragment illustrates how to use the SetTransmitterParameter call to setup the
transmitter reference frame.

USHORT transmitterID = 1;
int errorCode;
// e.g. a transmitter tilted at 45 degrees in elevation

DOUBLE ANGLES RECORD frame = {0, 45, 0};

errorCode = SetTransmitterParameter (
transmitterID, // index number of target transmitter
REFERENCE_FRAME, // command parameter type
&frame, // address of data source buffer
sizeof (frame) // size of source buffer

)
if (errorCode!=BIRD_ERROR_SUCCESS) errorHandler (errorCode) ;
// user must provide an error handler

// In this example we also want the sensor position to be
// corrected to compensate for the tilt in the transmitter
// So we set the XYZ REFERENCE FRAME parameter to “true”
// (Its default is “false”)

BOOL xyz = true;

errorCode = SetTransmitterParameter (
transmitterID, // index number of target transmitter
XYZ REFERENCE FRAME, // command parameter type
&xyz, // address of data source buffer
sizeof (xyz) // size of source buffer

) i
if (errorCode!=BIRD ERROR SUCCESS) errorHandler (errorCode) ;
// user must provide an error handler

56

Acquiring Tracking Data

3DGuidance API Reference

Data is acquired by making calls to GetAsynchronousRecord() or GetSynchronousRecord() for

each sensor that data is required from. Before calling either function it is necessary to initialize the
system, transmitters and sensors to their desired settings. It is possible to acquire data with every
setting left in its default state with the exception of SELECT TRANSMITTER. The
SYSTEM_PARAMETER_TYPE, SELECT TRANSMITTER is set to (-1) on initialization. This
means that no transmitter has been selected. The minimum system setup required before data can
be selected is to call SetSystemParameter with the SELECT TRANSMITTER parameter and
pass the id of the transmitter that is required to be turned on. The following code fragment
illustrates a minimum requirement for acquiring data. It assumes that there is a transmitter

attached to id = 0 and that there is a sensor attached to id = 0.

L1077 07707770077777777770777777777777777777777777717777777777717
;; First initialize the system

igt errorCode = InitializeBIRDSystem() ;

if (errorCode!=BIRD ERROR_SUCCESS)

{ errorHandler (errorCode); // user supplied error handler

}

[1770777777077
//

// Turn on the transmitter.

// We turn on the transmitter by selecting the

// transmitter using its ID

//

USHORT id 0;

errorCode SetSystemParameter (SELECT TRANSMITTER, &id, sizeof (id));
if (errorCode!=BIRD ERROR_SUCCESS)

{

errorHandler (errorCode) ;

}

LTI r i i 777 77777070770777707707770707070707070770 0
//
// Get a record from sensor #0.
// The default record type is DOUBLE_POSITION_ANGLES
//
USHORT sensorID = 0;
DOUBLE_POSITION ANGLES RECORD record;
errorCode = GetAsynchronousRecord(sensorID, &record, sizeof (record));
if (errorCode!=BIRD ERROR SUCCESS)
{
errorHandler (errorCode) ;

}

& Tip:

Setting the
SensorlD to
ALL SENSORS
will return data
records from all
Sensors:

57

3DGuidance API Reference

Error Handling

Each call to the API will return either an error code or a status code depending on the command
issued. Most commands will respond with an error code. The only commands that return a status
code are the GetSystemStatus, GetBoardStatus, GetSensorStatus and GetTransmitterStatus
commands.

It can be assumed that all error codes are fatal. In other words, the only acceptable response to a
command is BIRD_ERROR_SUCCESS. If any other response is received then the command
failed to complete and the error code will inform the user of the reason why it failed. The
function GetErrorText can be used to generate a message string for output to a file or screen
display describing in English the nature of the error code passed to this command. GetErrorText
is the only command that does not require the Tracker system to be initialized before it can be
used.

Even though all error codes indicate a fatal error condition, it is possible for the software to
recover from some failures. For example if the system has not been initialized then the error code
BIRD_ERROR_SYSTEM_UNINITIALIZED will be returned. The software could recover by
calling InitializeBIRDSystem() before doing anything else. But this error is usually an indication of
a software “bug”. Other errors like BIRD_ERROR_NO_SENSOR_ATTACHED can be
recovered from by displaying a message to the user suggesting that they attach a sensor to the
system.

The status code returned by the GetXXXStatus() commands gives a bit-mapped indication of any
error conditions that might exist for the device selected. If the status code returned = 0 then the
device is fully operational. Any status other than 0 indicates an error that will prevent successful
operation of the device. For example if a call is made to GetSensorStatus for a sensor channel
whose sensor is not attached then the returned status will be 0x00000003, indicating that the
NOT_ATTACHED and the GLOBAL_ERROR bits are set.

58

3DGuidance API Reference

3DGuidance API

The following elements define the API used with the your medSAFE tracker.

3D Guidance API Functions

3D Guidance API Structures

3D GuidanceAPl Enumeration Types

3D GuidanceAPI Status/Error Bit Definitions

3D Guidancelnitialization Files

59

3DGuidance API Functions

The following functions are used with your medSAFE tracker.

InitializeBIRDSystem

GetBIRDSystemConfiguration

GetTransmitterConfiguration

GetSensorConfiguration

GetBoardConfiguration

GetSystemParameter

GetSensorParameter

GetTransmitterParameter

GetBoardParameter

SetSystemParameter

SetSensorParameter

SetTransmitterParameter

SetBoardParameter

GetAsynchronousRecord

GetSynchronousRecord
GetBIRDError
GetErrorText

GetSensorStatus

GetTransmitterStatus

GetBoardStatus

GetSystemStatus
SaveSystemConfiguration

RestoreSystemConfiguration
CloseBIRDSystem

3DGuidance API Reference

60

3DGuidance API Reference

InitializeBIRDSystem

The InitializeBIRDSystem function resets and initializes the medSAFE hardware and system.

int InitializeBIRDSystem();
Parameters

This function takes no parameters

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning

BIRD_ERROR_SUCCESS No errors occurred. Initialization completed successfully

BIRD _ERROR_INCORRECT_DRIVER_VERSION The wrong version of the driver has been installed for this
version of the API dll. Install or re-install the correct driver.

BIRD_ERROR_OPENING_DRIVER Non-specific error opening driver. Make sure that the
driver is properly installed.

BIRD_ERROR_NO_DEVICES_FOUND No Tracker hardware was found by the host system. Verify
that hardware is installed and is of the correct type.

BIRD_ERROR_ACCESSING_PCI_CONFIG The error occurred in the PCIBird PCI interface. There is a
problem with the PCI configuration registers. If error is
repeatable there is an unrecoverable hardware failure.

BIRD_ERROR_INVALID_DEVICE_ID A Tracker device has been found that is not supported by
this API dll. Verify Tracker model installed.

BIRD_ERROR_FAILED_LOCKING_DEVICE Driver could not lock Tracker resources. Check that there
is not another application using the hardware.

BIRD_ERROR_BOARD_MISSING_ITEMS The required resources were not found defined in the PCI
configuration registers. Possible corrupt configuration. If
error is repeatable there is an unrecoverable hardware

failure.

BIRD_ERROR_INCORRECT_PLD The PLD version on the Tracker hardware is incompatible
with this version of the API dll. Verify Tracker model
installed.

BIRD_ERROR_COMMAND_TIME_OUT Tracker on-board controller has failed to respond to a

command issued to it. If error is repeatable there is an
unrecoverable hardware failure.

BIRD_ERROR_WATCHDOG Tracker internal watchdog timer has elapsed. If this error
is repeatable there is an unrecoverable hardware failure.

BIRD_ERROR_INCORRECT_BOARD_DEFAULT An unexpected response was received from the controller
on the Tracker hardware. The board is responding to
commands but the data returned is corrupt. If the error is
repeatable there is an unrecoverable hardware failure.

BIRD_ERROR_PCB_HARDWARE_FAILURE The Tracker firmware initialization did not complete within

61

3DGuidance API Reference

10 seconds. It is assumed the board is faulty or the
firmware has hung up somewhere. If the error is
repeatable there is an unrecoverable hardware failure.

BIRD_ERROR_UNRECOGNIZED_MODEL_STRING | The firmware is reporting a model string that is
unrecognized by the API dll. This could be due to a
hardware failure causing the model string data to be
corrupted or a corrupted board EEProm may cause it or
the board installed is of a type not recognized by the API
dil. If the error is repeatable return to vendor.

Remarks
When this function is called, it will first reset the tracker. The function will then interrogate the boards and determine

their status. Finally, it will build a database of tracker information containing number of sensors, transmitters etc. This
function takes several seconds to complete because it has to wait for the boards to reset and initialize internally. This
function must be called first, before any other command can be sent

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

62

3DGuidance API Reference

GetBIRDSystemConfiguration
The GetBIRDSystemConfiguration will return a structure containing the SYSTEM_CONFIGURATION.

int GetBIRDSystemConfiguration(
SYSTEM_CONFIGURATION* pSystemConfiguration

)
Parameters

pSystemConfiguration
[out] Pointer to a SYSTEM_CONFIGURATION structure that receives the information about the system.

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning

BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully

BIRD_ERROR_SYSTEM_UNINITIALIZED The Tracker hardware and system has not been initialized
yet. The InitializeBIRDSystem function must be called first.

Remarks

This function passes a single parameter that is a pointer to a structure, which will hold the system configuration on
return from the call. The structure contains variables that give the number of sensors, transmitters and boards in the
system. These numbers can then be used to allocate storage for arrays of structures to store the sensor and
transmitter configurations. The board configurations may be used to monitor the hardware configuration of the
system.

The structure also contains the current measurement rate, line frequency, maximum range and AGC mode of the
system when the configuration was returned. These parameters effect operation in a system-wide manner.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

63

3DGuidance API Reference

GetTransmitterConfiguration

The GetTransmitterConfiguration will return a structure containing a TRANSMITTER_CONFIGURATION.

int GetTransmitterConfiguration(
USHORT transmitterlD,
TRANSMITTER_CONFIGURATION* pTransmitterConfiguration

)
Parameters

transmitter/D
[in] The transmitterID is in the range 0..(n-1) where n is the number of possible transmitters in the system.

pTransmitterConfiguration
[out] Pointer to a TRANSMITTER_CONFIGURATION structure that receives the information about the transmitter.

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
BIRD_ERROR_SYSTEM_UNINITIALIZED The Tracker hardware and system has not been initialized
yet. The InitializeBIRDSystem function must be called first.
BIRD_ERROR_INVALID_DEVICE_ID The transmitterID passed was out of range for the system.
Remarks

This function takes as its parameters an index to a specific transmitter and a pointer to a structure that is used to
return the transmitter configuration information.

The index number is in the range 0..(n-1) where n is the number of possible transmitters in the system.

The transmitter configuration returned contains most importantly the serial number of any transmitter attached at the
specified ID. This is the most reliable way to correlate an actual physical transmitter and its index number. The other

information provided is the index number of the board where the transmitter is found, and the channel number within
that board. The transmitter type is also provided.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

64

3DGuidance API Reference

GetSensorConfiguration

The GetSensorConfiguration will return a structure containing a SENSOR_CONFIGURATION.

int GetSensorConfiguration(
USHORT sensorlD,
SENSOR_CONFIGURATION* pTransmitterConfiguration

)
Parameters

sensorlD
[in] The sensorID is in the range 0..(n-1) where n is the number of possible sensors in the system.

pSensorConfiguration
[out] Pointer to a SENSOR_CONFIGURATION structure that receives the information about the sensor.

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
BIRD_ERROR_SYSTEM_UNINITIALIZED The Tracker hardware and system has not been initialized
yet. The InitializeBIRDSystem function must be called first.
BIRD_ERROR_INVALID_DEVICE_ID The sensorID passed was out of range for the system.
Remarks

This function takes as its parameters an index to a specific sensor and a pointer to a structure that is used to return
the sensor configuration information.

The index number is in the range 0..(n-1) where n is the number of possible sensors in the system.

The sensor configuration returned contains most importantly the serial number of any sensor attached at the
specified ID. This is the most reliable way to correlate an actual physical sensor and its index number. The other
information provided is the index number of the board where the sensor is found, and the channel number within
that board. The sensor type is also provided.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

65

3DGuidance API Reference

GetBoardConfiguration

The GetBoardConfiguration will return a structure containing a BOARD_CONFIGURATION.

int GetBoardConfiguration(
USHORT boardlID,
BOARD_CONFIGURATION* pBoardConfiguration

);
Parameters
boardlD
[in] The boardID is in the range 0..(n-1) where n is the number of possible boards in the system.

pBoardConfiguration
[out] Pointer to a BOARD_CONFIGURATION structure that receives the information about the board.

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
BIRD_ERROR_SYSTEM_UNINITIALIZED The Tracker hardware and system has not been initialized
yet. The InitializeBIRDSystem function must be called first.
BIRD_ERROR_INVALID_DEVICE_ID The boardID passed was out of range for the system.
Remarks

This function takes as its parameters an index to a specific board and a pointer to a structure that is used to return
the board configuration information.

The index number is in the range 0..(n-1) where n is the number of possible boards in the system.

This function returns a structure slightly different from the SENSOR_CONFIGURATION and
TRANSMITTER_CONFIGURATION structures. The BOARD_CONFIGURATION returned with this call provides the
number of sensor and transmitter connectors available on this board. It also provides the revision number of the
firmware running on the board.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

66

3DGuidance API Reference

GetSystemParameter

The GetSystemParameter will return a buffer containing the selected parameter values(s).

int GetSystemParameter (
SYSTEM_PARAMETER_TYPE parameterType,
Void* pBuffer,
Int bufferSize

);

Parameters

parameterType
[in] Contains the parameter type to be returned in the buffer. Must be a valid enumerated constant of the type
SYSTEM_PARAMETER_TYPE.

pBuffer
[out] Points to a buffer to be used for returning the information about the SYSTEM_PARAMETER_TYPE being
queried. WARNING: The size of the buffer must be equal to or greater then the size of the parameter being
returned or the function may overwrite user memory.

bufferSize
[in] Contains the size of the buffer whose address is passed in pBuffer. Note the bufferSize value must match the
size of the returned parameter exactly.

Return Values
The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit £RRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
BIRD_ERROR_SYSTEM_UNINITIALIZED The Tracker hardware and system has not been

initialized yet. The InitializeBIRDSystem function must
be called first.

BIRD_ERROR_INCORRECT_PARAMETER_SIZE The value of the bufferSize parameter passed did not
match the size of the parameter being returned.

BIRD_ERROR_ILLEGAL_COMMAND_PARAMETER | Invalid enumerated constant of type
SYSTEM_PARAMETER_TYPE used.

Remarks

The GetSystemParameter and SetSystemParameter commands are designed to allow access to and manipulation of
parameters that effect the computation cycle and algorithm. These include measurement rate, AGC mode, Power line
frequency etc. Note that some of the parameters take as values other enumerated types.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
SetSystemParameter

67

3DGuidance API Reference

GetSensorParameter

The GetSensorParameter function will return a buffer containing the selected parameter values(s).

int GetSensorParameter(
USHORT sensorID
SENSOR_PARAMETER_TYPE parameterType,
Void* pBuffer,
Int bufferSize

)

Parameters

sensorlD
[in] Valid SensorIDs are in the range 0..(n-1) where n is the number of sensors in the system.

parameterType

[in] Contains the parameter type to be returned in the buffer. Must be a valid enumerated constant of the type
SENSOR_PARAMETER_TYPE.

pBuffer

[out] Points to a buffer to be used for returning the information about the SENSOR_PARAMETER_TYPE being
queried. WARNING: The size of the buffer must be equal to or greater then the size of the parameter being
returned or the function may overwrite user memory.

bufferSize

[in] Contains the size of the buffer whose address is passed in pBuffer. Note the bufferSize value must match the
size of the returned parameter exactly.

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
BIRD_ERROR_SYSTEM_UNINITIALIZED The Tracker hardware and system has not been

initialized yet. The InitializeBIRDSystem function must
be called first.

BIRD_ERROR_INCORRECT_PARAMETER_SIZE The value of the bufferSize parameter passed did not
match the size of the parameter being returned.

BIRD_ERROR_ILLEGAL_COMMAND_PARAMETER | Invalid enumerated constant of type
SENSOR_PARAMETER_TYPE used.

BIRD_ERROR_INVALID_DEVICE_ID The sensorID passed was out of range for the system.

Remarks

The GetSensorParameter command is designed to allow the viewing of parameters that effect the computation cycle
and algorithm for a single sensor. The command differs from the system command in that it requires a device ID to

68

3DGuidance API Reference

indicate which sensor is being referred to. See SENSOR_PARAMETER_TYPE for a description of the individual

parameters.

Requirements

Windows NT/2000: Requires Windows 2000 or later.

Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
SetSensorParameter

69

3DGuidance API Reference

GetTransmitterParameter

The GetTransmitterParameter function will return a buffer containing the selected parameter values(s).

int GetTransmitterParameter(
USHORT transmitterlD
TRANSMITTER_PARAMETER_TYPE parameterType,
void* pBuffer,
int bufferSize

)

Parameters

transmitter/D
[in] Valid transmitterrIDs are in the range 0..(n-1) where n is the number of transmitters in the system.

parameterType

[in] Contains the parameter type to be returned in the buffer. Must be a valid enumerated constant of the type
TRANSMITTER_PARAMETER_TYPE.

pBuffer
[out] Points to a buffer to be used for returning the information about the TRANSMITTER_PARAMETER_TYPE

being queried. WARNING: The size of the buffer must be equal to or greater then the size of the parameter being
returned or the function may overwrite user memory.

bufferSize

[in] Contains the size of the buffer whose address is passed in pBuffer. Note the bufferSize value must match the
size of the returned parameter exactly.

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
BIRD_ERROR_SYSTEM_UNINITIALIZED The Tracker hardware and system has not been

initialized yet. The InitializeBIRDSystem function must
be called first.

BIRD_ERROR_INCORRECT_PARAMETER_SIZE The value of the bufferSize parameter passed did not
match the size of the parameter being returned.

BIRD_ERROR_ILLEGAL_COMMAND_PARAMETER | Invalid enumerated constant of type
TRANSMITTER_PARAMETER_TYPE used.

BIRD_ERROR_INVALID_DEVICE_ID The transmitterID passed was out of range for the
system.

Remarks
The GetTransmitterParameter command is designed to allow the viewing of parameters that effect the operation of a
single transmitter. The command differs from the system command in that it requires a device ID to indicate which
transmitter is being referred to. See TRANSMITTER_PARAMETER_TYPE for a description of the individual parameters.

70

3DGuidance API Reference

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

SetTransmitterParameter

71

3DGuidance API Reference

GetBoardParameter

The GetBoardParameter function will return a buffer containing the selected parameter values(s).

int GetBoardParameter(
USHORT boardID
BOARD_PARAMETER_TYPE parameterType,
void* pBuffer,
int bufferSize

)

Parameters

boardlD
[in] Valid boardIDs are in the range 0..(n-1) where n is the number of boards in the system.

parameterType
[in] Contains the parameter type to be returned in the buffer. Must be a valid enumerated constant of the type
BOARD_PARAMETER_TYPE.

pBuffer
[out] Points to a buffer to be used for returning the information about the BOARD_PARAMETER_TYPE being
queried. WARNING: The size of the buffer must be equal to or greater then the size of the parameter being
returned or the function may overwrite user memory.

bufferSize
[in] Contains the size of the buffer whose address is passed in pBuffer. Note the bufferSize value must match the
size of the returned parameter exactly.

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
BIRD_ERROR_SYSTEM_UNINITIALIZED The Tracker hardware and system has not been

initialized yet. The InitializeBIRDSystem function must
be called first.

BIRD_ERROR_INCORRECT_PARAMETER_SIZE The value of the bufferSize parameter passed did not
match the size of the parameter being returned.

BIRD_ERROR_ILLEGAL_COMMAND_PARAMETER | Invalid enumerated constant of type
BOARD_PARAMETER_TYPE used.

BIRD_ERROR_INVALID_DEVICE_ID The boardID passed was out of range for the system.

Remarks

72

3DGuidance API Reference

The GetBoardParameter command is designed to allow the viewing of parameters that effect the operation of a single
board. The command differs from the system command in that it requires a board ID to indicate which board is being
referred to. See BOARD_PARAMETER_TYPE for a description of the individual parameters.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
SetBoardParameter

73

3DGuidance API Reference

SetSystemParameter

The SetSystemParameter function allows an application to change basic Tracker system parameters.

int SetSystemParameter(
SYSTEM_PARAMETER_TYPE parameterType,
void* pBuffer,
int bufferSize

);

Parameters

parameterType
[in] Contains the parameter type to be passed in the buffer. Must be a valid enumerated constant of the type
SYSTEM_PARAMETER_TYPE.

pBuffer
[in] Points to a buffer to be used for passing the information about the SYSTEM_PARAMETER_TYPE being
changed. WARNING: The size of the buffer must be equal to or greater then the size of the parameter being
passed or the function will read beyond the end of the buffer into user memory with indeterminate results.

bufferSize
[in] Contains the size of the buffer whose address is passed in pBuffer. Note the bufferSize value must match the
size exactly of the parameter being passed in the buffer.

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
BIRD_ERROR_SYSTEM_UNINITIALIZED The Tracker hardware and system has not been

initialized yet. The InitializeBIRDSystem function must
be called first.

BIRD_ERROR_INCORRECT_PARAMETER_SIZE The value of the bufferSize parameter passed did not
match the size of the parameter being returned.

BIRD_ERROR_ILLEGAL_COMMAND_PARAMETER | Invalid enumerated constant of type
SYSTEM_PARAMETER_TYPE used.

BIRD_ERROR_NO_TRANSMITTER_RUNNING A request was made to turn off the current transmitter
by passing the value —1 with the parameter
SELECT_TRANSMITTER selected and there was no
transmitter currently running.

BIRD_ERROR_NO_TRANSMITTER_ATTACHED A request was made to do one of the following:

1) Turn off the currently running transmitter and
there is no transmitter attached to the system
2) Turn on the transmitter with the selected 1D

and there is no transmitter attached at that ID.

BIRD_ERROR_COMMAND_TIME_OUT Tracker on-board controller has failed to respond to a

74

3DGuidance API Reference

command issued to it. If error is repeatable there is an
unrecoverable hardware failure.

BIRD_ERROR_WATCHDOG Tracker internal watchdog timer has elapsed. If this
error is repeatable there is an unrecoverable hardware
failure.

Remarks

The GetSystemParameter and SetSystemParameter commands are designed to allow access to and manipulation of
parameters that effect the computation cycle and algorithm. These include measurement rate, AGC mode, Power line
frequency etc. Note that some of the parameters take as values other enumerated types.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
GetSystemParameter

75

3DGuidance API Reference

SetSensorParameter

The SetSensorParameter function allows an application to select and change specific characteristics of individual sensors in
a tracking system.

int SetSensorParameter(
USHORT sensorlID
SENSOR_PARAMETER_TYPE parameterType,
void* pBuffer,
int bufferSize

Parameters

sensorlD
[in] Valid sensorlIDs are in the range 0..(n-1) where n is the number of sensors in the system.

parameterType
[in] Contains the parameter type whose new value is being passed in the buffer. It must be a valid enumerated
constant of the type SENSOR_PARAMETER_TYPE.

pBuffer
[in] Points to a buffer to be used for passing the new parameter information of the SENSOR_PARAMETER_TYPE
being changed. WARNING: The size of the buffer must be equal to or greater then the size of the parameter being
passed or the function will read beyond the end of the buffer into user memory with indeterminate results.

bufferSize
[in] Contains the size of the buffer whose address is passed in pBuffer. Note the bufferSize value must match the
size of the passed parameter exactly.

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
BIRD_ERROR_SYSTEM_UNINITIALIZED The Tracker hardware and system has not been

initialized yet. The InitializeBIRDSystem function must
be called first.

BIRD_ERROR_INCORRECT_PARAMETER_SIZE The value of the bufferSize parameter passed did not
match the size of the parameter being returned.

BIRD_ERROR_ILLEGAL_COMMAND_PARAMETER | Invalid enumerated constant of type
SENSOR_PARAMETER_TYPE used.

BIRD_ERROR_INVALID_DEVICE_ID The sensorID passed was out of range for the system.

BIRD_ERROR_COMMAND_TIME_OUT Tracker on-board controller has failed to respond to a
command issued to it. If error is repeatable there is an
unrecoverable hardware failure.

76

3DGuidance API Reference

BIRD_ERROR_WATCHDOG Tracker internal watchdog timer has elapsed. If this
error is repeatable there is an unrecoverable hardware
failure.

Remarks

The SetSensorParameter command is designed to allow the manipulation of parameters that effect the computation
cycle and algorithm for a single sensor. The command differs from the system command in that it requires a device
ID to indicate which sensor is being referred to. See SENSOR_PARAMETER_TYPEfor a description of the individual
parameters.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
GetSensorParameter

77

3DGuidance API Reference

SetTransmitterParameter

The SetTransmitterParameter function allows an application to change specific operational characteristics of individual
transmitters.

int SetTransmitterParameter(
USHORT transmitterlD
TRANSMITTER_PARAMETER_TYPE parameterType,
void* pBuffer,
int bufferSize

Parameters

transmitterlD
[in] Valid transmitterlDs are in the range 0..(n-1) where n is the number of transmitters in the system.

parameterype
[in] Contains the parameter type to be passed in the buffer. Must be a valid enumerated constant of the type
TRANSMITTER_PARAMETER_TYPE.

pBuffer
[in] Points to a buffer to be used for passing the information about the TRANSMITTER_PARAMETER_TYPE being
changed. WARNING: The size of the buffer must be equal to or greater then the size of the parameter being
passed or the function may read beyond the end of the buffer into user memory with indeterminate results.

bufferSize
[in] Contains the size of the buffer whose address is passed in pBuffer. Note the bufferSize value must match the
size of the passed parameter exactly.

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit £RRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
BIRD_ERROR_SYSTEM_UNINITIALIZED The Tracker hardware and system has not been

initialized yet. The InitializeBIRDSystem function must
be called first.

BIRD_ERROR_INCORRECT_PARAMETER_SIZE The value of the bufferSize parameter passed did not
match the size of the parameter being returned.

BIRD_ERROR_ILLEGAL_COMMAND_PARAMETER | Invalid enumerated constant of type
TRANSMITTER_PARAMETER_TYPE used.

BIRD_ERROR_INVALID_DEVICE_ID The transmitterID passed was out of range for the
system.
BIRD_ERROR_COMMAND_TIME_OUT Tracker on-board controller has failed to respond to a

78

3DGuidance API Reference

command issued to it. If error is repeatable there is an
unrecoverable hardware failure.

BIRD_ERROR_WATCHDOG Tracker internal watchdog timer has elapsed. If this
error is repeatable there is an unrecoverable hardware
failure.

Remarks

The SetTransmitterParameter command is designed to allow the manipulation of parameters that effect the operation
of a single transmitter. The command differs from the system command in that it requires a device ID to indicate
which transmitter is being referred to. See TRANSMITTER_PARAMETER_TYPE for a description of the individual
parameters.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

GetTransmitterParameter

79

3DGuidance API Reference

SetBoardParameter

The SetBoardParameter function takes as a parameter a pointer to a buffer containing the selected parameter values(s) to
be changed.

int SetBoardParameter(
USHORT boardID
BOARD_PARAMETER_TYPE parameterType,
void* pBuffer,
int bufferSize

Parameters

boardID
[in] Valid boardIDs are in the range 0..(n-1) where n is the number of boards in the system.

parameterype
[in] Contains the parameter type to be passed in the buffer. Must be a valid enumerated constant of the type
BOARD_PARAMETER_TYPE.

pBuffer
[out] Points to a buffer containing the information about the BOARD_PARAMETER_TYPE being changed.
WARNING: The size of the buffer must be equal to or greater then the size of the parameter being modified or the
function may attempt to read from user memory.

bufferSize
[in] Contains the size of the buffer whose address is passed in pBuffer. Note the bufferSize value must match the
size of the returned parameter exactly.

Return Values
The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
BIRD_ERROR_SYSTEM_UNINITIALIZED The Tracker hardware and system has not been

initialized yet. The InitializeBIRDSystem function must
be called first.

BIRD_ERROR_INCORRECT_PARAMETER_SIZE The value of the bufferSize parameter passed did not
match the size of the parameter being returned.

BIRD_ERROR_ILLEGAL_COMMAND_PARAMETER | Invalid enumerated constant of type
BOARD_PARAMETER_TYPE used.

BIRD_ERROR_INVALID_DEVICE_ID The boardID passed was out of range for the system.

Remarks

80

3DGuidance API Reference

The GetBoardParameter command is designed to allow the changing of parameters that effect the operation of a
single board. The command differs from the system command in that it requires a board ID to indicate which board is
being referred to. See BOARD_PARAMETER_TYPE for a description of the individual parameters.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

GetBoardParameter

81

3DGuidance API Reference

GetAsynchronousRecord

The GetAsynchronousRecord function allows an application to acquire a position and orientation data record from an
individual sensor.

int GetAsynchronousRecord(
USHORT sensorlID
void* pRecord,
int recordSize

);

Parameters

sensorlD
[in] Valid sensorlIDs for an individual sensor are in the range 0..(n-1) where n is the number of sensors in the
system. A sensorlID value of ALL_SENSORS (-1), is used to request records from all possible sensors. Note that
using the ALL_SENSORS sensorID will result in data records in the specified buffer for both attached and not
attached sensors (with IDs= 0 ..(n-1)).

pRecord
[out] Points to a buffer to be used for returning the data record. WARNING: The size of the buffer must be equal
to or greater then the size of the data record requested or the function may overwrite user memory with
indeterminate results. Note also that when requesting data from all sensors (ID=ALL_SENSORS), the buffer size
must account for size of the data record * N, where N is the max number of sensors supported by the system.

recordSize
[in] Contains the size of the buffer whose address is passed in pRecord. Note the recordSize value must match the
size of the currently selected DATA_FORMAT_TYPE exactly.

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
BIRD_ERROR_SYSTEM_UNINITIALIZED The Tracker hardware and system has not been

initialized yet. The InitializeBIRDSystem function must
be called first.

BIRD_ERROR_NO_SENSOR_ATTACHED Request for data record from a sensor channel where
no sensor is attached or the sensor has been removed.

BIRD_ERROR_NO_TRANSMITTER_RUNNING Request for data record but there is no transmitter
running. Either the application failed to turn a
transmitter on or the currently running transmitter has
a problem or has been removed. If a transmitter
problem is suspected use the GetTransmitterStatus
function to determine the precise problem.

BIRD_ERROR_INCORRECT_RECORD_SIZE The recordSize of the buffer passed to the function
does not match the size of the data format currently

82

3DGuidance API Reference

selected.

BIRD_ERROR_SENSOR_SATURATED The attached sensor that is otherwise OK has gone into
saturation. This may occur if the sensor is too close to
the transmitter or if the sensor is too close to metal or
an external magnetic field.

BIRD_ERROR_CPU_TIMEOUT Tracker on-board controller had insufficient time to
execute the position and orientation algorithm. This
frequently occurs because the Tracker controller is
being overwhelmed with user interface commands.
Reduce the rate at which GetAsynchronousRecord is
being called.

BIRD _ERROR_SENSOR_BAD The attached sensor is not saturated but is exhibiting
another unspecified problem that prevents it from
operating normally. Use the GetSensorStatus function
to determine the precise problem.

BIRD_ERROR_INVALID DEVICE_ID The transmitterID passed was out of range for the
system.
BIRD_ERROR_COMMAND_TIME_OUT Tracker on-board controller has failed to respond to a

command issued to it. If error is repeatable there is an
unrecoverable hardware failure.

BIRD_ERROR_WATCHDOG Tracker internal watchdog timer has elapsed. It is
necessary to re-initialize the system to recover from this
error. If this error is repeatable there is an
unrecoverable hardware failure.

Remarks

The GetAsynchronousRecord function is designed to immediately return the data record from the last computation
cycle. If this function is called repeatedly and at a greater rate than the measurement cycle, there will be duplication
of data records.

In order to call this function, it is necessary to have already set the data format of the sensor that the record is being
obtained from using the SetSensorParameter() function. Once that is done, it is necessary to pass the ID of the
sensor and a pointer to a buffer where the data record will be returned. It is also necessary to pass a parameter with
the size of the buffer being passed. If there is a mismatch in the buffer sizes, the command is aborted and an error
returned.

The enumerated data formats of type DATA_FORMAT_TYPE come in a number of general forms: integer, floating
point, floating point with timestamp, floating point with timestamp and quality number, and all. For each form the
user can select to have position only, angles only, attitude matrix only or quaternion only, or any of the previous
combined with position returned.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

GetSynchronousRecord

83

3DGuidance API Reference

GetSynchronousRecord

The GetSynchronousRecord function allows an application to acquire unique position and orientation data records for a
given sensor (or from all possible sensors), only as they are computed by the tracker and become available — once per data
acquisition cycle.

int GetSynchronousRecord(
USHORT sensorlID
void* pRecord,
int recordSize

);

Parameters

sensorlD
[in] Valid sensorlIDs for an individual sensor are in the range 0..(n-1) where n is the number of sensors in the
system. A sensorlID value of ALL_SENSORS (-1), is used to request records from all possible sensors. Note that
using the ALL_SENSORS sensorlID will result in data records in the specified buffer for both attached and not
attached sensors (with IDs= 0 ..(n-1)).

PRecord
[out] Points to a buffer to be used for returning the data record. WARNING: The size of the buffer must be equal
to or greater then the size of the data record requested or the function may overwrite user memory with
indeterminate results. Note also that when requesting data from all sensors (ID=ALL_SENSORS), the buffer size
must account for size of the data record * N, where N is the max number of sensors supported by the system.

recordSize

[in] Contains the size of the buffer whose address is passed in pRecord. Note the recordSize value must match the
size of the currently selected DATA_FORMAT_TYPE exactly.

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
BIRD_ERROR_SYSTEM_UNINITIALIZED The 3DGuidance hardware and system has not been

initialized yet. The InitializeBIRDSystem function must
be called first.

BIRD_ERROR_NO_SENSOR_ATTACHED Request for data record from a sensor channel where
no sensor is attached or the sensor has been removed.

BIRD_ERROR_NO_TRANSMITTER_RUNNING Request for data record but there is no transmitter
running. Either the application failed to turn a
transmitter on or the currently running transmitter has
a problem or has been removed. If a transmitter
problem is suspected use the GetTransmitterStatus
function to determine the precise problem.

BIRD_ERROR_INCORRECT_RECORD_SIZE The recordSize of the buffer passed to the function
does not match the size of the data format currently

84

3DGuidance API Reference

selected.

BIRD_ERROR_SENSOR_SATURATED The attached sensor which is otherwise OK has gone
into saturation. This may occur if the sensor is too close
to the transmitter or if the sensor is too close to metal
or an external magnetic field.

BIRD_ERROR_CPU_TIMEOUT 3DGuidance on-board controller had insufficient time to
execute the position and orientation algorithm. This
frequently occurs because the 3DGuidance controller is
being overwhelmed with user interface commands.
Reduce the rate at which function is being called.

BIRD_ERROR_SENSOR_BAD The attached sensor is not saturated but is exhibiting
another unspecified problem which prevents it from
operating normally. Use the GetSensorStatus function
to determine the precise problem.

BIRD_ERROR_INVALID_DEVICE_ID The transmitterID passed was out of range for the
system.
BIRD_ERROR_COMMAND_TIME_OUT 3DGuidance on-board controller has failed to respond

to a command issued to it. If error is repeatable there
is an unrecoverable hardware failure.

BIRD_ERROR_WATCHDOG 3DGuidance internal watchdog timer has elapsed. It is
necessary to re-initialize the system to recover from this
error. If this error is repeatable there is an
unrecoverable hardware failure.

Remarks

The GetSynchronousRecord function is designed to place the tracker in a data-reporting mode in which each and
every computed data record is sent to the host. The result is a constant STREAM of data with timing that is
independent of the arrival of the host data request during the measurement cycle. While this prevents the occurrence
of duplicate records (as can occur when calling the GetAsynchronousRecord faster than the tracker update rate), it
does not guarantee that records will not be overwritten. The buffer available to the system for each sensor is 8
records long. If the host application does not keep up with the constant stream of data being provided in this mode,
this buffer will overfill and records will be lost.

Note that the rate at which records are transmitted when using the GetSynchronousRecord can be changed through
use of the SetSystemParameter function with the REPORT_RATE parameter. This divisor reduces the number of
records output during STREAM mode, to that determined by the setting. For example, at a system measurement rate
of 80Hz and a REPORT_RATE of 1, the tracker will transmit 80 *3 =240 Updates/sec (1 record every 4mS) for each
sensor. Changing the REPORT_RATE setting to 4 will reduce the number of records to 240/4 = 60 Updates/sec (1
record every 17mS) for each sensor. The default REPORT_RATE setting of 1 makes all outputs computed by the
tracker available. See the Configurable Settings section in Chapter 3 for details on changing the default setting.

Issuing commands (other than GetSynchronousRecord) that must query the unit for a response, will cause the unit to
come out of STREAM mode (i.e GetXXXX). Also note that hot-swapping sensors during STREAM mode operation will

introduce delay in data for all sensor channels, as the unit must be taken out of this mode to detect and process info

from the inserted sensor, then commanded to resume the STREAM mode operation.

As with the GetAsynchronous call, a record containing data from all sensors can be obtained by setting the sensor 1D
to ALL_SENSORS. For legacy tracker users, this is the equivalent of Group Mode. Note also that when requesting data
from all sensors (ID=ALL_SENSORS), the buffer size must account for size of the data record * N, where N is the max
number of sensors supported by the system.

In order to call this function, it is necessary to have already set the data format of the sensor(s) that the record is
being obtained from using the SetSensorParameter() function. Once that is done, it is necessary to pass the ID of the

85

3DGuidance API Reference

sensor and a pointer to a buffer where the data record(s) will be returned. It is also necessary to pass a parameter
with the size of the buffer being passed. If there is a mismatch in the buffer sizes, the command is aborted and an
error returned.

The enumerated data formats of type DATA_FORMAT_TYPE come in a number of general forms: integer, floating
point, floating point with timestamp, floating point with timestamp and quality number, and all. For each form the
user can select to have position only, angles only, attitude matrix only or quaternion only, or any of the previous
combined with position returned.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DG.lib

See Also
GET ASYNCHRONOUS RECORD

86

3DGuidance API Reference

GetBIRDError

The GetBIRDETrror function forces the system to interrogate the hardware and update all the device status records. These
status records may then be inspected using the GetSensorStatus, GetTransmitterStatus and GetBoardStatus function calls.

int GetBIRDError();

Parameters

This function takes no parameters

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
BIRD_ERROR_SYSTEM_UNINITIALIZED The Tracker hardware and system has not been

initialized yet. The InitializeBIRDSystem function must
be called first.

BIRD_ERROR_COMMAND_TIME_OUT Tracker on-board controller has failed to respond to a
command issued to it. If error is repeatable there is an
unrecoverable hardware failure.

BIRD_ERROR_WATCHDOG Tracker internal watchdog timer has elapsed. It is
necessary to re-initialize the system to recover from this
error. If this error is repeatable there is an
unrecoverable hardware failure.

Remarks

The GetBIRDError function will cause the system to interrogate all boards and all sensor and transmitter channels on
each board to determine the status of all attached and unattached devices. Consequently the execution of this
command may take quite a long time and it is not recommended that it be called regularly. It should only be called
after a period of inactivity to refresh the system’s internal record of device status. Note: once the global status has
been updated, specific device status will be regularly updated during calls to GetAsynchronousRecord or
GetSynchronousRecord. For example: In a system with two boards there will exist four sensor channels. Calling
GetBIRDETrror will acquire the current status for all four channels. If the application then starts to make calls to
GetAsynchronousRecord for sensor number 2 then the status for that sensor will be updated as necessary during the
data acquisition.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

87

3DGuidance API Reference

GetErrorText

The GetErorText function returns a message string describing the nature of the error code passed to it.

int GetErrorText(
int errorCode,
char* pBuffer,
int bufferSize,

int type

Parameters

errorCode
[in] Contains an /nt value representing the error code parameter whose message string will be returned from the
call. Must be a valid enumerated constant of the type BIRD_ERROR_CODES.

pBuffer
[out] Points to a buffer that will be used to hold the message string returned from the call. WARNING: The actual
buffer size must be equal to or greater than the bufferSize value passed or the function may overwrite beyond the
end of the buffer into user memory with indeterminate results. Note: If the buffer provided is shorter than the
string returned, the string will be truncated to fit into the buffer.

bufferSize
[in] Contains the size of the buffer whose address is passed in pBuffer.

type
[in] Contains an int value of enumerated type MESSAGE_TYPE which may have one of the following values:

Value Meaning

SIMPLE_MESSAGE A single line text string will be returned with a terse description of the error.

VERBOSE_MESSAGE A more complete description of the error will be returned. The description may
include possible causes of the error where appropriate and a description of the
steps required to ameliorate the error condition.

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
BIRD_ERROR_SYSTEM_UNINITIALIZED The Tracker hardware and system has not been

initialized yet. The InitializeBIRDSystem function must
be called first.

BIRD_ERROR_ILLEGAL_COMMAND_PARAMETER | Invalid enumerated constant of type
BIRD_ERROR_CODES was passed in parameter

88

3DGuidance API Reference

‘ errorCode.

Remarks

This is a helper function provided to simplify the error reporting process.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

89

3DGuidance API Reference

GetSensorStatus

The GetSensorStatus will return the status of the selected sensor channel.

DEVICE_STATUS GetSensorStatus(
USHORT sensorlD,

);

Parameters

sensorlD
[in] The sensorID is in the range 0..(n-1) where n is the number of possible sensors in the system.

Return Values

The function returns a value of type DEVICE_STATUS. The returned value contains the status of the selected sensor
channel. The bits in the status word have the following meanings:

Bit Name Meaning

0 GLOBAL_ERROR If the Error bit is cleared then the sensor is attached and fully operational.
This bit is set if the following is true:

Error = Not Attached OR Saturated OR Bad EEProm OR Hardware problem
OR Non-Existent OR Unlnitialized OR No Transmitter

1 NOT_ATTACHED No sensor is attached to this sensor channel
2 SATURATED The sensor is currently saturated.
3 BAD_EEPROM The sensor is attached but the on-board EEProm has a problem that renders

the sensor unusable.

4 HARDWARE The sensor is attached, the EEProm checks out OK but there is an unspecified
hardware failure that prevents the sensor from operating properly.

5 NON_EXISTENT When Non-Existent is set it denotes that this is NOT a valid sensor channel.
Note: No error codes are returned with GetSensorStatus calls. If the sensor/D
used is invalid then this bit will be set.

6 UNINITIALIZED When Unlnitialized is set it denotes that the system initialization function
InitializeBIRDSystem has NOT been called successfully at least once and the
sensor status is invalid.

7 NO_TRANSMITTER | This bit will be set if one of the following is true: a) There is no transmitter
attached to the system or b) There is a transmitter but it is not turned on.

8 BAD_12v Always returns zero

9 CPU_TIMEOUT CPU ran out of time while executing the position and orientation algorithm.

10 INVALID_DEVICE The attached sensor is an invalid type for this board type.

11 - 31 | Reserved (Unused) | Always returns zero

Remarks

This function takes as its only parameter an index to a selected sensor. The function call returns a

90

3DGuidance API Reference

32-bit status word.

No error codes are returned so it is not possible to determine if the call was successful through the standard process
of inspecting the returned error code. But there are 2 possible runtime error conditions:

1) Calling the function before InitializeBIRDSystem has been called

2) Calling the function with an invalid sensor ID.

Both these conditions have been taken care of by the addition of bits 5 and 6 in the status word.
1) If the function InitializeBIRDSystem has not been called then the “Unlnitialized” bit will be set.
2) If this function call was made with an invalid (out of range) sensor ID then the “Non-Existent” bit will be set.

In all cases the setting of any single status bit will cause the “Error” bit to be set. Determining if the sensor is
operational can be done by simply testing the “Error” bit or by testing the whole status word. The sensor is only
operational when the status word = 0.

Any call made to GetAsynchronousRecord with the “Error” bit set will result in a zero data record being returned.
Conversely, any time that a zero data record is received the application should call GetSensorStatus to determine the
cause of the problem.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

91

3DGuidance API Reference

GetTransmitterStatus

The GetTransmitterStatus will return the status of the selected transmitter channel.

DEVICE_STATUS GetTransmitterStatus(
USHORT transmitterlD,
)

Parameters

transmitterlD
[in] The transmitterID is in the range 0..(n-1) where n is the number of possible transmitters in the system.

Return Values

The function returns a value of type DEVICE_STATUS. The returned value contains the status of the selected
transmitter channel. The bits in the status word have the following meanings:

Bit Name Meaning

0 GLOBAL_ERROR If the Error hit is cleared then the transmitter is attached and fully
operational. This bit is set if the following is true:

Error = Not Attached OR Bad EEProm OR Hardware problem OR Non-Existent
OR Unlnitialized

1 NOT_ATTACHED No transmitter is attached to this transmitter channel
2 SATURATED Always returns zero.
3 BAD_EEPROM The transmitter is attached but the on-board EEProm has a problem that

renders the transmitter unusable.

4 HARDWARE The transmitter is attached, the EEProm checks out OK but there is an
unspecified hardware failure that prevents the transmitter from operating
properly. Either an open circuit coil or an overcurrent condition can cause
hardware problems.

5 NON_EXISTENT When Non-Existent is set it denotes that this is NOT a valid transmitter
channel. Note: No error codes are returned with GetTransmitterStatus calls.
If the transmitter/D used is invalid then this bit will be set.

6 UNINITIALIZED When Unlnitialized is set it denotes that the system initialization function
InitializeBIRDSystem has NOT been called successfully at least once and the
transmitter status is invalid.

7 NO_TRANSMITTER | Always returns zero

8 BAD_12V The +12V power supply has not been attached to the card that this
transmitter is located on. This transmitter channel is therefore unusable.

10 INVALID_DEVICE The attached transmitter is an invalid type for this board type.

11 - 31 | Reserved (Unused) | Always returns zero

92

3DGuidance API Reference

Remarks

This function takes as its only parameter an index to a selected transmitter. The function call returns a 32-bit status
word.

No error codes are returned so it is not possible to determine if the call was successful through the standard process
of inspecting the returned error code. But there are 2 possible runtime error conditions:

1) Calling the function before InitializeBIRDSystem has been called
2) Calling the function with an invalid transmitter 1D.

Both these conditions have been taken care of by the addition of bits 5 and 6 in the status word.

1) If the function InitializeBIRDSystem has not been called then the “Unlnitialized” bit will be set.

2) If this function call was made with an invalid (out of range) transmitter ID then the “Non-Existent” bit will be
set.

In all cases the setting of any single status bit will cause the “Error” bit to be set. Determining if the transmitter is

operational can be done by simply testing the “Error” bit or by testing the whole status word. The transmitter is only
operational when the status word = 0.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

93

GetBoardStatus

3DGuidance API Reference

The GetBoardStatus will return the status of the selected tracker unit.

DEVICE_STATUS GetBoardStatus(
USHORT boardlID,

);

Parameters

boardID

[in] The boardID is in the range 0..(n-1) where n is the number of cards installed in the system.

Return Values

The function returns a value of type DEVICE_STATUS. The returned value contains the status of the selected tracker

unit. The bits in the status word have the following meanings:

Bit Name Meaning

0 GLOBAL_ERROR If the Error bit is cleared then the board is installed and fully operational. This
bit is set if the following is true:

Error = Bad EEProm OR Hardware problem OR Non-Existent OR Unlnitialized
NOTE: This bit will NOT be set if the “+12V missing” bit is set.

1 NOT_ATTACHED Always returns zero

2 SATURATED Always returns zero

3 BAD_EEPROM The board is installed but the on-board EEProm has a problem that renders
the board unusable.

4 HARDWARE The board is installed, but there is an unspecified hardware failure that
prevents the board from operating properly.

5 NON_EXISTENT When Non-Existent is set it denotes that this is NOT a valid board ID. Note:
No error codes are returned with GetBoardStatus calls. If the board/D used is
invalid then this bit will be set.

6 UNINITIALIZED When Unlnitialized is set it denotes that the system initialization function
InitializeBIRDSystem has NOT been called successfully at least once and the
board status is invalid.

7 NO_TRANSMITTER | Always returns zero

8 BAD_12V The +12V power supply has not been attached to this card. The transmitter
channel on this card is unusable. NOTE: This is not a fatal error and does not
render the board totally unusable. Setting this bit does not set the Error bit.

9 CPU_TIMEOUT CPU ran out of time while executing the position and orientation algorithm.

10 - 31 | Reserved (Unused) | Always returns zero

94

3DGuidance API Reference

Remarks

This function takes as its only parameter an index to a selected tracker unit. The function call returns a 32-bit status
word.

No error codes are returned so it is not possible to determine if the call was successful through the standard process
of inspecting the returned error code. But there are 2 possible runtime error conditions:

1) Calling the function before InitializeBIRDSystem has been called
2) Calling the function with an invalid board ID.

Both these conditions have been taken care of by the addition of bits 5 and 6 in the status word.

1) If the function InitializeBIRDSystem has not been called then the “Unlnitialized” bit will be set.

2) If this function call was made with an invalid (out of range) board ID then the “Non-Existent” bit will be
set.

In all cases the setting of any single status bit will cause the “Error” bit to be set. (Except for the +12V Missing status
bit) Determining if the board is operational should be done by simply testing the “Error” bit. Testing the entire status
word for a value of 0 may or may be successful depending on whether the +12V is installed or not.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

95

GetSystemStatus

3DGuidance API Reference

The GetSystemStatus will return the status of the Tracker system.

DEVICE_STATUS GetSystemStatus();

Parameters

This function takes no parameters

Return Values

The function returns a value of type DEVICE_STATUS. The returned value contains the status of the tracking system.

The bits in the status word have the following meanings:

Bit Name Meaning

0 GLOBAL_ERROR If the Error bit is cleared then the system is fully operational. This bit is set if
the following is true:

Error = Hardware problem OR Non-Existent OR Unlnitialized OR +12V
Missing

1 NOT_ATTACHED Always returns zero

2 SATURATED Always returns zero

3 BAD_EEPROM Always returns zero

4 HARDWARE There is a fatal hardware failure somewhere that prevents the system from
operating.

5 NON_EXISTENT No Tracker cards have been found in the host system. It is necessary to
install at least one card before attempting to initialize the system.

6 UNINITIALIZED When Unlnitialized is set it denotes that the system initialization function
InitializeBIRDSystem has NOT been called successfully at least once and the
system status is invalid.

7 NO_TRANSMITTER Always returns zero

8 BAD_12V The +12V power supply has not been attached to any card in the system. At
least one board will need to have the +12V attached in order to drive a
transmitter.

9 - 31 | Reserved (Unused) Always returns zero

Remarks

No error codes are returned so it is not possible to determine if the call was successful through the standard process
of inspecting the returned error code. But there is one possible runtime error condition, namely, calling the function

before InitializeBIRDSystem has been called. If the function InitializeBIRDSystem has not been called then the
“Unlnitialized” bit will be set.

96

3DGuidance API Reference

In all cases, the setting of any single status bit will cause the “Error” bit to be set. Determining if the system is
operational can be done by simply testing the “Error” bit or by testing the whole status word. The system is only
operational when the status word = 0.

Requirements
Windows NT/2000: Requires Windows 2000 or later.

Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

97

3DGuidance API Reference

SaveSystemConfiguration

The SaveSystemConfiguration will save the current setup of the system to a file.

int SaveSystemConfiguration(
LPCTSTR IpFileName
)

Parameters
|pFileName
[in] Pointer to a null-terminated string that specifies the name of the file to create.

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
BIRD_ERROR_SYSTEM_UNINITIALIZED The Tracker hardware and system has not been

initialized yet. The InitializeBIRDSystem function must
be called first.

BIRD_ERROR_UNABLE_TO_CREATE_FILE The call was unable to complete for some unspecified
reason. Check the format of the file name string.
BIRD_ERROR_CONFIG_INTERNAL Internal error in configuration file handler. Report to
vendor.
Remarks

The only parameter to this call is the null-terminated string containing the file name. Note: In order to include a
backslash (\) as a separator in the file name string it is necessary to precede it with a second backslash. See the
example below.

int error = SaveSystemConfiguration(“C:\\Configurations\\MyConfiguration.ini”);

NOTE: If the file name is given without a full pathname specification then the file will be saved into the current
directory. For example in the following example if the application is executing from <C:\MyPrograms> then the
following call

int error = SaveSystemConfiguration(“MyConfiguration.ini”);

will save the configuration file to <C:\MyPrograms\MyConfiguration.ini>. This default mode of operation differs from
the RestoreSystemConfiguration() call that uses the %windir%N\inf directory as the default directory.

o8

3DGuidance API Reference

The configuration that is saved contains all of the parameters initialized using the SetSystemParameter,
SetSensorParameter and SetTransmitterParameter function calls. The parameters that can be initialized with each of
these calls are listed in the enumerated types SYSTEM_PARAMETER_TYPE, SENSOR_PARAMETER_TYPE and
TRANSMITTER_PARAMETER_TYPE. Any parameters that are uninitialized will be saved with their default values.

The file format is described in PCIBird Initialization File Format section.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
RestoreSystemConfiguration

99

3DGuidance API Reference

RestoreSystemConfiguration

The RestoreSystemConfiguration will restore the system configuration to a previous state that has been saved in a file.

int RestoreSystemConfiguration(
LPCTSTR IpFileName
);

Parameters

|pFileName
[in] Pointer to a null-terminated string that specifies the name of the file to open.

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
BIRD_ERROR_SYSTEM_UNINITIALIZED The Tracker hardware and system has not been

initialized yet. The InitializeBIRDSystem function must
be called first.

BIRD_ERROR_UNABLE_TO_OPEN_FILE The call was unable to complete for some unspecified
reason. Check the format of the file name string.

BIRD_ERROR_MISSING_CONFIGURATION_ITEM | A mandatory configuration item was missing from the
initialization file. Review contents of initialization file or
use SaveSystemConfiguration() to automatically save a
correctly formatted initialization file.

BIRD_ERROR_MISMATCHED_DATA Data item in the initialization file does not match a
system parameter. For example the initialization file
states the system has 3 boards (NumberOfBoards=3)
but the system initialization routine —
InitializeBIRDSystem() only detected two.

BIRD_ERROR_CONFIG_INTERNAL Internal error in configuration file handler. Report to
vendor.

Remarks

The only parameter to this call is the null-terminated string containing the file name. Note: In order to include a
backslash (\) as a separator in the file name string it is necessary to precede it with a second backslash. See the
example below.

int error = RestoreSystemConfiguration(“C:\\Configurations\\MyConfiguration.ini”);

100

3DGuidance API Reference

NOTE: if the full pathname specification is not provided then the default search path is in the %owindir%\inf directory.
If the file is not found there then a BIRD_ERROR_UNABLE_TO_OPEN_FILE error is generated.

The configuration that is restored contains all of the parameters that can be alternatively initialized using the
SetSystemParameter, SetSensorParameter and SetTransmitterParameter function calls. The parameters that can be
initialized with each of these calls are listed in the enumerated types SYSTEM_PARAMETER_TYPE,
SENSOR_PARAMETER_TYPE and TRANSMITTER_PARAMETER_TYPE.

The file format is described in tracker Initialization File Format

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
SaveSystemConfiguration

101

3DGuidance API Reference

CloseBIRDSystem

The CloseBIRDSystem function shuts down the tracker. int CloseBIRDSystem();

Parameters

This function takes no parameters

Return Values

The function returns a value of type /nt. This value takes the form of an ERRORCODE indicating success or failure for
the call. The enumerated error code field contained within the 32-bit ERRORCODE may have one of the following
values for this function call:

Value Meaning
BIRD_ERROR_SUCCESS No errors occurred. Call completed successfully
Remarks

The CloseBIRDSystem function will return the tracker to an uninitialized state and release all resources and handles
that were being used. It is recommended that this be called prior to terminating an application that has been using
the tracker in order to prevent memory and/or resource leaks.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

102

3D Guidance API Structures

The following structures are used with your tracker:

SYSTEM_CONFIGURATION
SENSOR_CONFIGURATION
TRANSMITTER_CONFIGURATION
BOARD_CONFIGURATION
ADAPTIVE_PARAMETERS
QUALITY_PARAMETERS

Data record structures:

SHORT_POSITION_RECORD
SHORT_ANGLES_RECORD
SHORT_MATRIX_RECORD
SHORT_QUATERNIONS_RECORD
SHORT_POSITION_ANGLES_RECORD
SHORT_POSITION_MATRIX_RECORD
SHORT_POSITION_QUATERNION_RECORD
DOUBLE_POSITION_RECORD
DOUBLE_ANGLES_RECORD
DOUBLE_MATRIX_RECORD
DOUBLE_QUATERNIONS_RECORD
DOUBLE_POSITION_ANGLES_RECORD
DOUBLE_POSITION_MATRIX_RECORD
DOUBLE_POSITION_QUATERNION_RECORD
DOUBLE_POSITION_TIME_STAMP_RECORD
DOUBLE_ANGLES_TIME_STAMP_RECORD
DOUBLE_MATRIX_TIME_STAMP_RECORD
DOUBLE_QUATERNIONS_TIME_STAMP_RECORD
DOUBLE_POSITION_ANGLES_TIME_STAMP_RECORD
DOUBLE_POSITION_MATRIX_TIME_STAMP_RECORD
DOUBLE_POSITION_QUATERNION_TIME_STAMP_RECORD
DOUBLE_POSITION_TIME_Q_RECORD
DOUBLE_ANGLES_TIME_Q_RECORD
DOUBLE_MATRIX_TIME_Q RECORD
DOUBLE_QUATERNIONS_TIME_Q_RECORD
DOUBLE_POSITION_ANGLES_TIME_Q_RECORD
DOUBLE_POSITION_MATRIX_TIME_Q_RECORD
DOUBLE_POSITION_QUATERNION_TIME_Q_RECORD
SHORT_ALL_RECORD

DOUBLE_ALL_RECORD
DOUBLE_ALL_TIME_STAMP_RECORD
DOUBLE_ALL_TIME_STAMP_Q_RECORD
DOUBLE_ALL_TIME_STAMP_Q_RAW_RECORD
DOUBLE_POSITION_ANGLES_TIME_Q_BUTTON
DOUBLE_POSITION_MATRIX_TIME_Q_BUTTON
DOUBLE_POSITION_QUATERNION_TIME_Q_BUTTON

3DGuidance API Reference

103

SYSTEM_CONFIGURATION

The SYSTEM_CONFIGURATION structure contains the system information.

typedef struct tagSYSTEM CONFIGURATION {

double
double
double
AGC MODE TYPE
int
int
int
int
bool
} SYSTEM CONFIGURATION,

Members

measurementRate

measurementRate;
powerLineFrequency;
maximumRange;

agcMode;

numberBoards;
numberSensors;
numberTransmitters;
transmitterIDRunning;
metric;

*PSYSTEM CONFIGURATION;

Indicates the current measurement rate of the tracking system.

powerLineFrequency

3DGuidance API Reference

Indicates current power line frequency being used to set filter coefficients; Default line frequency is 60 Hz.

maximumRange

Indicates scale factor used by the tracker to report position of sensor with respect to the transmitter. Valid value
of 36, represents full-scale position output in inches.

agcMode

Enumerated constant of the type: AGC_MODE_TYPE. Setting the mode to SENSOR_AGC_ONLY disables the
normal transmitter power level switching.

numberBoards

Indicates the number of tracker cards installed.

numberSensors

Indicates the number of ports available to plug in sensors.

numberTransmitters

Indicates the number of ports available to plug in transmitters.

transmitterIDRunning

Indicates ID of the transmitter that is ON.
Default is -1 (Transmitter OFF).

metric

TRUE = data output in millimeters
FALSE = output in inches (default)

104

3DGuidance API Reference

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

105

3DGuidance API Reference

TRANSMITTER_CONFIGURATION
The TRANSMITTER_CONFIGURATION structure contains an individual transmitter’s information.

Typedef struct tagTRANSMITTER CONFIGURATION {

ULONG serialNumber;

USHORT boardNumber;
USHORT channelNumber;
DEVICE TYPES type;

bool attached;

} TRANSMITTER CONFIGURATION, *PTRANSMITTER CONFIGURATION;

Members

serialNumber
The serial number of the attached transmitter. If no transmitter is attached this value is zero

boardNumber
The id number of the board for this transmitter channel.

channelNumber
The number of the channel on the board where this transmitter is located. Note: Currently boards only support

single transmitters so this value will always be 0.

type
Contains a value of enumerated type DEVICE_TYPES.

attached
Contains a value of type boo/whose value will be frue if there is a transmitter attached otherwise it will be fa/se if
there is no transmitter attached. This value may be frue even if there is a problem with the transmitter. A call
should be made to GetTransmitterStatus to determine the operational state of the transmitter.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

106

3DGuidance API Reference

SENSOR_CONFIGURATION
The SENSOR_CONFIGURATION structure contains an individual sensor’s information.

typedef struct tagSENSOR CONFIGURATION {

ULONG serialNumber;

USHORT boardNumber;
USHORT channelNumber;
DEVICE TYPES type;

bool attached;

} SENSOR CONFIGURATION, *PSENSOR CONFIGURATION;

Members

serialNumber
The serial number of the attached sensor. If no sensor is attached this value is zero

boardNumber
The id number of the board for this sensor channel.

channelNumber
The number of the channel on the board where this sensor is located.

type
Contains a value of enumerated type DEVICE_TYPES.

attached
Contains a value of type boo/whose value will be frue if there is a sensor attached otherwise it will be false if
there is no sensor attached. This value may be true even if there is a problem with the sensor. A call should be
made to GetSensorStatus to determine the operational state of the sensor.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

107

BOARD_CONFIGURATION

The BOARD_CONFIGURATION structure contains an individual board’s information.

typedef struct tagBOARD CONFIGURATION {

ULONG serialNumber;

BOARD TYPES type;

USHORT revision;

USHORT numberTransmitters;
USHORT numberSensors;
USHORT firmwareNumber;
USHORT firmwareRevision;
Char modelString[10];

} BOARD CONFIGURATION, *PBOARD CONFIGURATION;

Members

serialNumber

The serial number of the board.

type

The board type. The type is of the enumeration type BOARD_TYPES.

revision

The board ECO revision number.

numberTransmitters

3DGuidance API Reference

This value denotes the number of available transmitter channels supported by this board.

numberSensors

This value denotes the number of available sensor channels supported by this board.

firmwareNumber

The firmware version of the on-board firmware is a two-part number usually denoted as a number and a fraction,

e.g. 3.85. The integer number part is contained in the firmwareNumber.

firmwareRevision

The firmwareRevision contains the fractional part of the firmware version number.

modelString[10]

Each board has a configuration EEProm. Contained in the EEProm are the calibration values belonging to the
board. Also contained in the EEProm is a “model string” which is used to identify the board type. The modelString
is a 10-character array, which contains the “model string”. The string is not null-terminated. For example the dual
8mm sensor PCIBird card will have the string “6DPCI8MM “. The string is padded with space characters to the

end of the buffer.

Requirements

108

3DGuidance API Reference

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

109

3DGuidance API Reference

ADAPTIVE_PARAMETERS

The ADAPTIVE_PARAMETERS structure contains the adaptive DC filter parameters for an individual sensor channel.

typedef struct tagADAPTIVE PARAMETERS {

USHORT alphaMin[7];
USHORT alphaMax|[7];
USHORT vm[7];

bool alphaOn;

} ADAPTIVE PARAMETERS, *PADAPTIVE PARAMETERS;

Members

alphaMin[7]
The alphaMin values define the lower ends of the adaptive range that the filter constant alpha can assume in the
DC filter, as a function of sensor to transmitter. NOTE: Each of the 7 array positions corresponds to a sensor gain
setting with position 0 corresponding to the lowest gain setting when the sensor is closest to the transmitter.

alphaMax[7]
The alphaMax values define the upper ends of the adaptive range that the filter constant alpha can assume in
the DC filter, as a function of sensor to transmitter. NOTE: Each of the 7 array positions corresponds to a sensor
gain setting with position 0 corresponding to the lowest gain setting when the sensor is closest to the transmitter.

vm[7]
The 7 words that make up the vm array represent the expected noise that the DC filter will measure. By
changing the table values, you can increase or decrease the DC filter’s lag as a function of sensor range from the
transmitter. NOTE: Each of the 7 array positions corresponds to a sensor gain setting with position 0
corresponding to the lowest gain setting when the sensor is closest to the transmitter.

alphaOn
This Boolean value is used to enable or disable the adaptive DC filter.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

110

3DGuidance API Reference

QUALITY_PARAMETERS

The QUALITY_PARAMETERS structure contains the parameters used to setup the distortion detection algorithm for an
individual sensor channel.

typedef struct tagQUALITY PARAMETERS {

USHORT error slope;
USHORT error offset;
USHORT error sensitivity;
USHORT filter alpha;

} QUALITY PARAMETERS, *PQUALITY PARAMETERS;

Members

error_slope
This value is the slope of the inherent system error. It will need to be adjusted depending on the type of hardware
used. The final distortion error delivered to the application is the total system error — inherent system error.

error_offset
This value is the offset of the inherent system error.

error_sensitivity
This value is used to increase or decrease the sensitivity of the algorithm to distortion error. The distortion error is
equal to the total system error — inherent system error. This value is then multiplied by the error_sensitivity.

filter_alpha
The output error value has considerable noise in it. An alpha filter is used to filter the output value. The amount of
filtering applied can be adjusted by setting the filter_alpha value.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

111

3DGuidance API Reference

VPD_COMMAND_PARAMETER

The VPD_COMMAND_PARAMETER structure contains the parameters used to read and write to the Vital Product Data
(VPD) storage areas. 128-byte VPD storage areas are provided for the user in the EEPROMs of the electronics unit,
transmitter, sensors and preamps. Using the corresponding SetXXXXParameter and GetXXXXParameter commands it is
possible to read and write individual bytes within the VPD storage area.

typedef struct tagVPD COMMAND PARAMETER {
USHORT address;
UCHAR value;

} VPD_COMMAND PARAMETER;

Members

address
This value is the 0-based address of a byte within the VPD that is the target for either a read or a write operation.

value
This parameter contains the actual byte value to be written to the VPD location specified by address during a write
operation (SetXXXXParameter) or it is a location where the value read from the VPD will be placed during a read
operation (GetXXXXParameter).

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

112

BOARD_REVISIONS

3DGuidance API Reference

The BOARD_REVISIONS structure contains the parameters used to return the revisions of the firmware in the 3DGuidance

board.

typedef struct tagBOARD REVISIONS {

USHORT boot loader sw_number;
USHORT boot loader sw revision;
USHORT mdsp_sw_number;

USHORT mdsp sw_revision;
USHORT nondipole sw number;
USHORT nondipole sw revision;
USHORT fivedof sw_number;
USHORT fivedof sw revision;
USHORT sixdof sw number;
USHORT sixdof sw revision;
USHORT dipole sw number;
USHORT dipole sw revision;

} BOARD REVISIONS;

Members

boot_loader_sw_number
Major revision number for the boot loader.

boot_loader_sw_revision
Minor revision number for the boot loader.

mdsp_sw_number

Major revision number for the acquisition DSP.

mdsp_sw_revision

Minor revision number for the acquisition DSP.

nondipole_sw_number

Major revision number for the non-dipole DSP.

nondipole_sw_revision

Minor revision number for the non-dipole DSP.

fivedof_sw_number
Major revision number for the 5DOF DSP.

fivedof_sw_revision
Minor revision number for the 5DOF DSP.

sixdof_sw_number
Major revision number for the 6DOF DSP.

sixdof_sw_revision
Minor revision number for the 6DOF DSP.

dipole_sw_number
Major revision number for the dipole DSP.

dipole_sw_revision
Minor revision number for the dipole DSP.

Requirements

113

3DGuidance API Reference

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

114

3DGuidance API Reference

SHORT_POSITION_RECORD
The SHORT_POSITION_RECORD structure contains position information only in 16-bit signed integer format.

typedef struct tagSHORT POSITION {

short L
short yi
short %8

} SHORT POSITION RECORD, *PSHORT POSITION RECORD;

Members

X
This is the x position value of a 3-axis coordinate position system. The value is a short integer. In order to
determine the true position it is necessary to divide by 32768 (8000 hex) and multiply by the maximum range.

y
This is the y position value of a 3-axis coordinate position system. The value is a short integer. In order to
determine the true position it is necessary to divide by 32768 (8000 hex) and multiply by the maximum range.

This is the z position value of a 3-axis coordinate position system. The value is a short integer. In order to
determine the true position it is necessary to divide by 32768 (8000 hex) and multiply by the maximum range.

Remarks

The X, Y and Z values vary between the binary equivalent of +/- maximum range. The positive X, Y and Z
directions are shown below.

Transmitter

Sensor

Measurement Reference Frame (Standard Transmitter)

115

3DGuidance API Reference

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

116

3DGuidance API Reference

SHORT_ANGLES_RECORD

The SHORT_ANGLES_RECORD structure contains Euler angle information only in 16-bit signed integer format.

typedef struct tagSHORT ANGLES {

short a;
short e;
short b

} SHORT ANGLES RECORD, *PSHORT ANGLES RECORD;

Members

a
This value is the azimuth angle of the sensor. The value is a short integer. In order to determine the true angle it
is necessary to divide by 32768 (8000 hex) and multiply by 180 degrees.

This value is the elevation angle of the sensor. The value is a short integer. In order to determine the true angle it
is necessary to divide by 32768 (8000 hex) and multiply by 180 degrees.

This value is the roll angle of the sensor. The value is a short integer. In order to determine the true angle it is
necessary to divide by 32768 (8000 hex) and multiply by 180 degrees.

Remarks

In the ANGLES mode, the tracker outputs the orientation angles of the sensor with respect to the transmitter.
The orientation angles are defined as rotations about the Z, Y, and X axes of the sensor. These angles are called
Zang, Yang, and Xang or, in Euler angle nomenclature, Azimuth, Elevation, and Roll.

Zang (Azimuth) takes on values between the binary equivalent of +/- 180 degrees. Yang (Elevation) takes on
values between +/- 90 degrees, and Xang (Roll) takes on values between +/- 180 degrees. As Yang (Elevation)
approaches +/- 90 degrees, the Zang (Azimuth) and Xang (Roll) become very noisy and exhibit large errors. At
90 degrees the Zang (Azimuth) and Xang (Roll) become undefined. This behavior is not a limitation of the tracker
- it is an inherent characteristic of these Euler angles. If you need a stable representation of the sensor
orientation at high Elevation angles, use the MATRIX output mode.

The scaling of all angles is full scale = 180 degrees. That is, +179.99 deg = 7FFF Hex, 0 deg = 0 Hex, -180.00
deg = 8000 Hex.

Angle information is 0 when sensor saturation occurs.

To convert the numbers received into angles in degrees, first multiply by 180 and finally divide the number by
32768 to get the angle. The equation should look something like:

Angle = (signed int * 180) / 32768;

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

117

3DGuidance API Reference

See Also

118

3DGuidance API Reference

SHORT_MATRIX_RECORD

The SHORT_MATRIX_RECORD structure contains only the 3x3 rotation matrix ‘S’ in 16-bit signed integer format.

typedef struct tagSHORT MATRIX({
short s[31([3];
} SHORT MATRIX RECORD, *PSHORT MATRIX RECORD;

Members
s[31[3]

This is a 3x3 array of values. Each value is delivered as a 16-bit signed integer. In order to convert each value to a
number in the range +1 -> -1 it is necessary to divide each value by 32768 (8000 hex). The signed integer has a

range of +32767 -> -32768 which when divided by 32768 will give a fractional number in the range 0.99997 -> -
1.00000.

Remarks

The MATRIX mode outputs the 9 elements of the rotation matrix that define the orientation of the sensor's X, Y,
and Z axes with respect to the transmitter's X, Y, and Z axes. If you want a three-dimensional image to follow the
rotation of the sensor, you must multiply your image coordinates by this output matrix.

The nine elements of the output matrix are defined generically by:

M(1,1) M(1,2) M(1,3)
M(2,1) M(2,2) M(2,3)

M(3,1) M(3,2) M(3,3)

Or in terms of the rotation angles about each axis where Z = Zang, Y = Yang and X = Xang:

COS(Y)*COS(2) COS(Y)*SIN(Z) -SIN(Y)

~(COS(X)*SIN(Z)) (COS(X)*COS(2))
+(SIN(X)*SIN(Y)*COS(Z)) +(SIN(X)*SIN(Y)*SIN(Z)) SIN(X)*COS(Y)

(SIN(X)*SIN(Z)) -(SIN(X)*COS(2))
+(COS(X)*SIN(Y)*COS(Z)) +(COS(X)*SIN(Y)*SIN(Z)) COS(X)*COS(Y)

Or in Euler angle notation, where R = Roll, E = Elevation, A = Azimuth:

119

3DGuidance API Reference

COS(E)*COS(A) COS(E)*SIN(A) -SIN(E)

-(COS(R)*SIN(A)) (COS(R)*COS(A))
+(SIN(R)*SIN(E)*COS(A)) +(SIN(R)*SIN(E)*SIN(A)) SIN(R)*COS(E)

(SIN(R)*SIN(A)) -(SIN(R)*COS(A))
+(COS(R)*SIN(E)*COS(A)) +(COS(R)*SIN(E)*SIN(A)) COS(R)*COS(E)

The matrix elements take values between the binary equivalents of +.99996 and -1.0.

Element scaling is +.99996 = 7FFF Hex, 0 = 0 Hex, and -1.0 = 8000 Hex.

Matrix information is 0 when sensor saturation occurs.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

120

3DGuidance API Reference

SHORT_QUATERNIONS_RECORD
The SHORT_QUATERNIONS_RECORD structure contains only the 4 quaternion values in 16-bit signed integer format.

typedef struct tagSHORT QUATERNIONS {
short ql4];
} SHORT QUATERNIONS RECORD, *PSHORT QUATERNIONS RECORD;

Members

q[4]

This is an array of 4 quaternion values. Each value is delivered as a 16-bit signed integer. In order to convert each
value to a nhumber in the range +1 -> -1 it is necessary to divide each value by 32768 (8000 hex). The signed
integer has a range of +32767 -> -32768 which when divided by 32768 will give a fractional number in the range
0.99997 -> -1.00000.

Remarks
In the QUATERNION mode, the Tracker outputs the four quaternion parameters that describe the orientation of
the sensor with respect to the transmitter. The quaternion, qq, 01, 02, and qs where (q is the scalar component,
have been extracted from the MATRIX output using the algorithm described in "Quaternion from Rotation Matrix"
by Stanley W. Shepperd, Journal of Guidance and Control, Vol. 1, May-June 1978, pp. 223-4.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

121

3DGuidance API Reference

SHORT_POSITION_ANGLES_RECORD

The SHORT_POSITION_ANGLES_RECORD structure contains position and angles information in 16-bit signed integer
format.

typedef struct tagSHORT POSITION ANGLES {

short S
short yi
short %8
short a;
short e;
short L

} SHORT POSITION ANGLES RECORD, *PSHORT POSITION ANGLES RECORD;

Members

X
This is the x position value of a 3-axis coordinate position system. The value is a short integer. In order to
determine the true position it is necessary to divide by 32768 (8000 hex) and multiply by the maximum range.

y
This is the y position value of a 3-axis coordinate position system. The value is a short integer. In order to

determine the true position it is necessary to divide by 32768 (8000 hex) and multiply by the maximum range.

z
This is the z position value of a 3-axis coordinate position system. The value is a short integer. In order to
determine the true position it is necessary to divide by 32768 (8000 hex) and multiply by the maximum range.

a
This value is the azimuth angle of the sensor. The value is a short integer. In order to determine the true angle it
is necessary to divide by 32768 (8000 hex) and multiply by 180 degrees.

e
This value is the elevation angle of the sensor. The value is a short integer. In order to determine the true angle it
is necessary to divide by 32768 (8000 hex) and multiply by 180 degrees.

r
This value is the roll angle of the sensor. The value is a short integer. In order to determine the true angle it is
necessary to divide by 32768 (8000 hex) and multiply by 180 degrees.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
SHORT_POSITION_RECORD, SHORT_POSITION_ANGLES_RECORD

122

3DGuidance API Reference

SHORT_POSITION_MATRIX_RECORD

The SHORT_POSITION_MATRIX_RECORD structure contains position and matrix information in 16-bit signed integer
format.

typedef struct tagSHORT POSITION MATRIX{

short S
short vi
short %8
short s[3][3];

} SHORT POSITION MATRIX RECORD, *PSHORT POSITION MATRIX RECORD;

Members

X
This is the x position value of a 3-axis coordinate position system. The value is a short integer. In order to
determine the true position it is necessary to divide by 32768 (8000 hex) and multiply by the maximum range.

y
This is the y position value of a 3-axis coordinate position system. The value is a short integer. In order to

determine the true position it is necessary to divide by 32768 (8000 hex) and multiply by the maximum range.

z
This is the z position value of a 3-axis coordinate position system. The value is a short integer. In order to
determine the true position it is necessary to divide by 32768 (8000 hex) and multiply by the maximum range.

s[31[3]

This is a 3x3 array of values. Each value is delivered as a 16-bit signed integer. In order to convert each value to a
number in the range +1 -> -1 it is necessary to divide each value by 32768 (8000 hex). The signed integer has a
range of +32767 -> -32768 which when divided by 32768 will give a fractional number in the range 0.99997 -> -
1.00000.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
SHORT_POSITION_RECORD, SHORT_MATRIX_RECORD

123

3DGuidance API Reference

SHORT_POSITION_QUATERNION_RECORD

The SHORT_POSITION_QUATERNION_RECORD structure contains position and quaternion information in 16-bit
signed integer format.

typedef struct tagSHORT POSITION QUATERNION {

short X;
short Vi
short 73
short s[3]1[3];

} SHORT POSITION QUATERNION RECORD, *PSHORT POSITION QUATERNION RECORD;

Members

X
This is the x position value of a 3-axis coordinate position system. The value is a short integer. In order to
determine the true position it is necessary to divide by 32768 (8000 hex) and multiply by the maximum range.

y
This is the y position value of a 3-axis coordinate position system. The value is a short integer. In order to

determine the true position it is necessary to divide by 32768 (8000 hex) and multiply by the maximum range.

z
This is the z position value of a 3-axis coordinate position system. The value is a short integer. In order to
determine the true position it is necessary to divide by 32768 (8000 hex) and multiply by the maximum range.

q[4]

This is an array of 4 quaternion values. Each value is delivered as a 16-bit signed integer. In order to convert each
value to a number in the range +1 -> -1 it is necessary to divide each value by 32768 (8000 hex). The signed
integer has a range of +32767 -> -32768 which when divided by 32768 will give a fractional number in the range
0.99997 -> -1.00000.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
SHORT_POSITION_RECORD, SHORT_QUATERNIONS_RECORD

124

3DGuidance API Reference

DOUBLE_POSITION_RECORD

The DOUBLE_POSITION_RECORD structure contains position information only in double floating point format.

typedef struct tagDOUBLE POSITION({

double L
double yi
double z;

} DOUBLE POSITION RECORD, *PDOUBLE POSITION RECORD;

Members

X
This is the x position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

y
This is the y position value of a 3-axis coordinate position system. The position will be reported in inches unless

the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

z
This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

Remarks

The X, Y and Z values vary between the double precision floating point equivalent of +/- maximum range.

125

3DGuidance API Reference

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

126

3DGuidance API Reference

DOUBLE_ANGLES_RECORD

The DOUBLE_ANGLES_RECORD structure contains Euler angles information only in double floating point format.

typedef struct tagDOUBLE ANGLES {

double a;
double e;
double r;

} DOUBLE ANGLES RECORD, *PDOUBLE ANGLES RECORD;

Members

a
This value is the azimuth angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

e
This value is the elevation angle of the sensor. The value is reported in degrees with a range of +89.995 to -
90.000 degrees.

B
This value is the roll angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

Remarks

In the DOUBLE ANGLES mode, the Tracker outputs the orientation angles of the sensor with respect to the
transmitter using double precision floating point format. The orientation angles are defined as rotations about the
Z, Y, and X axes of the sensor. These angles are called Zang, Yang, and Xang or, in Euler angle nomenclature,
Azimuth, Elevation, and Roll.

Zang (Azimuth) takes on values between the binary equivalent of +/- 180 degrees. Yang (Elevation) takes on
values between +/- 90 degrees, and Xang (Roll) takes on values between +/- 180 degrees. As Yang (Elevation)
approaches +/- 90 degrees, the Zang (Azimuth) and Xang (Roll) become very noisy and exhibit large errors. At
90 degrees the Zang (Azimuth) and Xang (Roll) become undefined. This behavior is not a limitation of the Tracker
- it is an inherent characteristic of these Euler angles. If you need a stable representation of the sensor
orientation at high Elevation angles, use the MATRIX output mode.

The scaling of all angles is full scale = 180 degrees. That is, +179.99 deg = 7FFF Hex, 0 deg = 0 Hex, -180.00
deg = 8000 Hex.

Angle information is 0 when sensor saturation occurs.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

127

3DGuidance API Reference

DOUBLE_MATRIX_RECORD
The DOUBLE_MATRIX_RECORD structure contains only a 3x3 rotation matrix in double floating point format.

typedef struct tagDOUBLE MATRIX{
double s[3][3]:
} DOUBLE MATRIX RECORD, *PDOUBLE MATRIX RECORD;

Members

s[31[3]
This is a 3x3 array of values. Each value is in the range +0.99997 to —1.00000

Remarks

The MATRIX mode outputs the 9 elements of the rotation matrix that define the orientation of the sensor's X, Y,
and Z axes with respect to the transmitter's X, Y, and Z axes using double precision floating point format. If you
want a three-dimensional image to follow the rotation of the sensor, you must multiply your image coordinates by
this output matrix.

The nine elements of the output matrix are defined generically by:

M(1,1) M(1,2) M(1,3)

M(2,1) M(2,2) M(2,3)

M(3,1) M(3,2) M(3,3)

Or in terms of the rotation angles about each axis where Z = Zang, Y = Yang and X = Xang:

Or in Euler angle notation, where R = Roll, E = Elevation, A = Azimuth:

COS(E)*COS(A) COS(E)*SIN(A) -SIN(E)

-(COS(R)*SIN(A)) (COS(R)*COS(A))
+(SIN(R)*SIN(E)*COS(A)) +(SIN(R)*SIN(E)*SIN(A)) SIN(R)*COS(E)

(SIN(R)*SIN(A)) ~(SIN(R)*COS(A))
+(COS(R)*SIN(E)*COS(A)) +(COS(R)*SIN(E)*SIN(A)) COS(R)*COS(E)

The matrix elements take values between the binary equivalents of +.99996 and -1.0.
Element scaling is +.99996 = 7FFF Hex, 0 = 0 Hex, and -1.0 = 8000 Hex.

Matrix information is O when sensor saturation occurs.

128

3DGuidance API Reference

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

129

3DGuidance API Reference

DOUBLE_QUATERNIONS_RECORD

The DOUBLE_QUATERNIONS_RECORD structure contains only an array of 4 quaternion values in double floating point
format.

typedef struct tagDOUBLE QUATERNIONS {

double ql4];
} DOUBLE_QUATERNI ON S_RECORD p = PDOUBLE_QUATERN I ONS_RECORD g

Members

q[4]
This is an array of 4 quaternion values. Each value is in the range +0.99997 to —1.00000

Remarks

In the QUATERNION mode, the Tracker outputs the four quaternion parameters that describe the orientation of
the sensor with respect to the transmitter using double precision floating point format. The quaternions, o, g1,
gz, and gz where qo is the scalar component, have been extracted from the MATRIX output using the algorithm
described in "Quaternion from Rotation Matrix" by Stanley W. Shepperd, Journal of Guidance and Control, Vol. 1,
May-June 1978, pp. 223-4. Shepperd, when defining his quaternion conversion, uses the convention that q =
cos(a/2)-sin(a/2)*u, where . is the angle of rotation and u is the axis of rotation, i.e., the vector part of the
quaternion. Some sources use the convention that q = cos(a/2)+sin(a/2)*u. To convert from one convention to
the other, invert the sign on the vector portion of the quaternion: g1, g2, g3.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

130

3DGuidance API Reference

DOUBLE_POSITION_ANGLES_RECORD

The DOUBLE_POSITION_ANGLES_RECORD structure contains position and Euler angle information in double floating
point format.

typedef struct tagDOUBLE POSITION ANGLES {

double 2P
double 2
double 78
double a;
double e;
double g

} DOUBLE POSITION ANGLES RECORD, *PDOUBLE POSITION ANGLES RECORD;

Members

X

This is the x position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

y
This is the y position value of a 3-axis coordinate position system. The position will be reported in inches unless

the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

z

This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

a
This value is the azimuth angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

e
This value is the elevation angle of the sensor. The value is reported in degrees with a range of +89.995 to -
90.000 degrees.

r
This value is the roll angle of the sensor. The value is reported in degrees with a range of +179.995 to -180.000
degrees.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

DOUBLE_POSITION_RECORD, DOUBLE_ANGLES_RECORD

131

3DGuidance API Reference

DOUBLE_POSITION_MATRIX_RECORD

The DOUBLE_POSITION_MATRIX_RECORD structure contains position and matrix information in double floating point
format.

typedef struct tagDOUBLE POSITION MATRIX({

double b
double 2
double %8
double s[311[31;

} DOUBLE POSITION MATRIX RECORD, *PDOUBLE POSITION MATRIX RECORD;

Members

X
This is the x position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

y
This is the y position value of a 3-axis coordinate position system. The position will be reported in inches unless

the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

z
This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

s[3][3]
This is a 3x3 array of values. Each value is in the range +0.99997 to —1.00000

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
DOUBLE_POSITION_RECORD, DOUBLE_MATRIX_RECORD

132

3DGuidance API Reference

DOUBLE_POSITION_QUATERNION_RECORD

The DOUBLE_POSITION_QUATERNION_RECORD structure contains position and quaternion information in double
floating point format.

typedef struct tagDOUBLE POSITION QUATERNION {

double Y
double 2
double %8
double ql4];

} DOUBLE POSITION QUATERNION RECORD, *PDOUBLE POSITION QUATERNION RECORD;

Members

X
This is the x position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

y
This is the y position value of a 3-axis coordinate position system. The position will be reported in inches unless

the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

z
This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

q[4]
This is an array of 4 quaternion values. Each value is in the range +0.99997 to —1.00000

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
DOUBLE_POSITION_RECORD, DOUBLE_QUATERNIONS_RECORD

133

3DGuidance API Reference

DOUBLE_POSITION_TIME_STAMP_RECORD

The DOUBLE_POSITION_TIME_STAMP_RECORD structure contains position information only in double floating point
format.

typedef struct tagDOUBLE POSITION TIME STAMP{

double b
double 2
double %8
double time;

} DOUBLE POSITION TIME STAMP RECORD, *PDOUBLE POSITION TIME STAMP RECORD;

Members

X
This is the x position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

y
This is the y position value of a 3-axis coordinate position system. The position will be reported in

inches unless the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the
position will be reported in millimeters.

z
This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

Requirements
Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
DOUBLE_POSITION_RECORD

134

3DGuidance API Reference

DOUBLE_ANGLES_TIME_STAMP_RECORD

The DOUBLE_ANGLES_TIME_STAMP_RECORD structure contains Euler angles information only in double floating point
format.

typedef struct tagDOUBLE ANGLES TIME STAMP{

double ar
double e;
double g
double time;

} DOUBLE ANGLES TIME STAMP RECORD, *PDOUBLE ANGLES TIME STAMP RECORD;

Members

a
This value is the azimuth angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

e
This value is the elevation angle of the sensor. The value is reported in degrees with a range of +89.995 to -
90.000 degrees.

r
This value is the roll angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
DOUBLE_ANGLES_RECORD

135

3DGuidance API Reference

DOUBLE_MATRIX_TIME_STAMP_RECORD

The DOUBLE_MATRIX_TIME_STAMP_RECORD structure contains only a 3x3 rotation matrix in double floating point
format.

typedef struct tagDOUBLE MATRIX TIME STAMP {
double s[311[3];
double time;
} DOUBLE MATRIX TIME STAMP RECORD, *PDOUBLE MATRIX TIME STAMP RECORD;

Members

s[3][3]
This is a 3x3 array of values. Each value is in the range +0.99997 to —1.00000

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
DOUBLE_MATRIX_RECORD

136

3DGuidance API Reference

DOUBLE_QUATERNIONS_TIME_STAMP_RECORD

The DOUBLE_QUATERNIONS_TIME_STAMP_RECORD structure contains only an array of 4 quaternion values in
double floating point format.

typedef struct tagDOUBLE QUATERNIONS TIME STAMP {
double al4];
double time;
} DOUBLE QUATERNIONS TIME STAMP RECORD, *PDOUBLE QUATERNIONS TIME STAMP RECORD;

Members

q[4]
This is an array of 4 quaternion values. Each value is in the range +0.99997 to —1.00000

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
DOUBLE_QUATERNIONS_RECORD

137

3DGuidance API Reference

DOUBLE_POSITION_ANGLES_TIME_STAMP_RECORD

The DOUBLE_POSITION_ANGLES_TIME_STAMP_RECORD structure contains position and Euler angle information in
double floating point format.

typedef struct tagDOUBLE POSITION ANGLES TIME STAMP {

double Y
double 2
double %8
double a;
double e;
double i
double time;

} DOUBLE POSITION ANGLES TIME STAMP RECORD, *PDOUBLE POSITION ANGLES TIME STAMP RECORD;

Members

X

This is the x position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

y
This is the y position value of a 3-axis coordinate position system. The position will be reported in inches unless

the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

z

This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

a
This value is the azimuth angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

e
This value is the elevation angle of the sensor. The value is reported in degrees with a range of +89.995 to -
90.000 degrees.

r
This value is the roll angle of the sensor. The value is reported in degrees with a range of +179.995 to -180.000
degrees.

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

Requirements
Windows NT/2000: Requires Windows 2000 or later.

138

3DGuidance API Reference

Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

DOUBLE_POSITION_RECORD, DOUBLE_ANGLES_RECORD

139

3DGuidance API Reference

DOUBLE_POSITION_MATRIX_TIME_STAMP_RECORD

The DOUBLE_POSITION_MATRIX_TIME_STAMP_RECORD structure contains position and matrix information in
double floating point format.

typedef struct tagDOUBLE POSITION MATRIX TIME STAMP{

double P
double 2
double 78
double s[31([3];
double time;

} DOUBLE POSITION MATRIX TIME STAMP RECORD, *PDOUBLE POSITION MATRIX TIME STAMP RECORD;

Members

X

This is the x position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

Yy

This is the y position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

z

This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

s[31[3]
This is a 3x3 array of values. Each value is in the range +0.99997 to —1.00000

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

DOUBLE_POSITION_RECORD, DOUBLE_MATRIX_RECORD

140

3DGuidance API Reference

DOUBLE_POSITION_QUATERNION_TIME_STAMP_RECORD

The DOUBLE_POSITION_QUATERNION_TIME_STAMP_RECORD structure contains position and quaternion
information in double floating point format.

typedef struct tagDOUBLE POSITION QUATERNION TIME STAMP {

double L
double vi
double %8
double qld];
double time;
} DOUBLE POSITION QUATERNION TIME STAMP RECORD,

*PDOUBLE POSITION QUATERNION TIME STAMP RECORD;

Members

X

This is the x position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

Yy

This is the y position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

z

This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

q[4]
This is an array of 4 quaternion values. Each value is in the range +0.99997 to —1.00000

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
DOUBLE_POSITION_RECORD, DOUBLE_QUATERNIONS_RECORD

141

3DGuidance API Reference

DOUBLE_POSITION_TIME_Q RECORD

The DOUBLE_POSITION_TIME_Q_RECORD structure contains position, timestamp and distortion information in double
floating point format.

typedef struct tagDOUBLE POSITION TIME Of

double L
double vi
double %8
double time;
USHORT quality;

} DOUBLE POSITION TIME QO RECORD, *PDOUBLE POSITION TIME Q RECORD;

Members

X

This is the x position value of a 3-axis coordinate position system. The position will be reported in
inches unless the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the
position will be reported in millimeters.

y
This is the y position value of a 3-axis coordinate position system. The position will be reported in

inches unless the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the
position will be reported in millimeters.

z
This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless

the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

quality

The quality value is a 16-bit unsigned integer. A very small quality number indicates no or minimal position and
orientation errors due to distortion of the transmitter field depending on how sensitive you have set the error
indicator. A large quality number indicates maximum error for the sensitivity level selected.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

142

3DGuidance API Reference

See Also
DOUBLE_POSITION_RECORD

143

3DGuidance API Reference

DOUBLE_ANGLES _TIME_Q_RECORD

The DOUBLE_ANGLES TIME_Q_RECORD structure contains Euler angles, timestamp and distortion information in
double floating point format.

typedef struct tagDOUBLE ANGLES TIME Qf

double a;
double e;
double g
double time;
USHORT quality;

} DOUBLE ANGLES TIME Q RECORD, *PDOUBLE ANGLES TIME Q RECORD;

Members

a
This value is the azimuth angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

e
This value is the elevation angle of the sensor. The value is reported in degrees with a range of +89.995 to -
90.000 degrees.

r
This value is the roll angle of the sensor. The value is reported in degrees with a range of +179.995 to -180.000
degrees.

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

quality

The quality value is a 16-bit unsigned integer. A very small quality number indicates no or minimal position and
orientation errors due to distortion of the transmitter field depending on how sensitive you have set the error
indicator. A large quality number indicates maximum error for the sensitivity level selected.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
DOUBLE ANGLES RECORD

144

3DGuidance API Reference

DOUBLE_MATRIX_TIME_Q RECORD

The DOUBLE_MATRIX_TIME_Q_RECORD structure contains a 3 x 3 rotation matrix, timestamp and distortion
information in double floating point format.

typedef struct tagDOUBLE MATRIX TIME Qf{

double s[31[3];
double time;
USHORT quality;

} DOUBLE MATRIX TIME Q RECORD, *PDOUBLE MATRIX TIME Q RECORD;

Members

s[3][3]
This is a 3x3 array of values. Each value is in the range +0.99997 to —1.00000

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

quality

The quality value is a 16-bit unsigned integer. A very small quality number indicates no or minimal position and
orientation errors due to distortion of the transmitter field depending on how sensitive you have set the error
indicator. A large quality number indicates maximum error for the sensitivity level selected.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
DOUBLE_MATRIX_RECORD

145

3DGuidance API Reference

DOUBLE_QUATERNIONS_TIME_Q_RECORD

The DOUBLE_QUATERNIONS_TIME_Q_ RECORD structure contains an array of 4 quaternion values, timestamp and
distortion information in double floating point format.

typedef struct tagDOUBLE QUATERNIONS TIME Qf{

double |45
double time;
USHORT quality;

} DOUBLE QUATERNIONS TIME Q RECORD, *PDOUBLE QUATERNIONS TIME Q RECORD;

Members

q[4]
This is an array of 4 quaternion values. Each value is in the range +0.99997 to —1.00000

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

quality

The quality value is a 16-bit unsigned integer. A very small quality number indicates no or minimal position and
orientation errors due to distortion of the transmitter field depending on how sensitive you have set the error
indicator. A large quality number indicates maximum error for the sensitivity level selected.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
DOUBLE _QUATERNIONS RECORD

146

3DGuidance API Reference

DOUBLE_POSITION_ANGLES_TIME_Q RECORD

The DOUBLE_POSITION_ANGLES_TIME_Q_RECORD structure contains position Euler angle, timestamp and distortion
information in double floating point format.

typedef struct tagDOUBLE POSITION ANGLES TIME Qf{

double 22
double 2
double %5
double a;
double e;
double g
double time;
USHORT quality;

} DOUBLE POSITION ANGLES TIME Q RECORD, *PDOUBLE POSITION ANGLES TIME QO RECORD;

Members

X
This is the x position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

y
This is the y position value of a 3-axis coordinate position system. The position will be reported in inches unless

the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

z

This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

a
This value is the azimuth angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

e
This value is the elevation angle of the sensor. The value is reported in degrees with a range of +89.995 to -
90.000 degrees.

r
This value is the roll angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

147

3DGuidance API Reference

quality
The quality value is a 16-bit unsigned integer. A very small quality number indicates no or minimal position and
orientation errors due to distortion of the transmitter field depending on how sensitive you have set the error

indicator. A large quality number indicates maximum error for the sensitivity level selected.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
DOUBLE_POSITION_RECORD, DOUBLE_ANGLES_RECORD

148

3DGuidance API Reference

DOUBLE_POSITION_MATRIX_TIME_Q_RECORD

The DOUBLE_POSITION_MATRIX_TIME_Q_RECORD structure contains position, matrix, timestamp and distortion
information in double floating point format.

typedef struct tagDOUBLE POSITION MATRIX TIME Of

double L
double vi
double %8
double s[311[31;:
double time;
USHORT quality;

} DOUBLE POSITION MATRIX TIME Q RECORD, *PDOUBLE POSITION MATRIX TIME Q RECORD;

Members

X

This is the x position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

Yy

This is the y position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

z

This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

s[3][3]
This is a 3x3 array of values. Each value is in the range +0.99997 to —1.00000

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

quality

The quality value is a 16-bit unsigned integer. A very small quality number indicates no or minimal position and
orientation errors due to distortion of the transmitter field depending on how sensitive you have set the error
indicator. A large quality number indicates maximum error for the sensitivity level selected.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

149

3DGuidance API Reference

See Also

DOUBLE_POSITION_RECORD, DOUBLE_MATRIX_RECORD

150

3DGuidance API Reference

DOUBLE_POSITION_QUATERNION_TIME_Q _RECORD

The DOUBLE_POSITION_QUATERNION_TIME_Q_ RECORD structure contains position, quaternion, timestamp and
distortion information in double floating point format.

typedef struct tagDOUBLE POSITION QUATERNION TIME Of

double L
double vi
double %8
double qld];
double time;
USHORT quality;

} DOUBLE POSITION QUATERNION TIME Q RECORD, *PDOUBLE POSITION QUATERNION TIME QO RECORD;

Members

X
This is the x position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

y
This is the y position value of a 3-axis coordinate position system. The position will be reported in inches unless

the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

z
This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

q[4]
This is an array of 4 quaternion values. Each value is in the range +0.99997 to —1.00000

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

quality

The quality value is a 16-bit unsigned integer. A very small quality number indicates no or minimal position and
orientation errors due to distortion of the transmitter field depending on how sensitive you have set the error
indicator. A large quality number indicates maximum error for the sensitivity level selected.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

151

3DGuidance API Reference

See Also

DOUBLE_POSITION_RECORD, DOUBLE_QUATERNIONS_RECORD

152

3DGuidance API Reference

SHORT_ALL_RECORD

The SHORT_ALL_RECORD structure contains position, Euler angles, rotation matrix and quaternion information in 16-bit
signed integer format.

typedef struct tagSHORT ALL{

short S

short vi

short %8

short a;

short e;

short L

short s[311[3];
short ql4]:

} SHORT ALL RECORD, *PSHORT ALL RECORD;

Members

X
This is the x position value of a 3-axis coordinate position system. The value is a short integer. In order to
determine the true position it is necessary to divide by 32768 (8000 hex) and multiply by the maximum range.

y
This is the y position value of a 3-axis coordinate position system. The value is a short integer. In order to

determine the true position it is necessary to divide by 32768 (8000 hex) and multiply by the maximum range.

z
This is the z position value of a 3-axis coordinate position system. The value is a short integer. In order to
determine the true position it is necessary to divide by 32768 (8000 hex) and multiply by the maximum range.

a
This value is the azimuth angle of the sensor. The value is a short integer. In order to determine the true angle it
is necessary to divide by 32768 (8000 hex) and multiply by 180 degrees.

e
This value is the elevation angle of the sensor. The value is a short integer. In order to determine the true angle it
is necessary to divide by 32768 (8000 hex) and multiply by 180 degrees.

r
This value is the roll angle of the sensor. The value is a short integer. In order to determine the true angle it is
necessary to divide by 32768 (8000 hex) and multiply by 180 degrees.

s[31[3]

This is a 3x3 array of values. Each value is delivered as a 16-bit signed integer. In order to convert each value to a
number in the range +1 -> -1 it is necessary to divide each value by 32768 (8000 hex). The signed integer has a
range of +32767 -> -32768 which when divided by 32768 will give a fractional number in the range 0.99997 -> -
1.00000.

a[4]

153

3DGuidance API Reference

This is an array of 4 quaternion values. Each value is delivered as a 16-bit signed integer. In order to convert each
value to a number in the range +1 -> -1 it is necessary to divide each value by 32768 (8000 hex). The signed
integer has a range of +32767 -> -32768 which when divided by 32768 will give a fractional number in the range
0.99997 -> -1.00000.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

SHORT_ANGLES_RECORD, SHORT_MATRIX_RECORD, SHORT_POSITION_RECORD, SHORT_QUATERNIONS_RECORD

154

3DGuidance API Reference

DOUBLE_ALL_RECORD

The DOUBLE_ALL_RECORD structure contains position, Euler angles, rotation matrix and quaternion information in double
floating point format.

typedef struct tagDOUBLE ALL{

double Y
double 2
double %8
double a;
double e;
double i
double s[311[3];
double qlé];

} DOUBLE ALL RECORD, *PDOUBLE ALL RECORD;

Members

X
This is the x position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

y
This is the y position value of a 3-axis coordinate position system. The position will be reported in inches unless

the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

z
This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

a
This value is the azimuth angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

e
This value is the elevation angle of the sensor. The value is reported in degrees with a range of +89.995 to -
90.000 degrees.

r
This value is the roll angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

s[3][3]
This is a 3x3 array of values. Each value is in the range +0.99997 to —1.00000

qal4]
This is an array of 4 quaternion values. Each value is in the range +0.99997 to —1.00000

155

3DGuidance API Reference

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
DOUBLE_ANGLES_RECORD, DOUBLE_MATRIX_RECORD, DOUBLE_POSITION_RECORD, DOUBLE_QUATERNIONS_RECORD

156

3DGuidance API Reference

DOUBLE_ALL_TIME_STAMP_RECORD

The DOUBLE_ALL_TIME_STAMP_RECORD structure contains position, Euler angles, rotation matrix, quaternion and
timestamp information in double floating point format.

typedef struct tagDOUBLE ALL TIME STAMP{

double Y
double 2
double %8
double a;
double e;
double i
double s[311[3];
double qlé];
double time;

} DOUBLE ALL TIME STAMP RECORD, *PDOUBLE ALL TIME STAMP RECORD;

Members

X
This is the x position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

y
This is the y position value of a 3-axis coordinate position system. The position will be reported in inches unless

the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

z

This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

a
This value is the azimuth angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

e
This value is the elevation angle of the sensor. The value is reported in degrees with a range of +89.995 to -
90.000 degrees.

r
This value is the roll angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

s[3][3]
This is a 3x3 array of values. Each value is in the range +0.99997 to —1.00000

q[4]
This is an array of 4 quaternion values. Each value is in the range +0.99997 to —1.00000

157

3DGuidance API Reference

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
DOUBLE_ANGLES_RECORD, DOUBLE_MATRIX_RECORD, DOUBLE_POSITION_RECORD,
DOUBLE_QUATERNIONS_RECORD

158

3DGuidance API Reference

DOUBLE_ALL_TIME_STAMP_Q_RECORD

The DOUBLE_ALL_TIME_STAMP_Q_RECORD structure contains position, Euler angles, rotation matrix, quaternion,
timestamp and quality information in double floating point format.

typedef struct tagDOUBLE ALL TIME STAMP Qf

double L
double vi
double %8
double a;
double e;
double g
double s[311[3];
double qlé];
double time;
USHORT quality;

} DOUBLE ALL TIME STAMP Q RECORD, *PDOUBLE ALL TIME STAMP Q RECORD;

Members

X

This is the x position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

Yy

This is the y position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

z

This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

a
This value is the azimuth angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

e
This value is the elevation angle of the sensor. The value is reported in degrees with a range of +89.995 to -
90.000 degrees.

r
This value is the roll angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

s[3][3]
This is a 3x3 array of values. Each value is in the range +0.99997 to —1.00000

159

3DGuidance API Reference

q[4]
This is an array of 4 quaternion values. Each value is in the range +0.99997 to —1.00000

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

quality

The quality value is a 16-bit unsigned integer. A very small quality number indicates no or minimal position and
orientation errors due to distortion of the transmitter field depending on how sensitive you have set the error
indicator. A large quality number indicates maximum error for the sensitivity level selected.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
DOUBLE_ANGLES_RECORD, DOUBLE_MATRIX_RECORD, DOUBLE_POSITION_RECORD,
DOUBLE_QUATERNIONS_RECORD

160

3DGuidance API Reference

DOUBLE_ALL_TIME_STAMP_Q RAW_RECORD

The DOUBLE_ALL_TIME_STAMP_Q_RAW_RECORD structure contains position, Euler angles, rotation matrix,
quaternion, timestamp, quality and raw matrix information in double floating point format.

typedef struct tagDOUBLE ALL TIME STAMP Q RAW{

double 22
double 2
double %5
double a;
double e;
double g
double s[3]1[31;
double ql4l;
double time;
USHORT quality;
Double raw([3] [3];

} DOUBLE ALL TIME STAMP Q RAW RECORD, *PDOUBLE ALL TIME STAMP Q RAW RECORD;

Members

X / Note:

This is the x position value of a 3-axis coordinate position system. The position will be This data format

reported in inches unless the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in is not currently
which case the position will be reported in millimeters. supported.
y

This is the y position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

z
This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

a
This value is the azimuth angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

e
This value is the elevation angle of the sensor. The value is reported in degrees with a range of +89.995 to -
90.000 degrees.

r
This value is the roll angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

s[31[3]
This is a 3x3 array of values. Each value is in the range +0.99997 to —1.00000

161

3DGuidance API Reference

q[4]
This is an array of 4 quaternion values. Each value is in the range +0.99997 to —1.00000

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

quality

The quality value is a 16-bit unsigned integer. A very small quality number indicates no or minimal position and
orientation errors due to distortion of the transmitter field depending on how sensitive you have set the error
indicator. A large quality number indicates maximum error for the sensitivity level selected.

raw[3][3]
This is a 3x3 array of values. Each value is in the range +0.99997 to —1.00000. These values are the raw sensor
values after they have been corrected for all known system error sources. This information is for factory use only.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also
DOUBLE_ANGLES_RECORD, DOUBLE_MATRIX_RECORD, DOUBLE_POSITION_RECORD,
DOUBLE_QUATERNIONS_RECORD

162

3DGuidance API Reference

DOUBLE_POSITION_ANGLES _TIME_Q BUTTON_RECORD

The DOUBLE_POSITION_ANGLES_TIME_Q_BUTTON_RECORD structure contains position Euler angle, timestamp,
distortion and button information in double floating point format.

typedef struct tagDOUBLE_POSITION ANGLES TIME Q BUTTON({

double 22
double 2
double %5
double a;
double e;
double g
double time;
USHORT quality;
USHORT button;

}DOUBLE POSITION ANGLES TIME Q BUTTON RECORD, *PDOUBLE POSITION ANGLES TIME Q BUTTON RECORD

’

Members

X
This is the x position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

y
This is the y position value of a 3-axis coordinate position system. The position will be reported in inches unless

the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

z

This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

a
This value is the azimuth angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

e
This value is the elevation angle of the sensor. The value is reported in degrees with a range of +89.995 to -
90.000 degrees.

r
This value is the roll angle of the sensor. The value is reported in degrees with a range of +179.995 to -
180.000 degrees.

163

3DGuidance API Reference

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

quality

The quality value is a 16-bit unsigned integer. A very small quality number indicates no or minimal position and
orientation errors due to distortion of the transmitter field depending on how sensitive you have set the error
indicator. A large quality number indicates maximum error for the sensitivity level selected.

button

The button value is a 16-bit unsigned integer that represents the state of an external contact closure that the user
has been connected to the tracker (see SWITCH for connector description). When a switch is connected, a 1 in
the button value indicates the contact or switch is CLOSED, and a O indicates the contact is OPEN. The button line
is sampled and available in this data record once per transmitter axis cycle - 3 times the system measurement
rate for a mid or short-range transmitter.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DG.h
Library: Use ATC3DG.lib

See Also
DOUBLE_POSITION_RECORD, DOUBLE_ANGLES_RECORD

164

3DGuidance API Reference

DOUBLE_POSITION_MATRIX_TIME_Q BUTTON_RECORD

The DOUBLE_POSITION_MATRIX_TIME_Q_ BUTTON_RECORD structure contains position, matrix, timestamp,
distortion and button information in double floating point format.

typedef struct tagDOUBLE POSITION MATRIX TIME Q BUTTON{

double L
double vi
double %8
double s[3][3];
double time;
USHORT quality;
USHORT button;

}DOUBLE POSITION MATRIX TIME Q BUTTON RECORD, *PDOUBLE POSITION MATRIX TIME Q BUTTON RECORD

’

Members

X
This is the x position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

y
This is the y position value of a 3-axis coordinate position system. The position will be reported in inches unless

the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

z
This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

s[3][3]
This is a 3x3 array of values. Each value is in the range +0.99997 to —1.00000

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of

the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string

using ctime() for example. The fractional part of the time variable represents fractions of a second.

quality

The quality value is a 16-bit unsigned integer. A very small quality number indicates no or minimal position and
orientation errors due to distortion of the transmitter field depending on how sensitive you have set the error
indicator. A large quality number indicates maximum error for the sensitivity level selected.

button

The button value is a 16-bit unsigned integer that represents the state of an external contact closure that the user
has been connected to the tracker (see SWITCH for connector description). When a switch is connected, a 1 in
the button value indicates the contact or switch is CLOSED, and a O indicates the contact is OPEN. The button line

165

3DGuidance API Reference

is sampled and available in this data record once per transmitter axis cycle - 3 times the system measurement
rate for a mid or short-range transmitter.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DG.h
Library: Use ATC3DG.lib

See Also

DOUBLE_POSITION_RECORD, DOUBLE_MATRIX_RECORD

166

3DGuidance API Reference

DOUBLE_POSITION_QUATERNION_TIME_Q BUTTON_RECORD

The DOUBLE_POSITION_QUATERNION_TIME_Q BUTTON_RECORD structure contains position, quaternion,
timestamp, distortion and button information in double floating point format.

typedef struct tagDOUBLE POSITION QUATERNION TIME Q BUTTON({

double L
double vi
double %8
double qld];
double time;
USHORT quality;
USHORT button;
}DOUBLE POSITION QUATERNION TIME Q BUTTON RECORD, *PDOUBLE POSITION QUATERNION TIME Q BUTTO
N_RECORD;
Members
X

This is the x position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

y
This is the y position value of a 3-axis coordinate position system. The position will be reported in inches unless

the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

z
This is the z position value of a 3-axis coordinate position system. The position will be reported in inches unless
the SYSTEM_PARAMETER_TYPE, METRIC has been set to true in which case the position will be reported in
millimeters.

q[4]
This is an array of 4 quaternion values. Each value is in the range +0.99997 to —1.00000

time

The time variable is the time stamp for the data record and is returned as a double value. The integer portion of
the variable represents the number of elapsed seconds since midnight, Jan 1, 1970, UTC, and is the standard way
of representing time and date. If this is cast as a time_t structure, it can be converted into a date and time string
using ctime() for example. The fractional part of the time variable represents fractions of a second.

quality

The quality value is a 16-bit unsigned integer. A very small quality number indicates no or minimal position and
orientation errors due to distortion of the transmitter field depending on how sensitive you have set the error
indicator. A large quality number indicates maximum error for the sensitivity level selected.

button
The button value is a 16-bit unsigned integer that represents the state of an external contact closure that the user
has been connected to the tracker (see SWITCH for connector description). When a switch is connected, a 1 in

167

3DGuidance API Reference

the button value indicates the contact or switch is CLOSED, and a 0 indicates the contact is OPEN. The button line
is sampled and available in this data record once per transmitter axis cycle - 3 times the system measurement
rate for a mid or short-range transmitter.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DG.h
Library: Use ATC3DG.lib

See Also

DOUBLE_POSITION_RECORD, DOUBLE_QUATERNIONS_RECORD

168

3D Guidance APl Enumeration Types

The following enumeration types are used with the tracker:

BIRD_ERROR_CODES
MESSAGE_TYPE
TRANSMITTER_PARAMETER TYPE
SENSOR_PARAMETER_TYPE
BOARD_PARAMETER_TYPE
SYSTEM_PARAMETER_TYPE
HEMISPHERE_TYPE
AGC_MODE_TYPE
DATA_FORMAT_TYPE
BOARD_TYPES
DEVICE_TYPES

3DGuidance API Reference

169

3DGuidance API Reference

BIRD_ERROR_CODES

The BIRD_ERROR__CODES enumeration type defines the values that the enumerated error code field of the ERRORCODE
can be returned with from a function call.

enum BIRD_ERROR_CODES{
BIRD_ERROR_SUCCESS=0,
BIRD_ERROR_PCB_HARDWARE_FAILURE,
BIRD_ERROR_TRANSMITTER_EEPROM_FAILURE,
BIRD_ERROR_SENSOR_SATURATION_START,
BIRD_ERROR_ATTACHED_DEVICE_FAILURE,
BIRD_ERROR_CONFIGURATION_DATA FAILURE,
BIRD_ERROR_ILLEGAL_COMMAND_ PARAMETER,
BIRD_ERROR_PARAMETER_OUT OF RANGE,
BIRD_ERROR_NO_RESPONSE,
BIRD_ERROR_COMMAND_TIME_OUT,
BIRD_ERROR_INCORRECT PARAMETER_SIZE,
BIRD_ERROR_INVALID_VENDOR_ID,
BIRD_ERROR_OPENING_DRIVER,
BIRD_ERROR_INCORRECT DRIVER_VERSION,
BIRD_ERROR_NO_DEVICES_FOUND,
BIRD_ERROR_ACCESSING_PCI_CONFIG,
BIRD_ERROR_INVALID_DEVICE_ID,
BIRD_ERROR_FAILED_LOCKING_DEVICE,
BIRD_ERROR_BOARD_MISSING_ITEMS,
BIRD_ERROR_NOTHING_ATTACHED,
BIRD_ERROR_SYSTEM_PROBLEM,
BIRD_ERROR_INVALID_SERIAL_NUMBER,
BIRD_ERROR_DUPLICATE_SERIAL_NUMBER,
BIRD_ERROR_FORMAT NOT_SELECTED,
BIRD_ERROR_COMMAND_NOT _IMPLEMENTED,
BIRD_ERROR_INCORRECT BOARD_ DEFAULT,
BIRD_ERROR_INCORRECT RESPONSE,
BIRD_ERROR_NO_TRANSMITTER_RUNNING,
BIRD_ERROR_INCORRECT RECORD_SIZE,
BIRD_ERROR_TRANSMITTER_OVERCURRENT,
BIRD_ERROR_TRANSMITTER_OPEN_CIRCUIT,
BIRD_ERROR_SENSOR_EEPROM_FAILURE,
BIRD_ERROR_SENSOR_DISCONNECTED,
BIRD_ERROR_SENSOR_REATTACHED,
BIRD_ERROR_NEW_SENSOR_ATTACHED,
BIRD_ERROR_UNDOCUMENTED,
BIRD_ERROR_TRANSMITTER REATTACHED,
BIRD_ERROR_WATCHDOG,
BIRD_ERROR_CPU_TIMEOUT START,
BIRD_ERROR_PCB_RAM_FAILURE,
BIRD_ERROR_INTERFACE,
BIRD_ERROR_PCB_EPROM_FAILURE,
BIRD_ERROR_SYSTEM STACK_OVERFLOW,
BIRD_ERROR_QUEUE_OVERRUN,
BIRD_ERROR_PCB_EEPROM_FAILURE,
BIRD_ERROR_SENSOR_SATURATION_END,
BIRD_ERROR_NEW_TRANSMITTER ATTACHED,
BIRD_ERROR_SYSTEM_UNINITIALIZED,
BIRD_ERROR_12V_SUPPLY_ FAILURE,
BIRD_ERROR_CPU_TIMEOUT END,
BIRD_ERROR_INCORRECT PLD,

170

BIRD_ERROR_NO_TRANSMITTER_ATTACHED,
BIRD_ERROR_NO_SENSOR_ATTACHED,
BIRD_ERROR_SENSOR_BAD,
BIRD_ERROR_SENSOR_SATURATED,
BIRD_ERROR_CPU_TIMEOUT,
BIRD_ERROR_UNABLE_TO_CREATE_FILE,
BIRD_ERROR_UNABLE_TO OPEN_FILE,
BIRD_ERROR_MISSING_CONFIGURATION_ITEM,
BIRD_ERROR_MISMATCHED_DATA,
BIRD_ERROR_CONFIG_INTERNAL,
BIRD_ERROR_UNRECOGNIZED_ MODEL_STRING,
BIRD_ERROR_INCORRECT SENSOR,
BIRD_ERROR_INCORRECT TRANSMITTER,
BIRD_ERROR_ALGORITHV_INITIALIZATION
BIRD_ERROR_LOST_CONNECTION
BIRD_ERROR_INVALID_CONFIGURATION
BIRD_ERROR_TRANSMITTER_RUNNING

3DGuidance API Reference

Enumerator Value

Meaning

BIRD_ERROR_SUCCESS=0

No errors occurred. Call completed successfully

BIRD_ERROR_PCB_HARDWARE_FAILURE

The Tracker firmware initialization did not complete
within 10 seconds. It is assumed the board is faulty or
the firmware has hung up somewhere. If the error is
repeatable there is an unrecoverable hardware failure.

BIRD_ERROR_TRANSMITTER_EEPROM_FAILURE

<handled internally>

BIRD_ERROR_SENSOR_SATURATION_START

<handled internally>

BIRD_ERROR_ATTACHED_DEVICE_FAILURE

<obsolete>

BIRD_ERROR_CONFIGURATION_DATA_FAILURE

<obsolete>

BIRD_ERROR_ILLEGAL_COMMAND_PARAMETER

Invalid constant of the selected enumerated type has
been used.

BIRD_ERROR PARAMETER OUT_OF RANGE

The parameter value passed to the function call was
not within the legal range for the parameter selected.

BIRD_ERROR_NO_RESPONSE

<obsolete>

BIRD_ERROR_COMMAND_TIME_OUT

Tracker on-board controller has failed to respond to a
command issued to it. If error is repeatable there is an
unrecoverable hardware failure.

BIRD_ERROR_INCORRECT_PARAMETER_SIZE

The value of the parameter size passed did not match
the expected size of the parameter either being passed
or returned with this call.

BIRD_ERROR_INVALID_VENDOR_ID

<obsolete>

BIRD_ERROR_OPENING_DRIVER

Non-specific error opening driver. Make sure that the
driver is properly installed.

BIRD_ERROR_INCORRECT DRIVER_VERSION

The wrong version of the driver has been installed for
this version of the API dll. Install or re-install the
correct driver.

171

3DGuidance API Reference

BIRD_ERROR_NO_DEVICES_FOUND

No Tracker hardware was found by the host system.
Verify that hardware is installed and is of the correct
type.

BIRD_ERROR_ACCESSING_PCI_CONFIG

The error occurred in the pciBird PCI interface. There is a
problem with the PCI configuration registers. If error is
repeatable there is an unrecoverable hardware failure.

BIRD_ERROR_INVALID_DEVICE_ID

The device ID passed was out of range for the system.

BIRD_ERROR_FAILED_LOCKING_DEVICE

Driver could not lock PCI/miroBIRD resources. Check
that there is not another application using the hardware.

BIRD_ERROR_BOARD_MISSING_ITEMS

The required resources were not found defined in the
PCI configuration registers. Possible corrupt
configuration. If error is repeatable there is an
unrecoverable hardware failure.

BIRD_ERROR_NOTHING_ATTACHED <obsolete>
BIRD_ERROR_SYSTEM_PROBLEM <obsolete>
BIRD_ERROR_INVALID_SERIAL_NUMBER <obsolete>
BIRD_ERROR_DUPLICATE_SERIAL_NUMBER <obsolete>
BIRD_ERROR_FORMAT_NOT_SELECTED <obsolete>

BIRD_ERROR_COMMAND_NOT_IMPLEMENTED

This function has not been implemented yet.

BIRD_ERROR_INCORRECT_BOARD_DEFAULT

An unexpected response was received from the
controller on the Tracker hardware. The board is
responding to commands but the data returned is
corrupt. If the error is repeatable there is an
unrecoverable hardware failure.

BIRD_ERROR_INCORRECT_RESPONSE

<obsolete>

BIRD_ERROR_NO_TRANSMITTER_RUNNING

A request was made to turn off the current transmitter
by passing the value —1 with the parameter
SELECT_TRANSMITTER selected and there was no
transmitter currently running.

BIRD_ERROR_INCORRECT_RECORD_SIZE

The record size of the buffer passed to the function does
not match the size of the data format currently selected.

BIRD_ERROR_TRANSMITTER_OVERCURRENT

<handled internally>

BIRD_ERROR_TRANSMITTER_OPEN_CIRCUIT

<handled internally>

BIRD_ERROR_SENSOR_EEPROM_FAILURE

<handled internally>

BIRD_ERROR_SENSOR_DISCONNECTED

<handled internally>

BIRD_ERROR_SENSOR_REATTACHED

<handled internally>

BIRD_ERROR_NEW_SENSOR_ATTACHED

<obsolete>

BIRD_ERROR_UNDOCUMENTED

<handled internally>

BIRD_ERROR_TRANSMITTER_REATTACHED

<handled internally>

BIRD_ERROR_WATCHDOG

Tracker internal watchdog timer has elapsed. If this error
is repeatable there is an unrecoverable hardware failure.

172

3DGuidance API Reference

BIRD_ERROR CPU_TIMEOUT START

<handled internally>

BIRD_ERROR_PCB_RAM_FAILURE

<handled internally>

BIRD_ERROR_INTERFACE

<handled internally>

BIRD_ERROR PCB_EPROM_FAILURE

<handled internally>

BIRD_ERROR_SYSTEM_STACK_OVERFLOW

<handled internally>

BIRD_ERROR_QUEUE_OVERRUN

<handled internally>

BIRD_ERROR PCB_EEPROM_FAILURE

<handled internally>

BIRD_ERROR_SENSOR_SATURATION_END

<handled internally>

BIRD_ERROR_NEW_TRANSMITTER_ATTACHED

<obsolete>

BIRD_ERROR_SYSTEM_UNINITIALIZED

The Tracker hardware and system has not been
initialized yet. The InitializeBIRDSystem function must be
called first.

BIRD_ERROR 12V _SUPPLY_FAILURE

<handled internally>

BIRD_ERROR_CPU_TIMEOUT END

<handled internally>

BIRD_ERROR_INCORRECT_PLD

The PLD version on the Tracker hardware is incompatible
with this version of the API dll. Verify Tracker model
installed.

BIRD_ERROR_NO_TRANSMITTER_ATTACHED

A request was made to do one of the following:

1) Turn off the currently running transmitter and
there is no transmitter attached to the system

2) Turn on the transmitter with the selected ID
and there is no transmitter attached at that ID.

BIRD_ERROR_NO_SENSOR_ATTACHED

Request for data record from a sensor channel where no
sensor is attached or the sensor has been removed.

BIRD_ERROR_SENSOR_BAD

The attached sensor is not saturated but is exhibiting
another unspecified problem, which prevents it from
operating normally. Use the GetSensorStatus function to
determine the precise problem.

BIRD_ERROR_SENSOR_SATURATED

The attached sensor, which is otherwise OK, is currently
saturated. This may occur if the sensor is too close to
the transmitter or if the sensor is too close to metal or an
external magnetic field.

BIRD_ERROR_CPU_TIMEOUT

Tracker on-board controller had insufficient time to
execute the position and orientation algorithm. This
frequently occurs because the Tracker controller is being
overwhelmed with user interface commands. Reduce the
rate at which GetAsynchronousRecord is being called.

BIRD_ERROR_UNABLE_TO_CREATE_FILE

The call was unable to complete for some unspecified
reason. Check the format of the file name string.

BIRD_ERROR_UNABLE_TO_OPEN_FILE

The call was unable to complete for some unspecified
reason. Check the format of the file name string.

BIRD_ERROR_MISSING_CONFIGURATION_ITEM

A mandatory configuration item was missing from the
initialization file. Review contents of initialization file or
use SaveSystemConfiguration() to automatically save a

173

3DGuidance API Reference

correctly formatted initialization file.

BIRD_ERROR_MISMATCHED_DATA Data item in the initialization file does not match a
system parameter. For example the initialization file
states the system has 3 boards (NumberOfBoards=3) but
the system initialization routine — InitializeBIRDSystem
only detected two.

BIRD_ERROR_CONFIG_INTERNAL Internal error in configuration file handler. Report to
vendor.

BIRD_ERROR_UNRECOGNIZED MODEL_STRING | The firmware is reporting a model string, which is
unrecognized by the API dll. This could be due to a
hardware failure causing the model string data to be
corrupted, a corrupted board EEProm, or the board
installed is of a type not recognized by the API dll. If the
error is repeatable return to vendor.

BIRD_ERROR_INCORRECT_SENSOR An invalid sensor type has been attached to this card.

BIRD_ERROR_INCORRECT_TRANSMITTER An invalid transmitter type has been attached to this
card.

BIRD_ERROR_ALGORITHM_INITIALIZATION Initialization of the nondipole transmitter algorithm
failed.

BIRD_ERROR_LOST_CONNECTION Connection with tracker lost

BIRD_ERROR_INVALID_CONFIGURATION Invalid multi-unit configuration

BIRD_ERROR_TRANSMITTER_RUNNING Operation illegal with transmitter running.

BIRD_ERROR_MAXIMUM_VALUE Final error code place holder

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

174

3DGuidance API Reference

SENSOR_PARAMETER_TYPE

The SENSOR_PARAMETER_TYPE enumeration type defines values that are used with the GetSensorParameter and
SetSensorParameter functions to specify the operational characteristics of an individual sensor.

enum SENSOR_PARAMETER_TYPE{
DATA_FORMAT,
ANGLE_ALIGN,
HEMISPHERE,,
FILTER_AC_WIDE_NOTCH,
FILTER_AC_NARROW_NOTCH,
FILTER_DC_ADAPTIVE,
FILTER_ALPHA PARAMETERS,
FILTER_LARGE_CHANGE,
QUALITY,
SERIAL_NUMBER_RX,
SENSOR_OFFSET,
VITAL_PRODUCT DATA RX,
VITAL_PRODUCT DATA_PREAMP

Enumerator Value | Meaning

DATA_FORMAT See the Data Format Structures section for details

ANGLE_ALIGN By default, the angle outputs from the Tracker are measured in the coordinate frame
defined by the transmitter's X, Y and Z axes, as shown Default Reference Frames, and are
measured with respect to rotations about the physical X, Y and Z axes of the sensor, also
shown. The ANGLE ALIGN parameter allows you to mathematically change the sensor's
X, Y and Z axes to an orientation, which differs from that of the actual sensor.

For example: Suppose that during installation you find it necessary, due to physical
requirements, to rotate the sensor, resulting in its angle outputs reading Azim = 5 deg,
Elev = 10 and Roll = 15 when it is in its normal "resting" position. To compensate, use
the ANGLE_ALIGN parameter, passing as values 5, 10 and 15 degrees. After this
sequence is sent, the sensor outputs will be zero, and orientations will be computed as if
the sensor were not misaligned.

ANGLE_ALIGN parameters are not meaningful for 5DOF sensors. ANGLE_ALIGN
parameters applied to a 5SDOF sensor will be ignored.

175

3DGuidance API Reference

ANGLE_ALIGN,
continued
Transmitter
Sensor
T
Measurement Reference Frame (Standard Transmitter)
+X
Orientation
Dimple
+Y
+Z
Receiver Zero Orientation (8mm Sensor)
HEMISPHERE The shape of the magnetic field transmitted by the Tracker is symmetrical about each of

the axes of the transmitter. This symmetry leads to an ambiguity in determining the
sensor's X, Y, Z position. The amplitudes will always be correct, but the signs () may all
be wrong, depending upon the hemisphere of operation. In many applications, this will
not be relevant, but if you desire an unambiguous measure of position, operation must
be either confined to a defined hemisphere or your host computer must ‘track’ the
location of the sensor.

There is no ambiguity in the sensor’s orientation angles as output in the ANGLES data
formats, or in the rotation matrix as output in the MATRIX formats.

The HEMISPHERE parameter is used to tell the Bird in which hemisphere, centered about

176

3DGuidance API Reference

the transmitter, the sensor will be operating. There are six hemispheres from which you
may choose: the FRONT (forward), BACK (rear), TOP (upper), BOTTOM (lower), LEFT,
and the RIGHT. If no HEMISPHERE parameter is specified, the FRONT is used by
default.

The ambiguity in position determination can be eliminated if your host computer’s
software continuously ‘tracks’ the sensor location. In order to implement tracking, you
must understand the behavior of the signs (%) of the X, Y, and Z position outputs when
the sensor crosses a hemisphere boundary. When you select a given hemisphere of
operation, the sign on the position axes that defines the hemisphere direction is forced to
positive, even when the sensor moves into another hemisphere. For example, the
power-up default hemisphere is the front hemisphere. This forces X position outputs to
always be positive. The signs on Y and Z will vary between plus and minus depending on
where you are within this hemisphere. If you had selected the bottom hemisphere, the
sign of Z would always be positive and the signs on X and Y will vary between plus and
minus. If you had selected the left hemisphere, the sign of Y would always be negative,
etc.

Regarding the default front hemisphere, if the sensor moved into the back hemisphere,
the signs on Y and Z would instantaneously change to opposite polarities while the sign
on X remained positive. To ‘track’ the sensor, your host software, on detecting this sign
change, would reverse the signs on The Tracker's X, Y, and Z outputs. In order to ‘track’
correctly: You must start ‘tracking’ in the selected hemisphere so that the signs on the
outputs are initially correct, and you must guard against the case where the sensor legally
crossed the Y = 0, Z = 0 axes simultaneously without having crossed the X = 0 axes into
the other hemisphere.

FILTER_AC_WIDE_N | The AC WIDE notch filter refers to a six tap FIR notch filter that is applied to the sensor
OTCH data to eliminate sinusoidal signals with a frequency between 30 and 72 hertz. If your
application requires minimum transport delay between measurement of the sensor’s
position/orientation and the output of these measurements, you may want to evaluate
the effect on your application with this filter shut off and the AC NARROW notch filter on.

FILTER_AC_NARRO The AC NARROW notch filter refers to a two tap finite impulse response (FIR) notch filter
W_NOTCH that is applied to signals measured by the Tracker’s sensor to eliminate a narrow band of
noise with sinusoidal characteristics. Use this filter in place of the AC WIDE notch filter
when you want to minimize the transport delay between Tracker measurement of the
sensor’s position/orientation and the output of these measurements. The transport delay
of the AC NARROW notch filter is approximately one third the delay of the AC WIDE
notch filter.

FILTER_DC_ADAPTI | The DC filter refers to an adaptive, infinite impulse response (IIR) low pass filter applied
VE to the sensor data to eliminate high frequency noise. Generally, this filter is always
required in the system unless your application can work with noisy outputs. When the
DC filter is enabled, you can modify its noise/lag characteristics by changing alphaMin and
vm.

To use the default filter settings, just set the FILTER_DC_ADAPTIVE value to 1.0. To
disable the filter set the value to 0.0

FILTER_ALPHA_PAR | To modify the filter characteristics, configure the elements of the structure
AMETERS ADAPTIVE_PARAMETERS.

The alphaMin and alphaMax values define the lower and upper ends of the adaptive
range that the filter constant alpha can assume in the DC filter, as a function of
sensor to transmitter separation. When alphaMin = 0 Hex, the DC filter will provide
an infinite amount of filtering (the outputs will never change even if you move the
sensor). When alphaMin = 0.99996 = 7FFF Hex, the DC filter will provide no

177

3DGuidance API Reference

filtering of the data. At the shorter ranges you may want to increase alphaMin to
obtain less lag while at longer ranges you may want to decrease alphaMin to
provide more filtering (less noise/more lag). Note that alphaMin must always be
less than alphaMax.

When there is a fast motion of the sensor, the adaptive filter reduces the amount of
filtering by increasing the ALPHA used in the filter. It will increase ALPHA only up to
the limiting alphaMax value. By doing this, the lag in the filter is reduced during
fast movements. When alphaMax = 0.99996 = 7FFF Hex, the DC filter will provide
no filtering of the data during fast movements. Some users may want to decrease
alphaMax to increase the amount of filtering if the Tracker’s outputs are too noisy
during rapid sensor movement.

The 7 words that make up the Vm table values represent the expected noise that
the DC filter will measure. By changing the table values, you can increase or
decrease the DC filter’s lag as a function of sensor range from the transmitter.

The DC filter is adaptive in that it tries to reduce the amount of low pass filtering in
the Tracker as it detects translation or rotation rates in the Tracker's sensor.
Reducing the amount of filtering results in less filter lag.

Unfortunately, electrical noise in the environment—when measured by the sensor—
also makes it look like the sensor is undergoing a translation and rotation. As the
sensor moves farther and farther away from the transmitter, the amount of noise
measured by the sensor appears to increase because the measured transmitted
signal level is decreasing and the sensor amplifier gain is increasing. In order to
decide if the amount of filtering should be reduced, the Tracker has to know if the
measured rate is a real sensor rate due to movement or a false rate due to noise.
The Tracker gets this knowledge by the user specifying what the expected noise
levels are in the operating environment as a function of distance from the
transmitter. These noise levels are the 7 words that form the Vm table. The Vm
values can range from 1 for almost no noise to 32767 for a lot of noise.

FILTER_LARGE_CHA | When the LARGE_CHANGE filter is selected, the position and orientation outputs are
NGE not allowed to change if the system detects a sudden large change in the outputs.
Large undesirable changes may occur at large separation distances between the
transmitter and sensor when the sensor undergoes a fast rotation or translation. If
the LARGE_CHANGE value is TRUE the outputs will not be updated if a large change
is detected. If value is FALSE, the outputs will change.

QUALITY This data structure is used to adjust the output characteristics of the Quality
number. Also referred to as the METAL error or Distortion number, this value is
returned with certain data formats and gives the user an indication of the degree to
which the position and angle measurements are in error. This error may be due to
‘bad’ metals located near the transmitter and sensor, or due to TRACKER ‘system’
errors. ‘Bad’ metals are metals with high electrical conductivity such as aluminum,
or high magnetic permeability such as steel. ‘Good’ metals have low conductivity
and low permeability such as 300 series stainless steel, or titanium. The QUALITY
error number also reflects TRACKER ‘system’ errors resulting from accuracy
degradations in the transmitter, sensor, or other electronic components. It will
represent a level of accuracy degradation resulting from either movement of the
sensor or environmental noise. A very small QUALITY error number indicates no or
minimal position and angle errors depending on how sensitive you have set the
error indicator. A large QUALITY error number indicates maximum error for the
sensitivity level selected.

Users of the QUALITY error number will find that as a metal detector, it is sensitive
to the introduction of metals in an environment where no metals were initially
present. This metal detector can fool you, however, if there are some metals

178

3DGuidance API Reference

initially present and you introduce new metals. It is possible for the new metal to
cause a distortion in the magnetic field that reduces the existing distortion at the
sensor. When this occurs you'll see the Error value initially decreases, indicating
less error, and then finally start increasing again as the new metal causes more
distortion. Users beware. You need to evaluate your application for
suitability of this metal detector.

Because the TRACKER is used in many different applications and environments, the
QUALITY error indicator needs to be sensitive to this broad range of environments.
Some users may want the error indicator to be sensitive to very small amounts of
metal in the environment while other applications may only want the error indicator
sensitive to large amounts of metal. To accommodate this range of detection
sensitivity, the SetSensorParameter() allows the user to set a QUALITY Sensitivity
setting that is appropriate to their application.

The QUALITY error number will always show there is some error in the system even
when there are no metals present. This error indication usually increases as the
distance between the transmitter and sensor increases, and is due to the fact that
TRACKER components cannot be made or calibrated perfectly. To minimize the
amount of this inherent error in the Error value, a linear curve fit, defined by a
slope and offset, is made to this inherent error and stored in each individual
sensor's memory since the error depends primarily on the size of the sensor being
used (25mm, 8mm, or 5 mm). The Quality Parameters Structure (manipulated
through the SetSensorParameter() command) allows the user to eliminate or
change these values. For example, maybe the user’s standard environment has
large errors and he or she wants to look at variations from this standard
environment. To do this he or she would adjust the Slope and Offset settings to
minimize the QUALITY error values.

The QUALITY error number that is output is computed from the following equation:
QUALITY error = Sensitivity x (ErrorSYSTEM — (Offset + Slope x Range))

Where Range is the distance between the transmitter and sensor.

Sensitivity

The user supplies a Sensitivity value based on how little or how much he or she
wants the QUALITYerror value to reflect errors.

Offset

If you are trying to minimize the base errors in the system by adjusting the Offset
you could set the Sensitivity =1, and the Slope=0 and read the Offset directly as
the QUALITYerror number.

Slope

You can determine the slope by setting the Sensitivity=1 and looking at the change
in QUALITYerror as you translate the sensor from range=0 to range max for the
system (i.e. 36”). Since its difficult to go from range =0 to max., you might just
translate over say half the distance and double the error value change you
measure.

Alpha

The QUALITYerror value is filtered before output to the user to minimize noise jitter.
The Alpha value determines how much filtering is applied to the error value. Range
is FFFF -> 0 Users should think of it as a signed fractional value with a range of
0.9999 -> 0 (negative numbers not allowed). A zero value is an infinite amount of

179

3DGuidance API Reference

filtering, whereas a 0.9999 value is no filtering. As Alpha gets smaller the time lag
between the insertion of metal in the environment and it being reported in the
QUALITYerror value increases.

SERIAL_NUMBER_R | Returns the serial number of the attached sensor.
X

SENSOR OFFSETS Normally the position outputs from the 3DGuidance™ represent the x, y, z position
- of the center of the sensor with respect to the origin of the Transmitter. The
SENSOR_OFFSETS command allows the user to specify a location that is offset from
the center of the sensor.

The x, y, z offset distances you supply in a DOUBLE_POSITION_RECORD with this
command are measured in the sensor reference frame and are measured from the
sensor center to the desired position on the tracked object.

VITAL PRODUCT D | Used to read or write to individual bytes in the Vital Product Data (VPD) storage
ATA RX - area on the sensor. The VPD section comprises 128 bytes of user modifiable data
- storage. It is the user’s responsibility to define the contents and structure and to
maintain that structure. The parameter passed with these commands is a structure
VPD_COMMAND_PARAMETERS which contains the address of the target byte and,
in the case of the write command (SetSensorParameter) the value of the byte to be
written. In the case of the read command (GetSensorParameter), the value of the
byte read from the VPD is placed in the value location in the structure.

Note: Reading or writing VPD is not allowed when the transmitter is running.

VITAL_PRODUCT_D | Used to read or write to individual bytes in the Vital Product Data (VPD) storage
ATA_PREAMP area on the preamp. The VPD section comprises 128 bytes of user modifiable data
storage. It is the user’s responsibility to define the contents and structure and to
maintain that structure. The parameter passed with these commands is a structure
VPD_COMMAND_PARAMETERS which contains the address of the target byte and,
in the case of the write command (SetSensorParameter), the value of the byte to be
written. In the case of the read command (GetSensorParameter), the value of the
byte read from the VPD is placed in the value location in the structure.

Note: Reading or writing VPD is not allowed when the transmitter is running.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

180

3DGuidance API Reference

MESSAGE_TYPE

The MESSAGE_TYPE enumeration type defines a value used with the GetErrorText function to define the type of message
string returned from the call.

enum MESSAGE_TYPE{
SIMPLE_MESSAGE,
VERBOSE_MESSAGE

35

Enumerator Value Meaning

SIMPLE_MESSAGE The call GetErrorText will return a short terse message string describing the
meaning of the error code passed.

VERBOSE_MESSAGE | The call GetErrorText will return a message string containing a full and
comprehensive description of the problem and possible resolutions where
appropriate.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

181

3DGuidance API Reference

TRANSMITTER_PARAMETER_TYPE

The

TRANSMITTER_PARAMETER_TYPE enumeration type defines values that are wused with
GetTransmitterParameter and SetTransmitterParameter functions to specify the operational characteristics of an individual
transmitter.

enum TRANSMITTER_PARAMETER_TYPE{

¥

SERIAL_NUMBER_TX,
REFERENCE_FRAME,
XYZ_REFERENCE_FRAME,

VITAL_PRODUCT DATA_TX

Enumerator Value

Meaning

SERIAL_NUMBER_TX

This returns the serial number of the attached physical device

REFERENCE_FRAME

By default, the Tracker's reference frame is defined by the transmitter's
physical X, Y, and Z axes, as shown in Default Reference Frames. In some
applications, it may be desirable to have the orientation measured with respect
to another reference frame. The REFERENCE FRAME parameter permits you to
define a new reference frame by inputting the angles required to align the
physical axes of the transmitter to the X, Y, and Z axes of the new reference
frame. The alignment angles are defined as rotations about the Z, Y, and X
axes of the transmitter. These angles are called the, Azimuth, Elevation, and
Roll angles.

Although a change to the REFERENCE FRAME parameter values will cause the
Tracker's output angles to change, it has no effect on the position outputs. If
you want The Tracker's XYZ position reference frame to also change with this
parameter, then you must enable this mode using the XYZREFERENCE FRAME
parameter.

Transmitter

Sensor

Measurement Reference Frame (Standard Transmitter)

the

182

3DGuidance API Reference

+X

Orientation
Dimple

+Y

+Z

Receiver Zero Orientation (8mm Sensor)

XYZ_REFERENCE_FRAME When the Boolean value XYZ_REFERENCE FRAME is TRUE, the Tracker's
XYZ measurement frame will also correspond to the new reference frame
defined by the REFERENCE FRAME parameter values. When the Boolean
value is FALSE, the XYZ measurement frame reverts to the orientation of
the transmitter's physical XYZ axes.

VITAL_PRODUCT_DATA_TX | Used to read or write to individual bytes in the Vital Product Data (VPD)
storage area on the transmitter. The VPD section comprises 128 bytes of
user modifiable data storage. It is the user’s responsibility to define the
contents and structure and to maintain that structure. The parameter
passed with these commands is a structure VPD_COMMAND_PARAMETERS
which contains the address of the target byte and, in the case of the write
command (SetTransmitterParameter) the value of the byte to be written.
In the case of the read command (GetTransmitterParameter) the value of
the byte read from the VPD is placed in the value location in the structure.

Note: Reading or writing VPD is not allowed when the transmitter is
running.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

183

3DGuidance API Reference

BOARD_PARAMETER_TYPE

The BOARD_PARAMETER_TYPE enumeration type defines parameters that can be changed and/or inspected with the
GetBoardParameter and SetBoardParameter functions. These parameters control the operational characteristics of the board.
One of these enumerated values is passed as a parameter to the call to indicate the type and size of the actual parameter
passed. The table below describes the actual type and size and purpose of the parameters passed for each of these types.

enum BOARD_PARAMETER TYPE{
SERIAL_NUMBER_PCB,
BOARD_SOFTWARE_REVISIONS,
POST_ERROR_PCB,
DIAGNOSTIC_TEST PCB,

VITAL_PRODUCT_DATA_PCB

&
Enumerator Value Meaning
SERIAL_NUMBER_PCB Returns the serial number of the 3DGuidance™ board.
BOARD_SOFTWARE_REVISIONS | Returns the board software revisions in a BOARD_SOFTWARE_REVISIONS
structure.
POST_ERROR_PCB Not supported.
DIAGNOSTIC_TEXT_PCB Not supported.

VITAL_PRODUCT_DATA_PCB Used to read or write to individual bytes in the Vital Product Data (VPD)
storage area on the electronics unit. The VPD section comprises 128 bytes of
user modifiable data storage. It is the user’s responsibility to define the
contents and structure and to maintain that structure. The parameter passed
with these commands is a structure VPD_COMMAND_PARAMETERS which
contains the address of the target byte and, in the case of the write
command (SetBoardParameter) the value of the byte to be written. In the
case of the read command (GetBoardParameter), the value of the byte read
from the VPD is placed in the value location in the structure.

Note: Reading or writing VPD is not allowed when the transmitter is
running.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

184

3DGuidance API Reference

SYSTEM_PARAMETER_TYPE

The SYSTEM_PARAMETER_TYPE enumeration type defines parameters that can be changed and/or inspected with the
GetSystemParameter and SetSystemParameter functions. These parameters control the operational characteristics of the
system. One of these enumerated values is passed as a parameter to the call to indicate the type and size of the actual
parameter passed. The table below describes the actual type and size and purpose of the parameters passed for each of
these types.

enum SYSTEM_PARAMETER_TYPE{

SELECT TRANSMITTER,
POWER_L INE_FREQUENCY,
AGC_MODE,

MEASUREMENT RATE,
MAX IMUM_RANGE ,
METRIC,

VITAL_PRODUCT DATA,
POST_ERROR,
DIAGNOSTIC_TEST,
REPORT RATE

Enumerator Value

Meaning

SELECT_TRANSMITTER

Either select and turn on a specific transmitter or turn off the current
transmitter. The parameter passed is a short int, which contains the id of the
transmitter selected to be turned on. If the current transmitter needs to be
turned off this value should be set to —1.

POWER_LINE_FREQUENCY

Informs the hardware of the frequency of the AC power source. The
parameter passed is a double value describing the frequency in Hz. There are
only two valid values: either 50.0 or 60.0 Hz.

AGC_MODE

Select the automatic gain control (AGC) mode. The parameter passed is one
of the enumerated type AGC_MODE_TYPE.

MEASUREMENT_RATE

Set the measurement rate. The parameter passed is a double value and
represents the measurement rate in Hz. The valid range of values is
20.0<rate<110.0

MAXIMUM_RANGE

Sets the system maximum range. The parameter passed is a double value
representing the maximum range in any of the 3 axes in inches. There is
only one valid range and that is 36.0 inches.

METRIC

Enables/disables metric position reporting. The parameter passed is a bool. If
the value is true then metric reporting is selected otherwise if the value is
false then metric reporting is turned off. Metric data is reported in
millimeters. Non-metric data is reported in inches.

VITAL_PRODUCT_DATA

Not supported.

POST_ERROR

Not supported.

DIAGNOSTIC_TEST

Not supported.

REPORT_RATE

Sets the number of updates before a new data record is returned when
streaming data.

END_OF_LIST

Final system parameter type place holder

185

3DGuidance API Reference

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

186

HEMISPHERE_TYPE

The HEMISPHERE_TYPE enumeration type defines values that are used when setting the HEMISPHERE with the

3DGuidance API Reference

SetSensorParameter call. The default HEMISPHERE_TYPE is FRONT.

enum HEMISPHERE_TYPE{

FRONT,

BACK,

TOP,

BOTTOM,

LEFT,

RIGHT
5

Enumerator Meaning

Value

FRONT The FRONT is the forward hemisphere in front of the transmitter. The front of the
transmitter is the side with the Ascension logo molded into the case. It is the side
opposite the side with the 2 positioning holes. This is the default.

BACK The BACK is the opposite hemisphere to the FRONT hemisphere.

TOP The TOP hemisphere is the upper hemisphere. When the transmitter is sitting on
a flat surface with the locating holes on the surface the TOP hemisphere is above
the transmitter.

BOTTOM The BOTTOM hemisphere is the opposite hemisphere to the TOP hemisphere.

LEFT The LEFT hemisphere is the hemisphere to the left of the observer when looking
at the transmitter from the back.

RIGHT The RIGHT hemisphere is the opposite hemisphere to the LEFT hemisphere. The
LEFT hemisphere is on the left side of the observer when looking at the
transmitter from the back.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

187

3DGuidance API Reference

AGC_MODE_TYPE

The AGC_MODE_TYPE enumeration type defines values that are used when setting the AGC_MODE with the
SetSensorParameter call. The default is TRANSMITTER_AND_SENSOR_AGC.

enum AGC_MODE_TYPE{
TRANSMITTER_AND_SENSOR_AGC,
SENSOR_AGC_ONLY

|5

Enumerator Value Meaning

TRANSMITTER_AND_SENSOR_AGC Select both transmitter power switching and sensor gain control
for the AGC implementation. This is the default. NOTE: As the
sensor moves away from the transmitter the signal decreases so
it is necessary to increase the gain of the sensor amplifier. As the
sensor approaches the transmitter the signal increases so the
sensor amp gain needs to be reduced. But, there comes a point
where the sensor is so close to the transmitter that the signal
saturates the sensor and at that point it becomes necessary to
reduce the power of the transmitter. Doing this allows the sensor
to be used close to the transmitter. All transmitter power
switching and sensor amp gain control is handled automatically
for the user.

SENSOR_AGC_ONLY Disable transmitter power switching and use only sensor gain
control for the AGC implementation. NOTE: When the power
switching is disabled the transmitter will run at full power all the
time. This means that there comes a point at which the sensor
as it is approaching the transmitter will saturate. Since the
transmitter will not reduce power this is the minimum limiting
range for this mode of operation.

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

188

DATA_FORMAT_TYPE
The DATA_FORMAT_TYPE enumeration type

enum DATA_FORMAT TYPE{
NO_FORMAT SELECTED=0,
SHORT_POSITION,
SHORT_ANGLES,
SHORT_MATRIX,
SHORT_QUATERNIONS,
SHORT_POSITION_ANGLES,
SHORT_POSITION_MATRIX,
SHORT_POSITION_QUATERNION,
DOUBLE_POSITION,
DOUBLE_ANGLES,
DOUBLE_MATRIX,
DOUBLE_QUATERNIONS,
DOUBLE_POSITION_ANGLES,
DOUBLE_POSITION_MATRIX,
DOUBLE_POSITION_QUATERNION,
DOUBLE_POSITION_TIME_STAMP,
DOUBLE_ANGLES_TIME_STAMP,
DOUBLE_MATRIX_TIME_STAWP,
DOUBLE_QUATERNIONS_TIME_STAMP,
DOUBLE_POSITION_ANGLES_TIME_STAWP,
DOUBLE_POSITION_MATRIX_TIME_STAWP,
DOUBLE_POSITION_QUATERNION_TIME_STAMP,
DOUBLE_POSITION_TIME_Q,
DOUBLE_ANGLES_TIME_Q,
DOUBLE_MATRIX_TIME_Q,
DOUBLE_QUATERNIONS_TIME_Q,
DOUBLE_POSITION_ANGLES_TIME_Q,
DOUBLE_POSITION_MATRIX_TIME_Q,
DOUBLE_POSITION_QUATERNION_TIME_Q,
SHORT_ALL,
DOUBLE_ALL,
DOUBLE_ALL_TIME_STAWP,
DOUBLE_ALL_TIME_STAMP_Q,
DOUBLE_ALL_TIME_STAMP_Q_RAW,
DOUBLE_POSITION_ANGLES_TIME_Q BUTTON,
DOUBLE_POSITION_MATRIX_TIME_Q BUTTON,
DOUBLE_POSITION_QUATERNION_TIME_Q BUTTON,

3DGuidance API Reference

DOUBLE_POSITION_ANGLES_MATRIX_QUATERNION_TIME_Q_BUTTON,

MAXIMUM_FORMAT_CODE

Enumerator Value

Selects Data Record of Structure Type:

NO_FORMAT_SELECTED=0,

No data format selected.

SHORT_POSITION,

SHORT_POSITION_RECORD

SHORT_ANGLES,

SHORT_ANGLES_RECORD

SHORT_MATRIX,

SHORT_MATRIX_RECORD

189

3DGuidance API Reference

SHORT_QUATERNIONS,

SHORT_QUATERNIONS_RECORD

SHORT_POSITION_ANGLES,

SHORT_POSITION_ANGLES_RECORD

SHORT_POSITION_MATRIX,

SHORT_POSITION_MATRIX_RECORD

SHORT_POSITION_QUATERNION,

SHORT_POSITION_QUATERNION_RECORD

DOUBLE_POSITION,

DOUBLE_POSITION_RECORD

DOUBLE_ANGLES,

DOUBLE_ANGLES_RECORD

DOUBLE_MATRIX,

DOUBLE_MATRIX_RECORD

DOUBLE_QUATERNIONS,

DOUBLE_QUATERNIONS_RECORD

DOUBLE_POSITION_ANGLES,

DOUBLE_POSITION_ANGLES_RECORD

DOUBLE_POSITION_MATRIX,

DOUBLE_POSITION_MATRIX_RECORD

DOUBLE_POSITION_QUATERNION,

DOUBLE_POSITION_QUATERNION_RECORD

DOUBLE_POSITION_TIME_STAMP,

DOUBLE_POSITION_TIME_STAMP_RECORD

DOUBLE_ANGLES_TIME_STAMP,

DOUBLE_ANGLES_TIME_STAMP_RECORD

DOUBLE_MATRIX_TIME_STAMP,

DOUBLE_MATRIX_TIME_STAMP_RECORD

DOUBLE_QUATERNIONS_TIME_STAMP,

DOUBLE_QUATERNIONS_TIME_STAMP_RECORD

DOUBLE_POSITION_ANGLES_TIME_STAMP,

DOUBLE_POSITION_ANGLES_TIME_STAMP_RECORD

DOUBLE_POSITION_MATRIX_TIME_STAMP,

DOUBLE_POSITION_MATRIX_TIME_STAMP_RECORD

DOUBLE_POSITION_QUATERNION_TIME_STAMP,

DOUBLE_POSITION_QUATERNION_TIME_STAMP_RECORD

DOUBLE_POSITION_TIME_Q,

DOUBLE_POSITION_TIME_Q_RECORD

DOUBLE_ANGLES_TIME_Q,

DOUBLE_ANGLES_TIME_Q_RECORD

DOUBLE_MATRIX_TIME_Q,

DOUBLE_MATRIX_TIME_Q RECORD

DOUBLE_QUATERNIONS_TIME_Q,

DOUBLE_QUATERNIONS_TIME_Q_RECORD

DOUBLE_POSITION_ANGLES_TIME_Q,

DOUBLE_POSITION_ANGLES_TIME_Q_RECORD

DOUBLE_POSITION_MATRIX_TIME_Q,

DOUBLE_POSITION_MATRIX_TIME_Q_RECORD

DOUBLE_POSITION_QUATERNION_TIME_Q,

DOUBLE_POSITION_QUATERNION_TIME_Q_RECORD

SHORT_ALL,

SHORT_ALL_RECORD

DOUBLE_ALL,

DOUBLE_ALL_RECORD

DOUBLE_ALL_TIME_STAMP,

DOUBLE_ALL_TIME_STAMP_RECORD

DOUBLE_ALL_TIME_STAMP_Q,

DOUBLE_ALL_TIME_STAMP_Q_RECORD

DOUBLE_ALL_TIME_STAMP_Q RAW,

DOUBLE_ALL_TIME_STAMP_Q_RAW_RECORD

DOUBLE_POSITION_ANGLES_TIME_Q_BUTTON,

DOUBLE_POSITION_ANGLES_TIME_Q_BUTTON_RECORD

DOUBLE_POSITION_MATRIX_TIME_Q_BUTTON,

DOUBLE_POSITION_MATRIX_TIME_Q_BUTTON_RECORD

DOUBLE_POSITION_QUATERNION_TIME_Q_BUTTON,

DOUBLE_POSITION_QUATERNION_TIME_Q_BUTTON_RECORD

MAXIMUM_FORMAT_CODE

End of table place holder

190

3DGuidance API Reference

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

191

3DGuidance API Reference

BOARD_TYPES

A value of the BOARD_TYPES enumeration type is returned from a call to GetBoardConfiguration in the fype parameter
location of the structure BOARD_CONFIGURATION.

enum BOARD_TYPES

ATC3DG_MEDSAFE, // Standalone, DSP, 4 sensor
BIRD_UNKNOWN // default
}:
Enumerator Value Meaning
ATC3DG_MEDSAFE 3D Guidance medSAFE
BIRD_UNKNOWN Unknown board

Requirements

Windows NT/2000: Requires Windows 2000 or later.
Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

192

3DGuidance API Reference

DEVICE_TYPES

A value of the DEVICE_TYPES enumeration type is returned in the #pe parameter location of either the
SENSOR_CONFIGURATION or the TRANSMITTER_CONFIGURATION structures, which are returned from a call to either
GetSensorConfiguration or GetTransmitterConfiguration.

enum DEVICE_TYPES{
STANDARD_SENSOR,
TYPE_800_SENSOR,
STANDARD_TRANSMITTER,
MINIBIRD_TRANSMITTER,
SMALL_TRANSMITTER,
TYPE_500_SENSOR

35

enum DEVICE_TYPES
{

STANDARD_SENSOR, // 25mm standard sensor

TYPE_800_SENSOR,
STANDARD_TRANSMITTER,
MINIBIRD_TRANSMITTER,
SMALL_TRANSMITTER,
TYPE_500_SENSOR,
TYPE_180_SENSOR,
TYPE_130_SENSOR,

// 8mm sensor

// TX for 25mm sensor
// TX for 8mm sensor

// ‘compact” transmitter
// 5mm sensor

// 1.8mm microsensor

// 1.3mm microsensor

TYPE_TEM_SENSOR,
UNKNOWN_SENSOR,
UNKNOWN_TRANSMITTER

// 1.8mm, 1.3mm, O.Xmm microsensors
// default
// default

Enumerator Value

Meaning

STANDARD_SENSOR

Standard Flock sensor with mini-DIN connector

TYPE_800_SENSOR

8mm sensor

STANDARD_TRANSMITTER

Standard Mid Range transmitter

MINIBIRD_TRANSMITTER

Standard miniBird transmitter

SMALL_TRANSMITTER

Compact transmitter

TYPE_500_SENSOR

5mm sensor with mini-DIN connector

TYPE_180_SENSOR

1.8 mm sensor

TYPE_130_SENSOR

1.3 mm sensor

TYPE_TEM_SENSOR

<obselete>

UNKNOWN_SENSOR

Unknown sensor

UNKNOWN_TRANSMITTER

Unknown transmitter

Requirements

Windows NT/2000: Requires Windows 2000 or later.

193

3DGuidance API Reference

Header: Declared in ATC3DGm.h
Library: Use ATC3DGm.lib

See Also

194

3DGuidance API Reference

3D Guidance API Status/Error Bit Definitions

The following bit definitions are used with the tracking system.

ERRORCODE
DEVICE_STATUS

195

ERRORCODE
The ERRORCODE /nt has the following format:

3DGuidance API Reference

Bit Meaning

0-15 Enumerated error code of type BIRD_ERROR_CODES

16-19 Address ID of device reporting error.

20-25 Reserved (Unused)

26 If bit = 1 there are more error messages pending <obsolete>

27 - 29 Error source code:

000 = System error

001 = Tracker board error
010 = Sensor error

100 = Transmitter error

Note: All other source codes are invalid

error messages be resolved before proceeding.
00 = Warning

01 = Warning

10 = Fatal Error

30-31 Bits 30 and 31 provide the following advisory error level code Note: It is recommended that all

196

3DGuidance API Reference

DEVICE_STATUS
The DEVICE_STATUS is a fypedeffor an unsigned long (32 bits) and has the following error bit definitions:

Bit Name Meaning S|B|R|T

0 GLOBAL_ERROR Global error bit. If any other the other error status bits X | X | x| x
are set then this bit will be set.

1 NOT_ATTACHED No physical device attached to this device channel. X | X

2 SATURATED Sensor currently saturated. X

3 BAD_EEPROM PCB or attached device has a corrupt or unresponsive X | x| x
EEprom

4 HARDWARE Unspecified hardware fault condition is preventing normal | x | x | X | X

operation of this device channel, board or the system.

5 NON_EXISTENT The device ID used to obtain this status word is invalid. X | x| x
This device channel or board does not exist in the system.

6 UNINITIALIZED The system has not been initialized yet. The system must | x | X | X | X
be initialized at least once before any other commands
can be issued. The system is initialized by calling
InitializeBIRDSystem

7 NO_TRANSMITTER | Either an invalid system — transmitter command was X | x| x
issued or an attempt was made to call
GetAsynchronousRecord or GetSynchronousRecord when
no transmitter was running.

8 BAD_12V The +12V power supply has not been connected to this X | X X
transmitter channel or to this board. In the case of the
system error it indicates there is no +12V anywhere in the
system and the system cannot run.

9 CPU_TIMEOUT CPU ran out of time while executing the position and X | x
orientation algorithm.

10 INVALID_DEVICE Invalid sensor or transmitter has been attached to this X | X
sensor/transmitter channel. This will be set for example if
a standard sensor is plugged into an 8mm PCIBird card.

11-31 <reserved> Always returns zero. X | X | x| x

The 4 columns with the headings S, B, R and T indicate whether or not the bits are applicable
depending on which device status is being acquired. S = system, B =
board, R = sensor and T = transmitter.

197

3DGuidance API Reference

3D Guidance Initialization Files

The Initialization File is used to set a Tracker system to a predetermined state.

3D Guidance Initialization File Format Reference

The following sections describe the syntax and meaning of the items used in each type of initialization file section.
Initialization files must follow these general rules:

<> Sections begin with the section name enclosed in brackets.

< A System section must be included in any initialization file used with the Tracker hardware. The System section
contains mandatory items that must be present for the file to be valid. These items are used to verify the applicability of
this file to the system being initialized.

The following initialization sections are used to initialize the Tracker system:

[System]

[ErrorHandling] (Reserved for future enhancements)

[Sensorx] (Where xis replaced with a decimal number representing the /d of the sensor.)
[Transmitterx] (Where xis replaced with a decimal number representing the /o of the transmitter.)

198

3DGuidance API Reference

[System]

The System section must be included in all initialization files formatted for use with the Tracker hardware.

[System]
NumberOfBoards=number-boards
TransmitterIDRunning=Tx-1D
MeasurementRate=sample-rate
ReportRate=report-rate
Metric=metric-switch
PowerLineFrequency=power
AGCMode=mode
MaximumRange=range

number-boards
This parameter is a decimal number and represents the number of Tracker cards installed in the PC. This number
must match the current number of cards for the file to be accepted. This item is mandatory.

Tx-1D
This parameter is a decimal number and represents the index number of the transmitter selected to run after
initialization. It assumes that a transmitter is attached at that index location. If no transmitter is attached a bad
status will be generated for the sensors. If this value is set to —1 then no transmitter will be selected and all
transmitters (if any are attached) will be turned off.

sample-rate
This parameter selects the system measurement rate. It will determine how fast the transmitters are driven and
the rate at which a new data sample will be produced. The parameter is an positive floating point value describing
the measurement rate in Hz.

report-rate
This parameter selects the system report rate. It will determine the number of tracker updates before a new data
sample will be returned when streaming data. The parameter is positive integer value describing the report rate.

metric-switch
This parameter is a Boolean switch, which may have either one of two values. The valid settings are YES or NO.
When the value YES is selected the position data will be output with millimeter dimensions. If the value is set to
NO the output will be in inches.

power
This parameter is a floating point value representing the AC power line frequency in Hz. Currently, only two values
are valid: These are 50 and 60 Hz.

mode
This parameter is a string describing the AGC mode to be used for the system.

range
This parameter is a floating point value representing the maximum range that the system will report in inches.
Currently the only valid value is 36 (inches).

The following example shows a typical System section:

[System]
NumberOfBoards=1
TransmitterIDRunning=0

199

ReportRate=1
MeasurementRate=103.3
Metric=YES
PowerLineFrequency=60
AGCMode=SENSOR_AGC_ ONLY
MaximumRange=36

3DGuidance API Reference

200

3DGuidance API Reference

[Sensorx]

The Sensor section is optional.

[SensorX]

Format=format-type
Hemisphere=hemisphere-type
AC Narrow Filter=narrow-flag
AC Wide Filter=wide-flag

DC Filter=dc-Fflag

Alpha Min=min-params

Alpha Max=max-params
Vm=Vvm-params

Angle Align=align-angles
Filter Large Change=change-flag
Distortion=distortion-params

Format-type
This parameter takes the form of DATA_FORMAT_TYPE enumerated constant listed in the ATC3DGm.h file. Use
the exact spelling and case as found in the header file.

Hemisphere-type
This parameter takes the form of the HEMISPHERE _TYPE enumerated constant listed in the ATC3DGm.h file. Use
the exact spelling and case as found in the header file.

Narrow-flag
This parameter is a Boolean and is selected by entering either yes or no.

Wide-flag
This parameter is a Boolean and is selected by entering either yes or no.

dc-flag
This parameter is a Boolean and is selected by entering either yes or no.

Min-params
These parameters are entered as a sequence of 6 comma separated floating point numbers in the range 0 to
+1.0. Note: A Min_param cannot exceed its equivalent Max_param in value.

max-params
These parameters are entered in the same format as the Min_params. Note a Max_param may never have a value
lower than its equivalent Min_param.

vm-params
These parameters are entered as 6 comma-separated integers. The valid range for the integers is from a
minimum of 1 to a maximum of 32767.

Align-angles
These parameters are entered as 3 comma-separated floating point values. The parameters represent azimuth,
elevation and roll. The azimuth and roll values must lie with the range —180 to +180 degrees and the elevation
value must lie within the range —90 to +90 degrees.

Change-flag
This parameter is a Boolean and is selected by entering either yes or no.

201

3DGuidance API Reference

Distortion-params
These parameters are entered as 4 comma-separated integers. The 4 values are defined as follows: error-slope,
error-offset, error-sensitivity and filter-alpha. The slope should have a value between —256 and +256. (Default is
164) The offset should have a value between —127 and +127. (The default is 0) The sensitivity should have a
value between 0 and +127 (Default is 32) and the alpha should have a value between 0 and 512. (The default is
327)

The following example shows a typical Sensor section from a configuration file:

[Sensor?2]

Format=SHORT POSITION ANGLES
Hemisphere=FRONT

AC Narrow Filter=no

AC Wide Filter=yes

DC _Filter=yes

Alpha Min=0.02,0.02,0.02,0.02,0.02,0.02
Alpha Max=0.09,0.09,0.09,0.09,0.09,0.09
Vm=2,4,8,32,64,256,512

Angle Align=0,0,0
Filter Large Change=NO
Distortion=164,0,32,327

202

3DGuidance API Reference

[Transmitterx]

The Transmitter section is optional.

[TransmitterX]
XY7Z Reference=reference-flag
XYZ Reference Angles=reference-angles

Reference-flag

This parameter is a Boolean and should be entered as yes or no. If yes is selected a new sensor position will be
calculated for the new reference frame defined by the reference frame angles.

Reference-angles
These parameters take the form a sequence of 3 comma-separated floating point values, which represent the
azimuth, elevation and roll of the new transmitter reference frame. The azimuth and roll must have values in the
range —180 to +180 degrees. The elevation value must be in the range —90 to +90 degrees.

The following example shows a typical Transmitter section from a configuration file:

[Transmitterl]
XYZ Reference=no
XYZ Reference Angles=0,45,0

203

Chapter 6: Ascension RS232
Interface Reference

This chapter deseribes how you can commmunicate 1with your fracker using the RS232
wterface protocol and conmand set

RS232 Signal Description

A pinout and signal description of the RS-232C interface is found below. Note that the tracker requires
connections only to pins 2, 3 and 5 of the 9-pin interface connector.

The tracker’s 9-pin RS-232C connector is arranged as follows:

PIN RS232 SIGNAL' DIRECTION DESCRIPTION

2 Receive Data Tracker to host Serial data output from The Tracker to the host
3 Transmit Data host to Tracker Serial data output from the host to The Tracker
5 Signal Ground Tracker to host Signal reference

7 Request to Send host to Tracker Holds The Tracker in RESET when high

NOte: %
1) These are the Electronic

Industries Association (EIA)
RS232 signals names. The
tracker is configured as FIN 1 PIN 5
Data Communication
equipment (DCE) and
therefore Transmit Data is
an input and Receive Data
is an output.

PIN & PIN 9

REAR VIEW : 9 PIN D-SUBMINIATURE CONNECTOR

204

6: Ascension RS232 Interface Reference

Using the 'reset on CTS' feature

medSAFE can be configured to perform a system reset when pin 7, its CTS line (RTS on HOST side)
is held high. This provides a method of reinitializing the system if the state of the firmware is unknown.
This feature is enabled only through placement of an internal jumper on the main PCB. Please contact
our Tech Support group for more information.

NOTE: Users running applications in a Windows environment that would like to enable this feature,
should take steps to ensure that command of this line (and of the serial port) is clearly asserted.

RS232 Commands

Each RS232 command consists of a single command byte followed by N command data bytes,
where N depends upon the command. A command is an 8-bit value that the host computer transmits
to your tracker.

The RS232 command format is as follows:

MS BIT LS BIT
Stop 7 6 5 4 3 2 1 0 Start
RS232
Command 1 BC7 BC6 BC5 BC4 BC3 BC2 BCl BCO 0

where BC7-BCO is the 8-bit command value (see RS232 Command Reference)

and the MS BIT (Stop = 1) and LS BIT (Start = 0) refers to the bit values that the UART in
your computet's RS232 port automatically insetts into the setial data stream.

The RS232 command data format is as follows:

MS BIT LS BIT
Stop 7 6 5 4 3 2 1 0 Start
RS232
Data 1 BD7 BD6 BD5 BD4 BD3 BD6 BD1 BDO 0

where BD7-BDO is the 8-bit data value associated with a given command.

205

Command Summary

The following summarizes the action of each RS232 command. The details of
command usage are presented later in this chapter in the section entitled 'RS232

Command Reference'.

Command Name

ANGLES

ANGLE ALIGN

BORESIGHT

BORESIGHT REMOVE

CHANGE VALUE

EXAMINE VALUE

HEMISPHERE

MATRIX
METAL

OFFSET

POINT

POSITION

POSITION/ANGLES

POSITION/MATRIX

POSITION/QUATERNION

QUATERNION

READ VPD

6: Ascension RS232 Interface Reference

& Tip: Fora

listing of valid
system parameters
to use with the
CHANGE or
EXAMINE VALUE

Description commands, see
CHANGE VALUE
in the ‘Command

Data record contains 3 rotation angles. Reft‘?rence'
section.

Aligns Tracker to reference direction.

Aligns sensor to the reference frame

Remove the sensor BORESIGHT

Changes the value of a selected Tracker system parameter.
Reads and examines a selected Tracker system parameter.
Changes the hemisphere for dipole tracking.

Data record contains 9-element rotation mattix.

Enables reporting of the metal/quality/distortion data.

Configures positional outputs from the tracker to specify a
location that is offset from the center of the Sensor.

One data record is output from the 3DGuidance unit for each
B command issued.

Data record contains X, Y, Z position of sensor.

Data record contains POSITION and ANGLES.

Data record contains POSITION and MATRIX.

Data record contains POSITION and QUATERNION.
Data record contains Quaternions.

Reads a single byte from Vital Product Data section of board,
transmitter, sensor or preamplifier EEPROM.

206

REFERENCE FRAME
REPORT RATE

*RESET

RS232 TO FBB

RUN
SLEEP

STREAM

STREAM STOP

WRITE VPD

6: Ascension RS232 Interface Reference

Defines new measurement reference frame.

Number of data records/second output in STREAM mode.
Performs a system reset

Selects sensor.

Turns Transmitter ON and starts running after SLEEP.
Turns Transmitter OFF and suspends system operation.

Data records are transmitted continuously from the selected
3DGuidance™ unit. If GROUP mode is enabled then data
records are output continuously from all running
3DGuidance™ units.

Stops any data output that was started with the STREAM.

Write a single byte to Vital Product Data section of board,
transmitter, sensor or preamplifier EEPROM.

*Reset command not supported at this time.

207

6: Ascension RS232 Interface Reference

Command Utilization

Your host computer may tell the tracker what type of data to send when a data & .

.. . . R ip: Check
request is issued. Sending one of the following data record commands indicates | 00 s
the desired type of data: ANGLES, MATRIX, POSITION, QUATERNION, | program Terminal
POSITION/ANGLES, POSITION/MATRIX or g‘nfgggg_; éaﬁf
POSITION/QUATERNION. These commands do not cause the tracker to | for further
transmit data to the host. For the host to receive data, it must issue a data request. gl(;‘;t;f;i:g u‘;;g‘:
Use the POINT data request each time you want one data record or use the :
STREAM data request to initiate a continuous flow of data records from the
tracker. If you want to reduce the rate at which data STREAMs from the tracker, use the REPORT
RATE command. All commands can be issued in any order and at any time to change the tracker’s

output characteristics.

The following is a hypothetical command sequence, issued after power-up, which illustrates the use of
some of the commands.

COMMAND ACTION

ANGLES Output records will contain angles only.

POINT Tracker outputs ANGLES data record.

STREAM ANGLE data records start streaming from Tracker and will not stop until the
mode is changed to POINT or the STREAM STOP command is issued.

POINT An ANGLE data record is output and the streaming is stopped.

Response Format

Two types of binary data are returned from the tracker:
1. Position/Orientation data
2. CHANGE/EXAMINE VALUE data

Position/otientation data are the data returned from the tracker in the ANGLES, POSITION,
MATRIX, POSITION/ANGLES, POSITION/MATRIX, POSITION/QUATERNION and
QUATERNION formats. This data is returned in one or more 8-bit data bytes, using a special format
described below.

All other types of data that the tracker returns are in the CHANGE /EXAMINE VALUE data
format. This data is also returned in one or more 8-bit data bytes, using the response format described
with each Change/Examine value command. (see the RS232 Command Reference section for details).

208

6: Ascension RS232 Interface Reference

The Change/Examine value data is not shifted and does not contain the 'phasing’ bits found in the
Position/Orientation data.

Position/Orientation Data Format

The Position/Oftientation information generated by the tracker is sent in a form called a data record.
The number of bytes in each record is dependent on the output format selected by the user. Each 2-
byte word is in a binary format dependent on the word type (i.e. Position, Angles, etc.). The binary
formats consist of the 14 most significant bits (bits B15 - B2) of the sixteen bits (bits B15 - BO), which
define each word. The tracker does not use the two least significant bits (bits B1 and B0). The first bit
of the first byte transmitted is always a one (1) while the first bit of all other transmitted bytes in the
record is always a zero (0). These "phasing" bits are required for the host computer to identify the start
of a record when the data is streaming from the tracker without individual record requests. In general,
the output data will appear as follows:

MS BIT LS BIT
7 6 5 4 3 2 1 0 WORD #
1 B8 B7 B6 B5 B4 B3 B2 #1 LSbyte
0 B15 Bl14 B13 Bl2 Bll B10 B9 #1 MSbyte
0 C8 C7 Cé C5 C4 C3 c2 #2 LSbyte
0 cl5 Ci14 C13 C12 Cl1 cCl10 C9 #2 MSbyte
0
0
0
0 N8 N7 N6 N5 N4 N5 N2 #N LSbyte
0 N15 N14 N13 N12 NI11 N10 N9 #N MSbyte

The MS (most significant) bits are the phasing bits, and are not part of the data.
For example, the tracker is about to send a data record consisting of these three data words:

Word# Decimal Hex Binary (2 bytes)
MSbyte LSbyte
#1 4386 1122 00010001 00100010
#2 13124 3344 00110011 01000100
#3 21862 5566 01010101 01100110

The conversion to the binary data format by the tracker is as follows:

TRACKER
1) Shifts each data word right 2) Breaks each word into MSByte
one bit LSByte pairs
MS LS 10010001 LS
00001000 10010001 00001000 MS
00011001 10100010 10100010 LS
00101010 10110011 00011001 MS

10110011 LS

209

3) Shifts each LSByte right one more
bit (Marks with "1" if first byte)

MS BIT LS BIT
76 543210 WORD#
1100100 0 #1LSByte
000O01TO0O0 O #1MSByte
010100 0 1 #2LSByte
0001100 1 #2MSByte
010110 0 1 #3LSByte
00101010 #3MSByte

6: Ascension RS232 Interface Reference

00101010 MS

4) Transmits all bytes in stream

The uset's computer can identify the beginning of the data record by catching the leading "1", and
converting subsequent data bytes back to their proper binary values.

HOST:

1) Receives data bytes in stream after
catching first marked "1" (Changes
that "1" back to a "0")

01001000 LS
00001000 MS
01010001 LS
00011001 MS
01011001 LS
00101010 MS

3) Combines each MSByte/LSByte pair
into data words

MS LS

00001000 10010000
00011001 10100010
00101010 10110010

2) Shifts each LSByte left one bit

10010000 LS
00001000 MS
10100010 LS
00011001 MS
10110010 LS
00101010 MS

4) Shifts each word left one more
bit, giving the correct original
binary value

MS LS
00010001 00100000
00110011 01000100
01010101 01100100

You don't need to worry about the fact that the two least significant bits are different because the data

words do not use these bits.

210

6: Ascension RS232 Interface Reference

RS232 Command Reference

All commands are listed alphabetically in the following section. Each command description contains
the command codes required to initiate the commands, as well as the format and scaling of the data

records that the tracker will output to the host computer.

211

6: Ascension RS232 Interface Reference

ANGLES

ASCII HEX DECIMAL BINARY

Command Byte w 57 87 01010111

In the ANGLES mode, the tracker outputs the orientation angles of the sensor with respect to the
Transmitter. The orientation angles are defined as rotations about the Z, Y, and X axes of the sensor.
These angles are called Zang, Yang, and Xang or, in Euler angle nomenclature, Azimuth, Elevation,
and Roll. The output record is in the following format for the six transmitted bytes:

MSB LSB

7 6 5 4 3 2 1 0 BYTE #

1 Z8 Z7 Z6 Z5 Z4 Z3 Z2 #1 LSbyte Zang
0 Zz15 Z14 713 zl12 zZ11 z10 Z9S #2 MSbyte Zang
0O Y8 Y7 Y6 Y5 Y4 Y3 Y2 #3 LSbyte Yang
0 Yl5 Y14 Y13 Y12 Y11l Y10 YO #4 MSbyte Yang
0 X8 X7 X6 X5 X4 X3 X2 #5 LSbyte Xang
0 X15 X14 X13 X12 X11 X10 X9 #6 MSbyte Xang

Zang (Azimuth) takes on values between the binary equivalent of +/- 180 degrees. Yang (Elevation)
takes on values between +/- 90 degrees, and Xang (Roll) takes on values between +/- 180 degrees.
As Yang (Elevation) approaches +/- 90 degrees, the Zang (Azimuth) and Xang (Roll) become very
noisy and exhibit large errors. At 90 degrees the Zang (Azimuth) and Xang (Roll) become undefined.
This behavior is not a limitation of the tracker. Rather, itis an inherent characteristic of Euler angles.
If you need a stable representation of the sensor orientation at high Elevation angles, use the MATRIX
output mode.

The scaling of all angles is full scale = 180 degrees. Thatis, +179.99 deg = 7FFF Hex, 0 deg = 0 Hex,
-180.00 deg = 8000 Hex.

To convert the numbers into angles (degrees) first cast it into a signed integer. This will give you a
number from +/- 32767. Second multiply by 180 and finally divide the number by 32768 to get the
angle. The equation should look something like this:

(signed int(Hex #) * 180) / 32768

212

6: Ascension RS232 Interface Reference

ANGLE ALIGN

ASCII HEX DECIMAL BINARY

Command Byte q 71 113 01110001

Command Data A E R

By default, the angle outputs from each sensor are measured in the coordinate

frame defined by the Transmitter's X, Y and Z axes (see Default Reference % Note:

Frames) and are measured with respect to rotations about the physical X, Y The ANGLE

and Z axes of the sensor. The ANGLE ALIGN1 command allows you to ALIGN

mathematically change each sensor's X, Y and Z axes to an orientation that Lo oty

. affects the

differs from that of the actual sensor. computation of
orientation - it

For example: has no effect
on position.

Suppose that during installation you find it necessary, due to physical

requirements, to cock the sensor, resulting in its angle outputs reading Azim = 5 deg, Elev = 10 and
Roll = 15 when it is in its normal "resting" position. To compensate, use the ANGLE ALIGN command,
passing as Command Data the angles of 5, 10 and 15 degrees. After this sequence is sent, the sensor
outputs will be zero, and orientations will be computed as if the sensor were not misaligned.

The host computer must send the Command Data immediately following the

Command Byte. Command data consists of the angles. / e
. . The ANGLE
The Command Byte and Command Data must be transmitted to the tracker in ALIGN
the following seven-byte format: command is
ighored for
5DOF sensors.
MSB LSB
7 6 5 4 3 2 1 0 BYTE #
0 1 1 1 0 0 1 0 #1 Command Byte
B7 B6 B5 B4 B3 B2 Bl BO #2 LSbyte A
B15 B14 B13 Bl2 Bll B1l0 BS B8 #3 MSbyte A
B7 Bé B5 B4 B3 B2 Bl BO #4 LSbyte E
B15 B14 B13 Bl2 B1ll B10 BS B8 #5 MSbyte E
B7 B6 B5 B4 B3 B2 Bl BO #6 LSbyte R
B15 B14 B13 Bl12 B1ll B10 B9 B8 #7 MSbyte R

See the ANGLES command for the format and scaling of the angle values sent.

213

6: Ascension RS232 Interface Reference

BORESIGHT

ASCII HEX DECIMAL BINARY

Command Byte u 75 117 01110101

Sending the single byte BORESIGHT command to your tracker causes the sensor to be aligned to the
tracker's REFERENCE FRAME. In other words, when you send the command, the sensor’s
orientation outputs will go to zero, making it appear as if it was physically aligned with the Tracker’s
REFERENCE FRAME. All orientation outputs thereafter are with respect to this BORESIGHT
orientation. This command is equivalent to taking the angle outputs from the Tracker and using them
in the ANGLE ALIGN commands but without the need to supply any angles with the command. This
command does not change any angles you may have set using the ANGLE ALIGN command.
However, if you use the ANGLE ALIGN command after you send the BORESIGHT command, these
new ANGLE ALIGN will remove the effect of the BORESIGHT command and replace them with the
ANGLE ALIGN angles.

Use the BORESIGHT REMOVE command to revert to the sensor outputs as measured by the
orientation of the sensor

214

6: Ascension RS232 Interface Reference

BORESIGHT REMOVE

ASCII HEX DECIMAL BINARY

Command Byte v 76 118 01110110

Sending the single byte BORESIGHT REMOVE command to your tracker causes the sensor’s
orientation outputs to revert to their values before you sent the BORESIGHT command. That is, if
there were no ANGLE ALIGN values present, the sensor’s orientation outputs will now be with respect
to the sensor’s physical orientation. If there were ANGLE ALIGN values present before the
BORESIGHT command was given, then after the BORESIGHT REMOVE command is given, the
sensor’s orientation outputs will be with respect to this mathematically defined ANGLE ALIGN sensor
orientation.

215

6: Ascension RS232 Interface Reference

BUTTON MODE

ASCII HEX DECIMAL BINARY

Command Byte M 4D 77 01001101

Command Data MODE

The BUTTON MODE command is used to set how the state of an external button (SWITCH
connector on rear panel of tracker) will be reported to the host computer. The BUTTON
MODE Command Byte must be followed by a single Command Data byte which specifies the
desired report format. The button state is reported to the host via a single Button Value byte.
This byte can be sent by the Tracker after the last data record element is transmitted, or can be
read at any time using the BUTTON READ command. If you set the Command Data byte equal
to 0 Hex, the Button Value byte is not appended to the data record, and you must use the
BUTTON READ command to examine the status of the button. If you set the Command Data
byte equal to 1, the Button Value byte will be appended to the end of each transmitted data record
unless the Metal indicator byte is output also, in which case the Metal indicator byte will be the
last byte and the Button value byte will be next to last. For example, you had selected the
POSITION/ANGLE mode, the output sequence would now be: x, y, z, az, el, tl, button, for a
total of 13 bytes instead of the normal 12 bytes.

The BUTTON MODE command must be issued to the Tracker in the following 2-byte

sequence:

MSB 1.SB

7 6 5 4 3 2 1 0 BYTE #

01 0 0 1 1 01 #1 Command Byte
0O 0 0 0 0 0 0 DO #2 Command Data

Where DO is either O or 1.

For a description of the values which may be returned in the Button Value byte, see the
BUTTON READ command.

216

6: Ascension RS232 Interface Reference

BUTTON READ

ASCII HEX DECIMAL BINARY

Command Byte N 4E 78 01001110

The BUTTON READ command allows you to determine at any time the state of an external
button (contact closure/switch) that the user has connected to the SWITCH connector on rear
panel of tracker. This command is especially useful when you want to read the buttons but do not

have BUTTON MODE set to 1 (which would append the Button Value byte to every transmitted
record).

Immediately after you send the BUTTON READ Command Byte, the Tracker will return a single
byte containing the button value. The Button Value byte can assume the following Hex values:

0 Hex = 0: No button pressed.

1 Hex = 1: Button pressed

/ Note: The Button Value byte does not contain the phasing bits normally included in the Bird's
transmitted data records: The above values are the ones actually sent to the host.

The Tracker updates its button reading every transmitter axis cycle (3 times per measurement
cycle for mid and short-range transmitters), whether you request the value or not. Thus, the
system does not store previous button presses, and indicates only whether the button has been
pressed within the last transmitter axis cycle.

217

6: Ascension RS232 Interface Reference

CHANGE VALUE

ASCII HEX DECIMAL BINARY
CHANGE VALUE
Command Byte P 50 80 01010000
CHANGE VALUE
Command Byte PARAMETERNnumber PARAMETERvalue

The CHANGE VALUE command allows you to change the value of the tracker parameter defined by
the PARAMETERnNnumber byte and the PARAMETERvalue byte(s) sent with the command.

EXAMINE VALUE

ASCII HEX DECIMAL BINARY
EXAMINE VALUE
Command Byte 0 4F 79 01001111
EXAMINE VALUE
Command Byte PARAMETERNumber

The EXAMINE VALUE command allows you to read the value of the tracker parameter defined by the
PARAMETERNumber sent with the command. Immediately after the tracker receives the command
and command data, it will return the parameter value as a multi-byte response.

VALID PARAMETERS

Valid CHANGE VALUE and EXAMINE VALUE PARAMETERnumbers are listed in the table below.
Note: not all PARAMETERNnumbers are CHANGEable, but ALL are EXAMINEable.

PARAMETER # CHANGEable CHANGE EXAMINE PARAMETER DESCRIPTION
bytes bytes
send send receive

Dec Hex

0 0 No 0 2 2 Tracker status

1 1 No 0 2 2 Software revision number

2 2 No 0 2 2 Tracker computer crystal speed

3 3 Yes 4 2 2 Position scaling

4 4 Yes 4 2 2 Filter on/off status

5 5 Yes 16 2 14 DC Filter constant table ALPHA_MIN
7 7 Yes 4 2 2 Measurement rate

8 8 Yes 3 2 1 Data ready output character

9 9 Yes 3 2 1 Changes data ready character

10 A No 0 2 1 Tracker outputs an error code

12 C Yes 16 2 14 DC filter constant table Vm

13 D Yes 16 2 14 DC filter constant table ALPHA_MAX

218

6: Ascension RS232 Interface Reference

14 E Yes Sudden output change elimination
15 F No 0 System Model Identification

17 11 Yes XYZ Reference Frame

20 14 Yes Filter line frequency

22 16 Yes Hemisphere

23 17 Yes Angle Align2

24 18 Yes Reference Frame2

25 19 No Tracker (Electronics) Serial Number
26 1A No Sensor Serial Number

27 1B No Xmtr Serial Number

OOOOOOCX)(,OOOD—\K)\OOOOOOO#COCOOOO

NNNNPNPNNONDNDNNNONNDNDNNDNDNNNDNDNDNDNODNNDDN
NNNNNNNOOO =222 NDNNOON -

28 1C Yes 0 Metal Detection

29 1D Yes Report Rate

35 23 Yes Group Mode

36 24 No 4 System Status

50 32 Yes AutoConfig

71 47 Yes Sensor Offsets

130 82 No Boot Loader Firmware Revision

131 83 No MDSP Firmware Revision

133 85 No NonDipole POServer Firmware Revision
135 87 No 5DOF Firmware Revision

136 88 No 6DOF Firmware Revision

137 89 No Dipole POServer Firmware Revision

The CHANGE VALUE command must be issued to the tracker in the following N-byte sequence:

MSB LSB
7 6 5 4 3 2 1 0 BYTE #
0 1 0 1 0 0 0 0 #1 Command Byte, 'P'
N7 N6 N5 N4 N3 N2 N1 NO #2 PARAMETERnumber
B7 B6 B5 B4 B3 B2 Bl BO #3 PARAMETERdata LSbyte
B7 B6 B5 B4 B3 B2 Bl BO #4 PARAMETERdata MSbyte
B7 B6 B5 B4 B3 B2 Bl BO #N PARAMETERdata

Where N7-NO represent a PARAMETERnumber (i.e. 00000011 or 00000100), and B7-B0 represent N-
bytes of PARAMETERdata. If the PARAMETERdata is a word then the Least Significant byte (LSbyte)
is transmitted before the Most Significant byte (MSbyte). If the PARAMETERdata is numeric, it must be
in 2's complement format. You do not shift and add 'phasing' bits to the data.

The EXAMINE VALUE command must be issued to the tracker in the following 2-byte sequence:

MSB LSB

7 6 5 4 3 2 1 0 BYTE #

0 1 0 0 1 1 1 1 #1 Command Byte

N7 N6 N5 N4 N3 N2 N1 NO #2 PARAMETERnumber

Where N7-NO represent a PARAMETERnNumber, i.e. 00000000 or 00000001, etc.

219

6: Ascension RS232 Interface Reference

If the PARAMETERdata returned is a word then the Least Significant byte (LSbyte) is received before
the Most Significant byte (MSbyte). If the PARAMETERdata is numeric, it is in 2's complement format.
The PARAMETERdata received does not contain 'phasing' bits. The PARAMETER data value, content
and scaling depends on the particular parameter requested. See the following discussion of each

parameter.

220

TRACKER STATUS

6: Ascension RS232 Interface Reference

When PARAMETERnumber = 0 during EXAMINE, the tracker returns a status word to tell the user in
what mode the unit is operating. The bit assignments for the two-byte response are:

B15

B14

B13

B12

B6-B11

BS

B4, B3, B2, B1

BO

1
0

1
0

1

if Tracker is a Master Tracker
if Tracker is a Slave Tracker

if Tracker has been initialized following Auto-Config
if Tracker has not been initialized

if errors exist in the SYSTEM ERROR register (error(s) detected)

0 if no errors exist in the register (no errors detected)

1 if Tracker is RUNNING
0 if Tracker is not RUNNING

Not currently used by 3DGuidance™

y y & Tip: To
1 if The Tracker is in SLEEP mode. (Opposite of B12) :trg?\g;f;'?s)
0 if The Tracker is in RUN mode i

this 'flag’ (B13),

0001 if POSITION outputs selected send 10 as the
0010 if ANGLE outputs selected parameter. See
0011 if MATRIX outputs selected Error Code

0100 if POSITION/ANGLE outputs selected

below.

0101 if POSITION/MATRIX outputs selected

0110 factory use only

0111 if QUATERNION outputs selected

1000 if POSITION/QUATERNION outputs selected

0 if POINT mode selected
1 if STREAM mode selected

(Note: in STREAM mode you can not examine status)

SOFTWARE REVISION NUMBER

When PARAMETERNnumber = 1 during EXAMINE, the tracker returns the two byte revision number of
the software located in its Flash memory. The revision number in base 10 is expressed as INT.FRA
where INT is the integer part of the revision number and FRA is the fractional part. For example, if the
revision number is 2.13 then INT = 2 and FRA = 13. The value of the most significant byte returned is
FRA. The value of the least significant byte returned is INT. Thus, in the above example the value
returned in the most significant byte would have been 0D Hex and the value of the least significant byte
would have been 02 Hex. If the revision number were 3.1 then the bytes would be 01 and 03 Hex.

221

6: Ascension RS232 Interface Reference

TRACKER COMPUTER CRYSTAL SPEED

When PARAMETERnumber = 2 during EXAMINE, the tracker returns the speed of its computer's
crystal in megahertz (MHz). The most significant byte of the speed word is equal to zero, and the base
10 value of the least significant byte represents the speed of the crystal. For example, if the least
significant byte = 19 Hex, the crystal speed is 25 MHz. The tracker always reports 325MHz.

POSITION SCALING

When PARAMETERNnumber = 3 during EXAMINE, the tracker returns a code that describes the scale
factor used to compute the position of the sensor with respect to the transmitter. If the separation
exceeds this scale factor, the tracker’s position outputs will not change to reflect this increased
distance, rendering the measurements useless. The most significant byte of the parameter word
returned is always zero. If the least significant byte = 0, the scale factor is 36 inches for a full-scale
position output. If the least significant byte is = 1, the full-scale output is 72 inches

To CHANGE the scale factor send the tracker two bytes of PARAMETERdata with the most significant
byte set to zero and the least significant set to zero or one.

Note: Changing the scale factor from the default 36 inches to 72 inches reduces by half the resolution
of the output X, Y, Z coordinates.

FILTER ON/OFF STATUS

When PARAMETERnumber = 4 during EXAMINE, the tracker returns a code that tells you what
software filters are turned on or off in the unit. You most likely will not need to change the filters, but it
is possible to do so. The most significant byte returned is always zero. The bits in the least significant
byte are coded per the following:

BIT NUMBER MEANING

B7-B3 0

B2 0 if the AC NARROW notch filter is ON
1 if the AC NARROW notch filter is OFF (default)

B1 0 if the AC WIDE notch filter is ON (default)
1 if the AC WIDE notch filter is OFF

BO 0 if the DC (Adaptive) filter is ON (default)
1 if the DC filter is OFF

The AC NARROW notch filter refers to a two-tap finite impulse response (FIR) notch filter that is
applied to signals measured by the tracker’s sensor to eliminate a narrow band of noise with sinusoidal
characteristics. Use this filter in place of the AC WIDE notch filter when you want to minimize the
transport delay between tracker measurement of the sensor’s position/orientation and the output of
these measurements. The transport delay of the AC NARROW notch filter is approximately one third
the delay of the AC WIDE notch filter.

222

6: Ascension RS232 Interface Reference

The AC WIDE notch filter refers to a six tap FIR notch filter that is applied to the sensor data to
eliminate sinusoidal signals with a frequency between 30 and 72 hertz. If your application requires
minimum transport delay between measurement of the sensor’s position/orientation and the output of
these measurements, you may want to evaluate the effect on your application with this filter shut off
and the AC NARROW notch filter on. If you are running the tracker synchronized to a CRT, you can
usually shut this filter off without experiencing an increase in noise.

The DC filter refers to an adaptive, low pass filter applied to the sensor data to eliminate high frequency
noise. When the DC filter is turned on, you can modify its noise/lag characteristics by changing
ALPHA_MIN and Vm.

To CHANGE the FILTER ON/OFF STATUS send the tracker two bytes of PARAMETERdata with the
most significant byte set to zero and the least significant set to the code in the table above.

DC FILTER CONSTANT TABLE ALPHA_MIN

When PARAMETERnumber = 5 during EXAMINE, The tracker returns 7 words (14 bytes) which define
the lower end of the adaptive range that filter constant ALPHA_MIN can assume in the DC filter. When
ALPHA_MIN = 0 Hex, the DC filter will provide an infinite amount of filtering (the outputs will never
change even if you move the sensor). When ALPHA_MIN = 0.99996 = 7FFF Hex, the DC filter will
provide no filtering of the data.

The default values are:

ALPHA MIN / Note: Only
decima) i
the microBIRD.
Mid-Range Tranmitter Range ALPHA MIN Additional bytes
included so as to
(ooree) (decima L
Oto 17 0.02 = 028F Hex :
17 to 22 0.02
22 to 27 0.02
27 t0 34 0.02
34t042 0.02
42 to 54 0.02
54 + 0.02

To CHANGE ALPHA_MIN, send the tracker seven words of PARAMETERGdata corresponding to the
ALPHA_MIN table defined above. Increase ALPHA_MIN to obtain less; decrease ALPHA_ MIN to
provide more filtering (less noise/more lag). ALPHA_MIN must always be less than ALPHA_MAX.

MEASUREMENT RATE

During EXAMINE, the tracker returns a word that is used to determine the measurement rate of the
unit. The word returned is the measurement rate in cycles/sec times 256.

223

6: Ascension RS232 Interface Reference

The measurement rate in cycles/sec is computed from:
measurement rate = (word returned)/256.

To CHANGE the MEASUREMENT RATE, send the tracker one word of PARAMETERdata
corresponding to (measurement rate) * 256.

DISABLE/ENABLE DATA READY OUTPUT

Enabling the DATA READY character provides a method for notifying you as soon as the newest
position and orientation data has been computed. Typically, you would issue a POINT data request as
soon as you receive the DATA READY command. If you are running in STREAM mode you should not
use the DATA READY character since the position and orientation is sent to you automatically as soon
as it is ready.

When PARAMETERNnumber = 8 during EXAMINE, the tracker outputs one byte of data, equal to 1 if
Data Ready Output is enable or a 0 if disabled.

To CHANGE DATA READY, send the tracker one byte of PARAMETERdata = 1 if the tracker is to

output the Data Ready Character every measurement cycle as soon as a new measurement is ready
for output. The default Data Ready Character is a comma (2C Hex, 44 Dec).

SET DATA READY CHARACTER

/ Note: ‘The

When PARAMETERNnumber = 9 during EXAMINE, the tracker returns one SET DATA READY
byte, the current ASCII value of the Data Ready Character. CHARACTER is
not supported at
To CHANGE the DATA READY CHARACTER, send the tracker one byte of this time.
PARAMETERdata equal to the character value that the tracker should use as
the Data Ready Character.

ERROR CODE

When PARAMETERNnumber = 10 during EXAMINE, the tracker will output a one byte Error code,
indicating a particular system condition was detected. The byte returned represents the earliest error
code sent to the SYSTEM ERROR register. See the Error Reporting section below, for details.

DC FILTER TABLE Vm

When PARAMETERnumber = 12 during EXAMINE, the tracker returns a 7 word (14 byte) table, or
during CHANGE, the user sends the tracker a 14 byte table representing the expected noise that the
DC filter will measure. By changing the table values the user can increase or decrease the DC filter's
lag as a function of sensor distance from the transmitter.

The DC filter is adaptive in that it tries to reduce the amount of low pass filtering in the tracker as it
detects translation or rotation rates in its sensor. Reducing the amount of filtering results in less filter
lag. Unfortunately electrical noise in the environment, when measured by the transmitter, may also

224

6: Ascension RS232 Interface Reference

make it look like the sensor is undergoing a translation and rotation. The tracker has to know if the
measured events are real due to movement or false due to noise. The tracker gets this knowledge by
the user specifying what the expected noise levels are in the operating environment. These noise
levels are the 7 words that form the Vm table. The Vm values can range from 1 for almost no noise to
32767 for a lot of noise.

The default values as a function of transmitter to sensor separation range for the standard
range transmitters are:

Mid-Range Transmitterr Vm
(inches) (integer)

Oto17
17 to 22
2210 27
27 to 34
34to42
42 to 54
54 +

AR DIMN

As Vm increases so does the amount of filter lag. To reduce the amount of lag, reduce the larger Vm
values until the noise in the tracker’s output is too large for your application.

DC FILTER CONSTANT TABLE ALPHA_MAX

When PARAMETERNnumber = 13 during EXAMINE, the tracker returns 7 words (14 bytes) that define
the upper end of the adaptive range that filter constant ALPHA_MAX can assume in the DC filter as a
function of sensor to transmitter separation. When there is a fast motion of the sensor, the adaptive
filter reduces the amount of filtering by increasing the ALPHA used in the filter. It will increase ALPHA
only up to the limiting ALPHA_MAX value. By doing this, the lag in the filter is reduced during fast
movements. When ALPHA_MAX = 0.99996 = 7FFF Hex, the DC filter will provide no filtering of the
data during fast movements.

The default values as a function of transmitter to sensor separation range for the standard range and
transmitters are:

Mid-Range Transmitter Range Std. Range Xmtr
ALPHA_ MAX
(inches) (fractional)
Oto17 0.9 = 07333 Hex.
17 to 22 0.9
22 to 27 0.9
27 to 34 0.9
34 t0 42 0.9
42 to 54 0.9
54 + 0.9

225

6: Ascension RS232 Interface Reference

To CHANGE ALPHA MAX send the tracker seven words of PARAMETERdata corresponding to
ALPHA_MAX. During CHANGE, you may want to decrease ALPHA_MAX to increase the amount of
filtering if its outputs are too noisy during rapid sensor movement. ALPHA_MAX must always be
greater than ALPHA_MIN.

SUDDEN OUTPUT CHANGE LOCK

When PARAMETERnumber = 14, during EXAMINE, the tracker returns a byte which indicates if the
position and orientation outputs will be allowed to change if the system detects a sudden large change
in the outputs. Large undesirable changes may occur at large separation distances between the
transmitter and sensor when the sensor undergoes a fast rotation or translation. The byte returned will
= 1 to indicate that the outputs will not be updated if a large change is detected. If the byte returned is
zero, the outputs will change.

To change SUDDEN OUTPUT CHANGE LOCK send the tracker one byte of PARAMETERdata = 0 to
unlock the outputs or send one byte = 1 to lock the outputs.

SYSTEM MODEL IDENTIFICATION

When PARAMETERnumber = 15 during EXAMINE, the tracker returns 10 bytes which will represent
the device that was found.

Device Description String Device
“6DFOB Stand alone (SRT)
“6DERC “ Extended Range Controller
“6DBOF * MotionStar (old name)
“6DMC180-4” 3D Guidance (4 sensor

3DGuidance")
“PCBIRD * pcBIRD
“SPACEPAD SpacePad
‘MOTIONSTAR” MotionStar (new name)
“WIRELESS * MotionStar Wireless
“ LaserBird2” laserBIRD 2
“phasorBIRD” phasorBIRD

226

6: Ascension RS232 Interface Reference

XYZ REFERENCE FRAME

By default, the XYZ measurement frame is the reference frame defined by the physical orientation of
the transmitter’'s XYZ axes even when the REFERENCE FRAME command has been used to specify a
new reference frame for measuring orientation angles. When PARAMETERnumber = 17, during
CHANGE, if the one byte of PARAMETER DATA sent to the tracker is = 1, the XYZ measurement
frame will also correspond to the new reference frame defined by the REFERENCE FRAME command.
When the PARAMETER DATA sent is a zero, the XYZ measurement frame reverts to the orientation of
the transmitter's physical XYZ axes.

During EXAMINE, the tracker returns a byte value of 0 or 1 to indicate that the XYZ measurement
frame is either the transmitter’s physical axes or the frame specified by the REFERENCE FRAME
command.

FILTER LINE FREQUENCY

When PARAMETERNnumber = 20, during EXAMINE, the tracker returns a byte whose value is the Line
Frequency which is being used to determine the Wide Notch Filter coefficients. The default Line
Frequency is 60 Hz.

To CHANGE the Line Frequency send 1 byte of PARAMETERdata corresponding to the desired Line
Frequency. The range of Line Frequencies available are 1 -> 255.

Example: To change the Line Frequency to 50Hz you would first send a Change Value command (50
Hex), followed by a Filter Line Frequency command (14 Hex), followed by the line frequency for 50 Hz
(32 Hex).

HEMISPHERE

When PARAMETERNnumber = 22, during EXAMINE, the tracker will return 2 bytes of data defining the
current Hemisphere. These are as follows:

Hemisphere HEMI_AXIS HEMI_SIGN
ASCIl HEX ASCIl HEX
Forward nul 00 nul 00
Aft (Rear) nul 00 soh 01
Lower ff 0C nul 00
Upper ff 0oC soh 01
Right ack 06 nul 00
Left ack 06 soh 01
Notes:
1) Please note that these are the same PARAMETERdata values as are used by the

HEMISPHERE command ‘L’ (4C Hex).

To CHANGE the Hemisphere, send 2 PARAMETERdata bytes as described above.

227

6: Ascension RS232 Interface Reference

2) This command operates in exactly the same way as the HEMISPHERE command. The
command is now included in the CHANGE/EXAMINE command set in order to allow users to
examine the values which were previously inaccessible.

3) The values can only be EXAMINED with this command if they were previously CHANGED by
this command.

ANGLE ALIGN

When PARAMETERNumber = 23 during EXAMINE, The tracker will return 3 words (6 bytes) of data
corresponding to the Azimuth, Elevation, and Roll angles used in the ANGLE ALIGN command. This
command differs from the ANGLE ALIGN command only in that it allows both reading and writing of the
angles. See ANGLE ALIGN for a full explanation of its use.

To CHANGE the angles send 6 bytes of PARAMETERdata after the 2 command bytes.

REFERENCE FRAME

When PARAMETERNnumber = 24 during EXAMINE, the tracker will return 3 words (6 bytes) of data
corresponding to the Azimuth, Elevation and Roll angles used in the REFERENCE FRAME command.

See REFERENCE FRAME2 command for an explanation.

To CHANGE the angles send 6 bytes of PARAMETERdata after the 2 command bytes.
TRACKER SERIAL NUMBER

When PARAMETERnumber = 25 during EXAMINE, The tracker will return a 1 word (2 byte) value
corresponding to the Serial Number of the Electronics Unit.

Note: This number cannot be changed.

SENSOR SERIAL NUMBER

When PARAMETERNnumber = 26, during EXAMINE, the tracker will return a 1 word (2 byte) value
corresponding to the Serial Number of its sensor. This number cannot be changed.

TRANSMITTER SERIAL NUMBER

When PARAMETERNnumber = 27, during EXAMINE, the tracker will return a 1 word (2 byte) value
corresponding to the Serial Number of its transmitter. You cannot swap transmitters while the tracker is
switched ON. If you do you will get the Serial Number of the transmitter that was attached to the
tracker when it was first turned on. This number cannot be changed.

228

6: Ascension RS232 Interface Reference

METAL

When PARAMETERNnumber=28, during EXAMINE, the tracker that this command is sent to, returns 5
words (10 bytes) of data that define the metal detection parameters. The order of the returned words
is:

METALflag
METAL sensitivity
METALOoffset
METALslope
METALalpha

The least significant byte of each parameter, which is sent first, contains the parameter value. The
most significant byte is always zero.

On CHANGE, the user sends the tracker, 5 words of metal detection parameter data as defined above
in the EXAMINE command.

If you only want to change one metal parameter at a time, refer to the METAL command.
REPORT RATE

When PARAMETERNumber = 29 during EXAMINE, the tracker will return a single byte of data that
defines how often its outputs data to your host computer when in STREAM mode. This change
parameter value is similar to the REPORT RATE command except the user is not limited to a report
rate of every first, second, eighth, or thirty-second cycles.

During CHANGE, the user supplies one byte with this command with any value between 1 and 127 that
defines how many updates occur before position and orientation data are output when the tracker is in
STREAM mode.

GROUP MODE

The GROUP MODE command is used if you have multiple sensors and you want to get data from all
the sensors by issuing a single request.

When PARAMETERNnumber = 35, during EXAMINE VALUE, the tracker will respond with one byte of
data indicating if the Tracker is in GROUP MODE. If the data is a 1, the Tracker is in GROUP MODE
and if the data is 0 The Tracker is not in GROUP MODE. When in GROUP MODE, in response to the
POINT or STREAM commands, the tracker will send data records from all sensors attached to the
system. Information is output from the sensor with the smallest address first. The last byte of the data
record from each sensor contains the address of that sensor. This address byte contains no phasing
bits. Each sensor can be in a different data output format if desired. For example, if 3 sensors are in
the system, and the first is configured to output POSITION data only (6 data bytes plus 1 address byte)
and the other two are configured to output POSITION/ANGLES data (12 data bytes plus 1 address
byte), the system will respond with 33 bytes when a data request is made.

During a CHANGE VALUE command, the host must send one data byte equal to a 1 to enable
GROUP MODE or a 0 to disable GROUP MODE.

229

6: Ascension RS232 Interface Reference

SYSTEM STATUS

When PARAMETERNnumber = 36, during EXAMINE, the trackers returns to the host

computer 14 bytes defining the physical configuration.. This command can be sent to the Master either
before or after the tracker is running. The response has the following format, where one byte is
returned for each possible FBB address:

BYTE 1 - address 1 configuration
BYTE 2 - address 2 configuration
BYTE 14 - address 14 configuration

Each byte has the following format:

BIT7 If 1, device is accessible on FBB. If O, device is not accessible. A
device is accessible when its fly switch is on. It may or may not be
running.

BIT 6 If 1, device is running. If 0, device is not running. A device is running when
the power switch is on, it has been AUTO-CONFIGed and it is AWAKE. A device is
not running when the power switch is on and it has not been AUTO-CONFIGed or it
has been AUTO-CONFIGed and it is ASLEEP.

BIT 5 If 1, device has a sensor. If 0, device does not have a sensor
BIT 4 If 1, transmitter is an ERT. If 0, transmitter is standard range
BIT 3 If 1, ERT #3 is present. If 0, not present
BIT 2 If 1, ERT #2 is present. If 0, not present
BIT 1 If 1, ERT #1 is present. If 0, not present

BIT 0 If 1, ERT #0 or standard range transmitter is present. If 0, not present.

Note that currently, 3D Guidance medSAFE does not support Extended Range Transmitters (ERTS).

AUTOCONFIG

The AUTO-CONFIGURATION command is used to start running multiple Trackers, i.e., multiple
sensors/tracked-objects. In the case of the 3D Guidance medSAFE, there are four Trackers.

When PARAMETERNnumber = 50, during an CHANGE VALUE command, the Master Tracker will
perform all the necessary configurations for a one transmitter/multiple sensor configuration. The
tracker expects one byte of data corresponding to the number of Trackers that should be used in the 1
transmitter/multiple sensor mode. The command sequence to AutoConfig for 4 sensors would look like
0x50, followed by 0x32, followed by 0x04.

When PARAMETERnumber = 50, during an EXAMINE VALUE command, the Tracker returns 5 bytes
of configuration information. Three pieces of information are passed, FBB CONFIGURATION MODE,
FBB DEVICES, and FBB DEPENDENTS. FBB CONFIGURATION MODE, indicates the current

230

6: Ascension RS232 Interface Reference

Tracker configuration as either Standalone or One Transmitter/Multiple Sensors mode. In the case of
3D Guidance medSAFE, the system is always in One Transmitter/Multiple Sensors mode. FBB
DEVICES is used to tell which Trackers on the FBB are running. FBB DEPENDENTS informs the
trackers that Slaves on the FBB will be using the signal transmitted from the current Master. In the
case of 3D Guidance medSAFE, the first Tracker is always the Master and the other Trackers are
always Slaves.

The bit definitions of the bytes are:

Byte 1 FBB Configuration Mode
0 STANDALONE
1 ONE TRANSMITTER/MULTIPLE SENSORS

Bytes 2, 3 FBB Devices
BIT 15 0

BIT 14 If 1, device at address 14 is running
If 0, device at address 14 is not running

A Tracker is RUNNING when the fly switch is on, it has been AUTO-
CONFIGed and it is AWAKE. A device is not running when the

fly switch is on and it has not been AUTO-CONFIGed or it has

been AUTO-CONFIGed and it is ASLEEP.

BIT 13 If 1, device at address 13 is running
If 0, device at address 13 is not running

Blf 1 If 1, device at address 1 is running
If 0, device at address 1 is not running

BITO 0

SENSOR OFFSET

When PARAMETERNnumber = 71 during EXAMINE, the tracker will return 3 words (6 bytes) of data
corresponding to the X, Y and Z offsets used in the OFFSET command.

See OFFSET command for an explanation.

To CHANGE the offsets send 6 bytes of PARAMETERGdata after the 2 command bytes.

231

6: Ascension RS232 Interface Reference

BOOT LOADER FIRMWARE REVISION

When PARAMETERNnumber = 130 during EXAMINE, the tracker will return 2 bytes indicating the
revision number of the Boot Loader firmware. E.g., if the first byte returned is 1 and the second byte is
2, the firmware revision number is 1.2.

MDSP FIRMWARE REVISION

When PARAMETERnNumber = 131 during EXAMINE, the system will return 2 bytes indicating the
revision number of the MDSP firmware. E.g., if the first byte returned is 1 and the second byte is 2, the
firmware revision number is 1.2.

NON DIPOLE POSERVER FIRMWARE REVISION

When PARAMETERNnumber = 133 during EXAMINE, the tracker will return 2 bytes indicating the
revision number of the NonDipole POServer firmware. E.g., if the first byte returned is 1 and the
second byte is 2, the firmware revision number is 1.2.

FIVE DOF FIRMWARE REVISION

When PARAMETERnumber = 135 during EXAMINE, the tracker will return 2 bytes indicating the
revision number of the SDOF firmware. E.g., if the first byte returned is 1 and the second byte is 2, the
firmware revision number is 1.2.

SIX DOF FIRMWARE REVISION

When PARAMETERNnumber = 136 during EXAMINE, the tracker will return 2 bytes indicating the
revision number of the 6DOF firmware. E.g., if the first byte returned is 1 and the second byte is 2, the
firmware revision number is 1.2.

DIPOLE POSERVER FIRMWARE REVISION

When PARAMETERNnumber = 137 during EXAMINE, the system will return 2 bytes indicating the
revision number of the Dipole POServer firmware. E.g., if the first byte returned is 1 and the second
byte is 2, the firmware revision number is 1.2.

232

6: Ascension RS232 Interface Reference

HEMISPHERE
ASCII HEX DECIMAL BINARY
Command Byte L 4C 76 01001100
Command Data HEMI_AXIS HEMI_SIGN

The shape of the magnetic field transmitted by the tracker is symmetrical about each of the axes of the
transmitter. This symmetry leads to an ambiguity in determining the sensor's X, Y, Z position. The
amplitudes will always be correct, but the signs (+) may all be wrong, depending upon the hemisphere
of operation. In many applications, this will not be relevant, but if you desire an unambiguous measure
of position, operation must be either confined to a defined hemisphere or your host computer must
‘track’ the location of the sensor.

There is no ambiguity in the sensor’s orientation angles as output by the ANGLES command, or in the
rotation matrix as output by the MATRIX command.

The HEMISPHERE command is used to tell the tracker in which hemisphere, centered about the
transmitter, the sensor will be operating. There are six hemispheres from which you may choose: the
forward, aft (rear), upper, lower, left, and the right. If no HEMISPHERE command is issued, the
forward is used by default.

The two Command Data bytes, sent immediately after the HEMISPHERE command, are to be selected
from these:

Hemisphere HEMI_AXIS HEMI_SIGN
ASCIl HEX ASCIl HEX
Forward nul 00 nul 00
Aft (Rear) nul 00 soh 01
Upper ff 0C soh 01
Lower ff 0oC nul 00
Left ack 06 soh 01
Right ack 06 nul 00

The ambiguity in position determination can be eliminated if your host computer’s software
continuously ‘tracks’ the sensor location. In order to implement tracking, you must understand the
behavior of the signs (z) of the X, Y, and Z position outputs when the sensor crosses a hemisphere
boundary. When you select a given hemisphere of operation, the sign on the position axes that
defines the hemisphere direction is forced to positive, even when the sensor moves into another
hemisphere. For example, the power-up default hemisphere is the forward hemisphere. This forces X
position outputs to always be positive. The signs on Y and Z will vary between plus and minus
depending on where you are within this hemisphere. If you had selected the lower hemisphere, the
sign of Z would always be positive and the signs on X and Y will vary between plus and minus. If you
had selected the left hemisphere, the sign of Y would always be negative, etc.

233

6: Ascension RS232 Interface Reference

Regarding the default forward hemisphere, if the sensor moved into the aft hemisphere, the signs on Y
and Z would instantaneously change to opposite polarities while the sign on X remained positive. To
‘track’ the sensor, your host software, on detecting this sign change, would reverse the signs on The
Tracker's X, Y, and Z outputs. In order to ‘track’ correctly: You must start ‘tracking’ in the selected
hemisphere so that the signs on the outputs are initially correct, and you must guard against the case
where the sensor legally crossed the Y = 0, Z = 0 axes simultaneously without having crossed the X =
0 axes into the other hemisphere.

234

6: Ascension RS232 Interface Reference

MATRIX

ASCII HEX DECIMAL BINARY

Command Byte X 58 88 01011000

The MATRIX mode outputs the 9 elements of the rotation matrix that define the orientation of the
sensor's X, Y, and Z axes with respect to the transmitter's X, Y, and Z axes. If you want a three-
dimensional image to follow the rotation of the sensor, you must multiply your image coordinates by
this output matrix.

The nine elements of the output matrix are defined generically by:

M(1,1) M(1,2) M(1,3)

M(2,1) M(2,2) M(2,3)

M(3,1) M(3,2) M(3,3)

Or in terms of the rotation angles about each axis
where Z = Zang, Y = Yang and X = Xang:

. COS (Y) *COS (Z) COS (Y) *SIN(Z) -SIN(Y)

-COS (X) *SIN(Z) COS (X) *COS (Z)
+SIN(X) *SIN(Y) *COS (Z) +SIN(X) *SIN(Y) *SIN(Z) SIN(X) *COS(Y)
SIN(X) *SIN(Z) -SIN(X) *COS (Z)
+COS (X) *SIN(Y) *COS (Z) +COS (X) *SIN(Y) *SIN(Z) COS (X) *COS (Y)

235

6: Ascension RS232 Interface Reference

Or in Euler angle notation, where R = Roll, E = Elevation, A = Azimuth:

COS (E) *COS (A) COS (E) *SIN(A) -SIN(E)

-COS (R) *SIN(A) COS (R) *COS (A)

+SIN(R) *SIN (E) *COS (A) +SIN(R) *SIN (E) *SIN (A) SIN(R) *COS (E)
SIN(R) *SIN(A) -SIN(R) *COS (A)

+COS (R) *SIN (E) *COS (A) +COS (R) *SIN (E) *SIN(A) COS (R) *COS (E)

The output record is in the following format for the eighteen transmitted bytes:

MSB LSB
7 6 5 4 3 2 1 0 BYTE #
1 M8 M7 M6 M5 M4 M3 M2 #1 LSbyte M(1,1)
0 M15 Ml14 M13 M12 M1l M10 M9 #2 MSbyte M(1,1)
0O M8 M7 M6 M5 M4 M3 M2 #3 LSbyte M(2,1)
0 M15 M4 M13 M12 M1l M10 M9 #4 MSbyte M(2,1)
0O M8 M7 M6 M5 M4 M3 M2 #5 LSbyte M(3,1)
0 M15 M14 M13 M12 M1l M10 M9 #6 MSbyte M(3,1)
0O M8 M7 M6 M5 M4 M3 M2 #7 LSbyte M(1,2)
0 M15 M14 M13 M12 M1l M10 M9 #8 MSbyte M(1,2)
0O M8 M7 M6 M5 M4 M3 M2 #9 LSbyte M(2,2)
0 M15 Ml14 M13 M12 M1l M10 M9 #10 MSbyte M(2,2)
0O M8 M7 M6 M5 M4 M3 M2 #11 LSbyte M(3,2)
0 M15 M4 M13 M12 M1l M10 M9 #12 MSbyte M(3,2)
0O M8 M7 M6 M5 M4 M3 M2 #13 LSbyte M(1,3)
0 M15 Ml14 M13 M12 M1l M10 M9 #14 MSbyte M(1,3)
0O M8 M7 M6 M5 M4 M3 M2 #15 LSbyte M(2,3)
0 M15 M14 M13 M12 M1l M10 M9 #16 MSbyte M(2,3)
0O M8 M7 M6 M5 M4 M3 M2 #17 LSbyte M(3,3)
0 M15 M14 M13 M12 M1l M10 M9 #18 MSbyte M(3,3)

The matrix elements take values between the binary equivalents of +.99996 and -1.0.
Element scaling is +.99996 = 7FFF Hex, 0 = 0 Hex, and -1.0 = 8000 Hex.

236

6: Ascension RS232 Interface Reference

METAL
ASCII HEX DECIMAL BINARY
Command Byte S 73 115 01110011
Command Data METALflag METALdata

When the METAL mode command is given, all subsequent tracker data requests will have a METAL
error byte added to the end of the data stream. If the BUTTON byte is also being output, the BUTTON
byte precedes the METAL byte. The METAL error byte is a number between 0 and 127 base 10 that
indicates the degree to which the position and angle measurements are in error due to ‘bad’ metals
located near the transmitter and sensor or due to tracker ‘system’ errors. ‘Bad’ metals are metals with
high electrical conductivity such as aluminum, or high magnetic permeability such as steel. ‘Good’
metals have low conductivity and low permeability such as 300- series stainless steel, or titanium. The
METAL error byte also reflects tracker ‘system’ errors resulting from accuracy degradations in the
transmitter, sensor, or other electronic components. The METAL error byte also responds to accuracy
degradation resulting from movement of the sensor or environmental noise. A METAL error byte =0
indicates no or minimal position and angle errors depending on how sensitive you have set the error
indicator. A METAL error byte = 127 indicates maximum error for the sensitivity level selected.

The metal detector is sensitive to the introduction of metals in an environment where no metals were
initially present. This metal detector can fool you, however, if there are some metals initially present
and you introduce new metals. It is possible for the new metal to cause a distortion in the magnetic
field that reduces the existing distortion at the sensor. When this occurs you'll see the METALerror
value initially decreases, indicating less error, and then finally start increasing again as the new metal
causes more distortion. Important Note: You need to evaluate your application for suitability

of this metal detector.

Because the tracker is used in many different applications and environments, the METAL error
indicator needs to be sensitive to this broad range of environments. Some users may want the METAL
error indicator to be sensitive to very small amounts of metal in the environment while other
applications may only want the error indicator sensitive to large amounts of metal. To accommodate
this range of detection sensitivity, the METAL command allows the user to set a Sensitivity that is
appropriate to their application.

The METAL error byte will always show there is some error in the system even when there are no
metals present. This error indication usually increases as the distance between the transmitter and
sensor increases and is due to the fact tracker components cannot be made or calibrated perfectly. To
minimize the amount of this inherent error in the METAL error value, a linear curve fit, defined by a
slope and offset, is made to this inherent error and stored in each individual sensor’'s memory since the
error depends primarily on the size of the sensor being used (25mm, 8mm, or 5 mm). The METAL
command allows the user to eliminate or change these values. For example, maybe the user’s
standard environment has large errors and he or she wants to look at variations from this standard
environment. To do this he or she would adjust the slope and offset to minimize the METAL error
values.

237

6: Ascension RS232 Interface Reference

On power up initialization of the system or whenever the user wants to change the METAL values the
user must send to the tracker the following three byte sequence:

Command Byte METALflag METALdata

Where the Command Byte is the equivalent of an ASCII s (lower case) and the METALflag and METAL
data are:

METALflag METALdata

0 0 Turn off metal detection.

1 0 Turn on metal detection using system default METALdata
2 Sensitivity Turn on metal detection and change the Sensitivity

3 Offset Turn on metal detection and change the Offset

4 Slope Turn on metal detection and change the Slope

5 Alpha Turn on metal detection and change the filter’s alpha

METALflag =0. This is the default power up configuration. No METAL error byte is output at the end of
the tracker’s data stream. A zero value, zero decimal or zero hex or zero binary must be sent as the
METALdata if you are turning off METAL detection.

METALflag=1. Turns on METAL detection using the system default sensitivity, offset, slope and alpha
values. When METAL detection is turned on an additional byte is output at the end of the tracker’s
output data. If you have BUTTON MODE enabled then the METAL error value will be output after the
BUTTON value byte is output.

METALflag=2. Turns on METAL detection and changes the sensitivity of the measurement to metals.
The Offset, Slope and Alpha values are unchanged from their previous setting. The METALerror value
that is output is computed from:

METALerror = Sensitivity x (METALerrorSYSTEM - (Offset + Slope x Range)). Where range is the
distance between the transmitter and sensor. The user supplies a Sensitivity byte as an integer
between 0 and 127 depending on how little or how much he or she wants METALerror to reflect errors.
The default value is 32.

METALflag=3. Turns on METAL detection and changes the Offset value defined in the equation
above. The Offset byte value must be an integer value between plus or minus 127. If you are trying to
minimize the base errors in the system by adjusting the Offset you could set the Sensitivity =1, and the
Slope=0 and read the Offset directly as the METALerror value.

METALflag=4. Turns on METAL detection and changes the Slope value defined in the equation
above. The Slope byte value must be an integer between plus or minus 127. You can determine the
slope by setting the Sensitivity=1 and looking at the change in the METALerror value as you translate
the sensor from range=0 to range max for the system, i.e. 36 inches for the tracker.. Since its difficult
to go from range =0 to max, you might just translate over say half the distance and double the
METALerror value change you measure.

METALflag=5. Turns on METAL detection and changes the filter's Alpha value. The METALerror
value is filtered before output to the user to minimize noise jitter. The Alpha value determines how
much filtering is applied to METALerror. Alpha varies from 0 to 127. A zero value is an infinite amount
of filtering, whereas a 127 value is no filtering. The system default is 12. As Alpha gets smaller the
time lag between the insertion of metal in the environment and it being reported in the METALerror
value increases.

238

OFFSET

6: Ascension RS232 Interface Reference

Command Byte

ASCII HEX DECIMAL BINARY

K 4B 75 01001011

Command Data

X,Y,Z OFFSET DISTANCES FROM SENSOR

Normally the position outputs from the tracker represent the x, y, z position of the center of the sensor
with respect to the origin of the transmitter. The OFFSET command allows the user to specify a
location that is offset from the center of the sensor. The x, y, z offset distances you supply with this
command are measured in the reference frame attached to the sensor and are measured from the
sensor center to the desired position. After the command is executed, all subsequent positional
outputs from the Tracker will be X, y, z desired.

With the command you send to the tracker three words of data, the Xoffset, Yoffset, and Zoffset
coordinates. The scaling of these coordinates is the same as the POSITION command coordinates.
For example, assume you were using a tracker in its default maximum range mode of 36 inches full
scale. Also assume the Xoffset, Yoffset, and Zoffset values where 5.4 inches, - 2.1 inches, and 1.3
inches. You would then output three integer or their hex equivalents to the tracker equal to:

Xoffset = 4915 =5.4 * 32768 / 36.
Yoffset = 63625 = 65536 - 1911

Zoffset = 1183

239

POINT

6: Ascension RS232 Interface Reference

Command Byte

ASCII

HEX

42

DECIMAL

66

BINARY

01000010

In the POINT mode, the tracker sends one data record each time it receives the B Command Byte.

240

6: Ascension RS232 Interface Reference

POSITION

ASCII HEX DECIMAL BINARY

Command Byte V 56 86 01010110

In the POSITION mode, the tracker outputs the X, Y, and Z positional coordinates of the sensor with
respect to the transmitter. The output record is in the following format for the six transmitted bytes:

MSB LSB

7 6 5 4 3 2 1 0 BYTE #

1 X8 X7 X6 X5 X4 X3 X2 #1 LSbyte X
0 X15 X14 X13 X12 X11 X10 X9 #2 MSbyte X
0 Y8 Y7 Y6 Y5 Y4 Y3 Y2 #3 LSbyte Y
0 Yl5 Y14 Y13 Y12 Y11l Y10 YO #4 MSbyte Y
0 Z8 z7 Z6 Z5 Z4 Z3 Z2 #5 LSbyte Z
0 Z15 714 2713 Z12 211 Z10 Z°S #6 MSbyte Z

The X, Y, and Z values vary between the binary equivalent of + MAX inches. Where MAX = 36" or 72".
The default positive X, Y, and Z directions are shown in Default Reference Frames on page 24

Scaling of each position coordinate is full scale = MAX inches. That s,

+MAX = 7FFF Hex, 0 = 0 Hex, -MAX = 8000 Hex. Since the maximum range (Range = square
root(X**2+Y**2+2**2)) from the Transmitter to the sensor is limited to MAX inches, only one of the X, Y,
or Z coordinates may reach its full scale value. Once a full scale value is reached, the positional
coordinates no longer reflect the correct position of the sensor.

To convert the numbers into inches first cast it into a signed integer. This will give you a number
from +/- 32767. Second multiply by 36 or 72. Finally divide the number by 32768 to get the position in
inches. The equation should look something like this:

(signed int(Hex #) * 36) / 32768
Or: (signed int(Hex #) * 72) / 32768

241

6: Ascension RS232 Interface Reference

POSITION/ANGLES

ASCII HEX DECIMAL BINARY

Command Byte Y 59 89 01011001

In the POSITION/ANGLES mode, the outputs from the POSITION and ANGLES modes are combined
into one record containing the following twelve bytes:

MSB LSB

7 6 5 4 3 2 1 0 BYTE #

1 X8 X7 X6 X5 X4 X3 X2 #1 LSbyte X

0 X15 X14 X13 X12 X11 X10 X9 #2 MSbyte X

0O Y8 Y7 Y6 Y5 Y4 Y3 Y2 #3 LSbyte Y

0 Y15 Y14 Y13 Y12 Y11l Y10 Y9 #4 MSbyte Y

O 28 27 Z6 Z5 Z4 Z3 Z2 #5 LSbyte Z

0 Zz15 214 213 Z12 211 210 Z9 #6 MSbyte Z

O 28 27 Z6 Z5 Z4 Z3 Z2 #7 LSbyte Zang
0 Zz15 214 213 Z12 211 210 Z9 #8 MSbyte Zang
0 Y8 Y7 Y6 Y5 Y4 Y3 Y2 #9 LSbyte Yang
0 Y15 Y14 Y13 Y12 Y11l Y10 Y9 #10 MSbyte Yang
0 X8 X7 X6 X5 X4 X3 X2 #11 LSbyte Xang
0 X15 X14 X13 X12 X11 X10 X9 #12 MSbyte Xang

See POSITION mode and ANGLE mode for number ranges and scaling.

242

6: Ascension RS232 Interface Reference

POSITION/MATRIX

ASCII HEX DECIMAL BINARY

Command Byte Z 5A 90 01011010

In the POSITION/MATRIX mode, the outputs from the POSITION and MATRIX modes are combined
into one record containing the following twenty four bytes:

MSB LSB

7 6 5 4 3 2 1 0 BYTE #

1 X8 X7 X6 X5 X4 X3 X2 #1 LSbyte X

0 X15 X14 X13 X12 X11 X10 X9 #2 MSbyte X

0O Y8 Y7 Y6 Y5 Y4 Y3 Y2 #3 LSbyte Y

0 Y15 Y14 Y13 Y12 Y11l Y10 Y9 #4 MSbyte Y

O 2z8 zZ7 Z6 Z5 Z4 Z3 22 #5 LSbyte Z

0 215 214 Z13 Zz12 Z11 210 29 #6 MSbyte Z

0O M8 M7 M6 M5 M4 M3 M2 #7 LSbyte M(1,1)
0 M15 M14 M13 M12 M1l M10 M9 #8 MSbyte M(1,1)
0O M8 M7 M6 M5 M4 M3 M2 #9 LSbyte M(2,1)
0 M15 Ml14 M13 M12 M1l M10 M9 #10 MSbyte M(2,1)
0O M8 M7 M6 M5 M4 M3 M2 #11 LSbyte M(3,1)
0 M15 Ml4 M13 M12 M1l M10 M9 #12 MSbyte M(3,1)
0O M8 M7 M6 M5 M4 M3 M2 #13 LSbyte M(1,2)
0 M15 Ml14 M13 M12 M1l M10 M9 #14 MSbyte M(1,2)
0O M8 M7 M6 M5 M4 M3 M2 #15 LSbyte M(2,2)
0 M15 Ml14 M13 M12 M1l M10 M9 #16 MSbyte M(2,2)
0O M8 M7 M6 M5 M4 M3 M2 #17 LSbyte M(3,2)
0 M15 Ml4 M13 M12 M1l M10 M9 #18 MSbyte M(3,2)
0O M8 M7 M6 M5 M4 M3 M2 #19 LSbyte M(1,3)
0 M15 Ml14 M13 M12 M1l M10 M9 #20 MSbyte M(1,3)
0O M8 M7 M6 M5 M4 M3 M2 #21 LSbyte M(2,3)
0 M15 Ml14 M13 M12 M1l M10 M9 #22 MSbyte M(2,3)
0O M8 M7 M6 M5 M4 M3 M2 #23 LSbyte M(3,3)
0 M15 Ml14 M13 M12 M1l M10 M9 #24 MSbyte M(3,3)

See POSITION mode and MATRIX mode for number ranges and scaling.

243

6: Ascension RS232 Interface Reference

POSITION/QUATERNION

ASCII HEX DECIMAL BINARY

Command Byte] 5D 93 01011101

In the POSITION/QUATERNION mode, the tracker outputs the X, Y, and Z position and the four
quaternion parameters, qo, 94, 92, and g3 that describe the orientation of the sensor with respect to the
Transmitter. The output record is in the following format for the fourteen transmitted bytes:

MSB LSB

7 6 5 4 3 2 1 0 BYTE #

1 X8 X7 X6 X5 X4 X3 X2 #1 LSbyte X
0 X15 X14 X13 X12 X11 X10 X9 #2 MSbyte X
0O Y8 Y7 Y6 Y5 Y4 Y3 Y2 #3 LSbyte Y
0 Y15 Y14 Y13 Y12 Y11l Y10 Y9 #4 MSbyte Y
O 28 27 Z6 Z5 Z4 Z3 Z2 #5 LSbyte Z
0 215 214 Z13 Zz12 Z11l 210 29 #6 MSbyte Z
0O B8 B7 B6 B5 B4 B3 B2 #7 LSbyte q,
0 B15 Bl4 B13 B12 B11l B10 B9 #8 MSbyte q,
0O B8 B7 B6 B5 B4 B3 B2 #9 LSbyte g,
0 B15 Bl4 B13 Bl12 Bll B10 B9 #10 MSbyte g,
O B8 B7 B6 B5 B4 B3 B2 #11 LSbyte q,
0 B15 Bl4 B13 B12 B1l1l B10 B9 #12 MSbyte g,
O B8 B7 B6 B5 B4 B3 B2 #13 LSbyte g,
0 B15 Bl4 B13 B12 B11l B10 B9 #14 MSbyte q,

See POSITION mode and QUATERNION mode for number ranges and scaling.

244

6: Ascension RS232 Interface Reference

QUATERNION

ASCII HEX DECIMAL BINARY

Command Byte \ 5C 92 01011100

In the QUATERNION mode, the tracker outputs the four quaternion parameters that describe the
orientation of the sensor with respect to the transmitter. The quaternions, qo, g1, 92, and q; where qq is
the scaler component, have been extracted from the MATRIX output using the algorithm described in
"Quaternion from Rotation Matrix" by Stanley W. Shepperd, Journal of Guidance and Control, Vol. 1,
May-June 1978, pp. 223-4. The output record is in the following format for the eight transmitted bytes:

MSB LSB
7 6 5 4 3 2 1 0 BYTE #
1 B8 B7 B6 B5 B4 B3 B2 #1 LSbyte g,
0 B15 Bl4 B13 B12 Bl1l B10 B9 #2 MSbyte q,
0O B8 B7 B6 B5 B4 B3 B2 #3 LSbyte q,
0 B15 Bl14 B13 Bl12 Bll B10 B9 #4 MSbyte q,
0O B8 B7 B6 B5 B4 B3 B2 #5 LSbyte q,
0 B15 Bl14 B13 B12 B11l B10 B9 #6 MSbyte g,
O B8 B7 B6 B5 B4 B3 B2 #7 LSbyte q,
0 B15 Bl4 B13 B12 Bl1l B10 B9 #8 MSbyte q,

Scaling of the quaternions is full scale = +.99996 = 7FFF Hex, 0 = 0 Hex, and
-1.0 = 8000 Hex.

245

6: Ascension RS232 Interface Reference

READ_VPD

ASCII HEX DECIMAL BINARY

Command Byte 0 6F 111 01101111

The READ_VPD command allows the user to read from the 128-byte Vital Product Data (VPD)
sections in the board, transmitter, sensor or preamp.

The command sequence consists of the command byte followed by a high-order address byte, a low-
order address byte and an EEPROM-selector byte. The two-byte address is intended to support
possible future expansion of the VPD area. The EEPROM-selector byte can be one of four values:

Selector: EEPROM:
0 Board

1 Sensor

2 Transmitter
3 Preamplifier

Upon receiving the READ_VPD command, the tracker will output the single byte of data read from the
selected VPD section

Reading VPD data is not allowed while the transmitter is running. The tracker will return a 0 byte.

246

6: Ascension RS232 Interface Reference

REFERENCE FRAME

ASCII HEX DECIMAL BINARY

Command Byte r 72 114 01110010

Command Data A E, R

By default, the tracker’s reference frame is defined by the transmitter's physical X, Y, and Z axes (see
Default Reference Frames). In some applications, it may be desirable to have the orientation measured
with respect to another reference frame. The REFERENCE FRAME command permits you to define a
new reference frame by inputting the angles required to align the physical axes of the Transmitter to
the X, Y, and Z axes of the new reference frame. The alignment angles are defined as rotations about
the Z, Y, and X axes of the transmitter. These angles are called the, Azimuth, Elevation, and Roll
angles.

The command sequence consists of a Command Byte and 6 Command Data bytes. The Command
Data consists of the alignment angles Azimuth (A), Elevation (E), and Roll (R).

If you immediately follow the REFERENCE FRAME command with a POINT or STREAM mode data
request you may not see the effect of this command in the data returned. It may take one
measurement period before you see the effect of the command.

The Command Byte and Command Data must be transmitted to the tracker in the following seven-byte
format:

MSB LSB

7 6 5 4 3 2 1 0 BYTE #

0 1 1 1 0 0 1 0 #1 Command Byte
B7 B6 B5 B4 B3 B2 Bl BO #2 LSbyte A
B15 B14 B13 B1l2 Bll1 B10 B9 B8 #3 MSbyte A

B7 Be6 B5 B4 B3 B2 B1 BO #4 LSbyte E
B15 B14 B13 Bl12 B1ll B10 B9 B8 #5 MSbyte E

B7 Be6 B5 B4 B3 B2 B1 BO #6 LSbyte R
B15 B14 B13 Bl12 B1l1 B10 B9 B8 #7 MSbyte R

See the ANGLES command for the format and scaling of the angle values sent.

247

6: Ascension RS232 Interface Reference

REPORT RATE

Measurement ASCII HEX DECIMAL BINARY
Rate Divisor

Command

1 Q 51 81 01010001
2 R 52 82 01010010
8 S 53 83 01010011
32 T 54 84 01010100

If you do not want a tracker data record output to your host computer every measurement cycle when
in STREAM mode then use the REPORT RATE command to change the output rate to every other
cycle (R), every eight cycles (S) or every thirty-two cycles (T). If no REPORT RATE command is
issued, transmission proceeds at the default measurement rate.

/ Note:

For alternate
Report Rate
settings, use
the CHANGE/
EXAMINE
command for
this function.
See REPORT
RATE

248

6: Ascension RS232 Interface Reference

RESET

ASCII HEX DECIMAL BINARY

Command Byte b 62 98 01100010

The RESET command is issued to the tracker to restart the system. RESET does reinitialize the
system from the flash memory, so any configuration or alignment data entered before the system was
reset, will revert back to power-up settings stored in the Flash.

/ Note:

Command not
implemented
at time of
manual writing.

249

/ Note:

No jumpers or
EBB: cables
required for
multi-sensor
operation in the
3D Guidance
systems.

6: Ascension RS232 Interface Reference

RS232 TO FBB

ASCIl HEX DECIMAL BINARY

Command Byte = FO 240 11110000 + FBB (SENSOR) ADDR

The RS232 TO FBB pass through command is a command that was developed for first generation
single sensor products, to allow the host computer to communicate with any specified sensors via a
single RS232 interface. However, this command is equally relevant for the 3DGuidance systems,
which support multiple sensors. The pass through command permits selection and configuration of
sensors beyond the first sensor.

The command is a preface to each of the RS232 commands. This command is 1 Byte long:

Command Byte = 0xFO + destination sensor address (in Hex)
ie. Sensor address 1 (0x1 hex) would be: 0xF1
Sensor address 4 (0x4 hex) would be: 0xF4

Example 1: There are two Tracked sensors connected to the system. One at Address 1 and the other
at Address 2. (By default the Tracked sensor connected to the first port is at Adress 1 and the Tracked
sensor connected to the second port is at Address 2)

To get Position/Angle data from Sensor 1, the host would either send:
= A2 byte command consisting of:
o The RS232 TO FBB command, (OxF1 hex)
o Followed by the POINT command (0x42 hex)
= Orthe 1 byte:
o POINT command (0x42hex)

To get Position/Angle data from Sensor 2, the host would send:
= A2 byte command consisting of:
o The RS232 TO FBB command, (0xF2 hex)
o Followed by the POINT command (0x42 hex)

Notes:
1) To use STREAM mode with multiple sensors, first send the GROUP MODE command,
followed by STREAM command.

250

RUN

6: Ascension RS232 Interface Reference

ASCII

Command Byte F

HEX

46

DECIMAL

70

BINARY

01000110

The RUN command is issued to the tracker to restart normal system operation after it has been put to
sleep with the SLEEP command. RUN does not reinitialize the system RAM memory, so any
configuration or alignment data entered before the system went to SLEEP will be retained.

251

6: Ascension RS232 Interface Reference

SLEEP

ASCII HEX DECIMAL BINARY

Command Byte G 47 71 01000111

The SLEEP command turns the transmitter off, and halts the system. While asleep, the tracker will
respond to data requests and mode changes but the data output will not change. To resume normal
system operation, issue the RUN command.

&

To maximize the
life of your
system; issue
the SLEEP
command when
you are not
using the
tracker, or
configure the
SleepOnReset
setting in the
Configuration
Utility.

252

6: Ascension RS232 Interface Reference

STREAM

ASCII HEX DECIMAL BINARY

Command Byte @ 40 64 01000000

In the STREAM mode, the tracker starts sending continuous data records to the host computer as soon
as new data is available - at selected measurement rate. Data records will continue to be sent until the
host sends the STREAM STOP command or the POINT command, or any format command such as
POSITION to stop the stream.

Some computers and/or high-level software languages may not be able to keep up with the constant
STREAM of data in this mode. Bytes received by your RS232 port may overrun one another or your
input buffer may overflow if tracker data is not retrieved fast enough. This condition will cause lost
bytes, hence if your high-level application software requests say 12 bytes from the RS232 input buffer,
it may hang because one or more bytes were lost. To eliminate this possibility, read one byte at a time
looking for the phasing bit that marks the first byte of the data record.

See REPORT RATE to change the rate at which records are transmitted during STREAM.

253

6: Ascension RS232 Interface Reference

STREAM STOP

ASCII HEX DECIMAL BINARY

Command Byte ? 3F 63 00111111

STREAM STOP turns STREAM mode off, stopping any data that was STREAMing from the tracker.

This is an alternative to stopping the stream using a POINT command. NOTE: The record in progress
when the tracker receives the command will still be output in its entirety to the host computer. To
ensure that you have cleared your input port before executing any new commands, send STREAM
STOP, delay and then discard any data in your serial port buffer.

254

6: Ascension RS232 Interface Reference

WRITE_VPD

ASCII HEX DECIMAL BINARY

Command Byte p 70 112 01110000

The WRITE_VPD command allows the user to write to the 128-byte Vital Product Data (VPD) sections
in the board, transmitter, sensor or preamp.

The command sequence consists of the command byte followed by a high-order address byte, a low-
order address byte, an EEPROM-selector byte and the data byte to be written. The two-byte address

is intended to support possible future expansion of the VPD area. The EEPROM-selector byte can be
one of four values:

Selector: EEPROM:
0 Board

1 Sensor

2 Transmitter
3 Preamplifier

After writing the data to the selected VPD section, the WRITE _VPD command rereads the same byte
from EEPROM and outputs it to the user.

Reading VPD data is not allowed while the transmitter is running. The tracker will return a 0 byte.

255

6: Ascension RS232 Interface Reference

Error Reporting

3Dguidance medSAFE continuously monitors system activities and reports particular conditions to you
through error codes. These codes may be generated as a result of the power-up diagnostics, or from
regular error detection during normal operation. All error codes are 1 byte in length, and are reported to
the SYSTEM ERROR buffer. This buffer holds up to 16 bytes of error information (16 codes).

Notification

The user can choose to be notified that an error has been generated through any of the following

methods:

Error Flag

Monitor the ERROR bit (B13) in the two byte BIRD STATUS register.

1. Send EXAMINE VALUE command with PARAMETERnumber
=0

When an error is detected this bit is set to a '1', and the generated error code
is sent to the SYSTEM ERROR buffer.

To retrieve the code after the flag has been set:

2. Send the EXAMINE VALUE command with
PARAMETERnumber = 10

This returns the eatliest Error sent to the buffer and clears it.

Note: If there is only one error in the buffer, reading the ERROR bit (B13) in
the BIRD STATUS word, will reset the bit to '0' indicating all errors have
been read and cleated from the buffer. If the bit remains a '1', then additional
errors remain and should be read.

SYSTEM ERROR Alternatively, you can query the SYSTEM ERROR buffer directly.

1. Send the EXAMINE VALUE command with
PARAMETERnumber = 10

This returns the eatliest Error sent to the buffer. and clears it.
2. Additional queries will return and clear the next Error code in the

buffer, until the buffer. is empty. When the buffer is empty, the
query will return '0".

256

6: Ascension RS232 Interface Reference

Note: If the query returns '45', then the 16-byte(16 error codes) buffer has
overflowed, and the newest codes generated will be lost.

Error Code Listing

CODE ERROR DESCRIPTION

0

11

18

37

44

45

No Error
Cause: SYSTEM ERROR register empty

Electronic Unit Configuration Data Corrupt
Cause: The system was not able to read the Electronics unit's configuration data
Action: Reset the system

Component Configuration Data Corrupt

Cause: The system was not able to read the component EEPROM configuration data, or the
components are not plugged in.

Action: Insure that the components are present, calibrate the components

Invalid RS232 Command

Cause: The system has received an invalid RS232 command, which can occur if the user sends
down a command character that is not defined or if the data for a command does not make sense
(i.e., change value commands with an unknown parameter number).

Action: Only send valid RS232 commands to the tracker..

RS232 Receive Overrun or Framing Error

Cause: An overrun or framing error has been detected by the serial channel
UART as it received characters from the user's host computer on the
RS232 interface.

Action: If an overrun error, the baud rate of your host computer and the tracker
differ. This may be due to incorrect baud selection, inaccuracy of the
baud rate generator, or the RS232 cable is too long for the selected baud
rate. If a framing error, the host software may be sending characters to its
own UART before the UART finishes outputting the previous character.

lllegal Baud Rate Error

Cause: If the baud rate setting is in an 'invalid' baud rate setting then this error will
occur.

Action: Set up baud rate with a valid setting.

DSP POST error
Cause: Can't download code to the acquisition DSP(s).
Action: Contact Ascension

Algorithm Overflow
Cause: Computational error, possibly due to noise in the environment
Action: Check environment, and sensor data using utility

Error Buffer Overflow

Cause: Too many errors detected and sent to the SYSTEM ERROR register. Not
all errors will be reported

Action: Read register to clear errors

257

6: Ascension RS232 Interface Reference

46 Flash Checksum error
Cause: Section of the Electronics Unit’s Flash memory corrupted.
Action: Reload the Flash using the utility, but not more than 5000 times.

258

Chapter 7: Troubleshooting

Most installation and tracking problems are easy to fix. Consult our troubleshooting table for common
problems and their solutions. If you continue to expetience problems, contact us for technical support.

Symptom Possible Causes Solution
No front No power -Check AC connections to power supply
panel LED .
illumination -Reset hardware by cycling AC power
Demo Utility | No serial communication -Check the suggestions outlined in 'Not able to
doesn't run communicate' below
Software installation unsuccessful -Re-initialize the HOST PC and run the installation
again
Power-up Configuration download interrupted -Re-start the tracker and the utility and set the defaults
defaults did again. Be sure to click APPLY to send the settings to
not change the Electronics
after Tracker did not reset(restart) after .
- . . -Cycle power to the tracker, and re-check the settings
configuring burning the Flash settings yele pow nd
with the
utility
Not able to Re-initialize USB -Unplug and replug USB cable on tracker.
communicate -Cycle power on the tracker
with the
system using | Driver not installed -Check installation/status of tracker USB driver in
usB Windows Device Manager. Re-install if necessary

259

7: Troubleshooting

Symptom Possible Causes Solution
Can Sensor is saturated -Check the error codes for a sensor a saturation
communicate condition. Move the sensor farther away from the
with the Transmitter.
system, but i i i . .
d)r:lta n c;t Transmitter is OFF or disconnected -Check status of the Transmitter. Turn ON using
changing SELECT_TRANSMITTER parameter (3D Guidance API)
or RUN command (Flock protocol).
Component connections faulty -Check that Sensor/Transmitter connectors are
correctly installed. Inspect pins for wear or damage.
-Contact Ascension for assistance
Data is too Filters OFF -Check FILTER STATUS for present state of filter
noisy configuration.
Low Signal -Decrease distance from sensor to Transmitter.
-Be sure that the sensor is not located near the
Ext | noise | . t Tracker's power supply or other electronic devices or
x{ernat noise in environmen cables. See section on Reducing Noise in Chapter 3
-If the signs of the X, Y or Z position outputs suddenly
change you may have crossed a hemisphere boundary.
.) Use the HEMISPHERE command to rectify.
Changing Hemisphere
. . -Determine correct frequency (50 Hz in Europe, 60 Hz
Line frequency value set incorrectly. in North America) and set to correct value.
Poor Metal in tracking environment. -Check all around the transmitter to the furthest
accuracy distance from the center of the transmitter to the

Damaged equipment.

Sensor or transmitter connector not
properly inserted.

A software application error.

maximum distance the sensor is used. Move or replace
metal, or reposition the tracker system.

-Check for damage.

-Correct by unplugging and plugging the components
back into the board.

-Verify formulas and scale factors.

Error Codes

The 3D Guidance API Reference provides a complete listing of all 3D Guidance API error
codes via the USB interface.

260

Chapter 8. Maintenance, Repair
and Disposal

Taking care of your tracker is simple and straightforward. For years of accurate operation, be sure
to treat the components as delicate electronic components.

The parts of the tracker that are physically handled are subject to the most wear. With proper
handling and care the electronics unit, sensor and transmitter should indefinitely -- well beyond
our warranty period.

User Maintenance

The tracker requires minimal maintenance. You should do the following to maintain good
performance:

Maintenance Prior to Each Use

1. Check the transmitter and sensor cables for nicks and cuts in the insulation. If nicks or
cuts are found, the component should be replaced after proper disposal.

2. Inspect component connectors and receptacles for bent or damaged pins or other
obstructions.

3. Inspect the transmitter for cracks or exterior damage. If transmitter is cracked or interior of
the transmitter is exposed in some way, the component should be replaced after proper

disposal.

Periodic Maintenance (As needed)

1. Inspect USB and power connections to ensure positive contact.

261

8: Maintenance, Repair and Disposal

2. Transmitter and sensors are propetly mounted as recommended in Mounting the Hardware.

Cleaning and Disinfecting

Periodically, clean the equipment (electronics unit, transmitter, sensor, and cables) by wiping
down with a cloth dampened in a cleaning solution such as mild soap and water, isopropyl alcohol
or a similar acceptable cleaning solution. If the tracker’s components come in contact with
biological fluid or tissue, be sure to follow your organization’s procedures for proper cleaning and
disinfection. The electronics unit, transmitters and sensors are not designed to withstand
autoclaving or gamma radiation. Sensors are ETO compatible. Do not immerse the electronics
unit, transmitter, sensor, or cables in liquids. Components are not waterproof.

Sensor Sterilization

3D Guidance medSAFE sensor materials are tolerant of both cold sterilant (Cidex or equivalent)
and Ethylene Oxide (EtO) gas sterilization processes.

However, even if embedded in a medical instrument such as an endoscope or other non-
disposable tool, the electronics portion of the sensors should never be subject to autoclaving or
gamma radiation. The electronics portion of the sensors resides within the connector.

BROAD GUIDELINES WHEN CONSIDERING THE CIDEX (GLUTARALDEHYDE)
PROCESS

Warning: Never use this sterilization process without first consulting the manufacturer’s
instructions for proper and safe use. Ascension cannot determine appropriate minimum
dosages since medSAFE components are always part of a larger medical device. Degree of
sterilization is a function of the type of procedure undertaken and the device
manufacturers’ specifications. In all cases, institutional protocols should be strictly
followed.

When considering the use of Cidex, you should:

e Use Cidex classified as "sterilant." A Cidex products classified as "disinfectants" are not
adequate.

e Take into account the physical properties of the medical instrument being sterilized: It
must be clean, relatively smooth, impervious to moisture, and be of a shape that permits
all surfaces to be exposed to the sterilant.

e Ensure the medical instrument receives adequate exposure. All surfaces, both interior and
exterior, should be exposed to the sterilant. Tubing must be completely filled and the

262

8: Maintenance, Repair and Disposal

materials to be sterilized must be clean and arranged in the sterilant to assure total
immersion.

o Use fresh solutions. The sterilant solution should be clean and fresh. Most sterilants come
in solutions consisting of two parts to form an "activated" solution. The shelf life of
activated solutions is indicated in the instructions for commercial products. Generally, this
is from one to four weeks.

e Rinse chemically sterilized items. Instruments, implants, and tubing (both inside and out)
must be rinsed with sterile saline or sterile water prior to use to avoid tissue damage.

BROAD GUIDELINES WHEN CONSIDERING THE ETO STERILIZATION PROCESS

Warning: Never use this sterilization process without first consulting the manufacturer’s
instructions for proper and safe use. Ascension cannot determine appropriate minimum
dosages since medSAFE components are always part of a larger medical device that is
sterilized. Degree of sterilization is a function of the type of procedures undertaken and
the device manufacturers’ specifications. In all cases, institutional protocols should be
strictly followed.

EtO is a long-established and widely used hospital method of sterilization. Its low -
temperature environment is compatible with electronic devices, such as the medSAFE
sensor assembly. Gas sterilization with ethylene oxide requires the use of an approved gas
sterilizer and appropriate monitoring systems to assure sterility and personnel safety.
Ethylene gas is irritating to tissue; all materials require appropriate airing time.

Cycle protocols should be implemented in accordance with EN 550 /ISO 11135,
"Sterilization of Healthcare Products." This document describes Ethylene oxide and
requirements for development, validation, and routine control of a sterilization process for
medical devices.

Software and Firmware Updates

As new features or updates become available for the tracker, you may find it necessary to update the
firmware stored in the electronic unit’s memory. The Medzal Utility included on your CD-ROM allows
you to do this without opening the electronics or returning it to Ascension. Instructions for this
procedure are included with updates.

Repair

There are no user level repairs that can be made on the electronics unit, transmitters, or sensors. If you
have a problem with any part of your tracker, please contact Ascension Technical Support.

263

8: Maintenance, Repair and Disposal

Technical Support contact points are as follows:

World Wide Web: http://www.ascension-tech.com/technical/

E-mail: support@ascension-tech.com

Telephone: Call (802) 893-6657,9 AM -- 5 PM U.S. Eastern Standard Time, Monday
through Friday.

Fax: (802) 893-6659.

Warranty

Ascension warrants that its products are free from defects in material and workmanship for a period of
one (1) year from date of delivery, providing they are not subject to misuse, neglect, accident, incorrect
installation, or improper care. If any Ascension products fail due to no fault of the buyer, Ascension
will (at its option) either repair the defective product and restore it to normal operation without charge
for parts and labor or provide a replacement in exchange for the defective product. Repair work shall
be warranted for the remainder of the unexpired warranty period or for a period of 60 days whichever
is longer. This warranty is the exclusive warranty given in lieu of any other express or implied warranty.
Ascension disclaims any implied watranties of merchantability and fitness to a particular purpose.
Warranties are voided if the buyer utilizes a power supply that does not strictly adhere to Ascension’s
electrical power requirements, changes the configuration of a tracker, (such as, adding extensions to
cables or modifying boards), or mishandles sensors or cables. To avoid warranty issues, customers
should carefully adhere to all product advisories. Transmitter and sensor cables and connectors are
sensitive electronic components and should be treated with care. Do not drop, pull, twist, or mishandle
cables.

Disposal

The European Union has issued a directive, known as the WEEE (Waste Electrical and Electronic
Equipment) Directive, to protect the quality of our environment by reducing the amount of electrical
equipment waste buried in landfills. WEEE focuses on the recycling and reuse of “equipment that
depends on an electronic current or an electromagnetic field to operate and as equipment for the
generation, transfer and measurement of such currents and fields.” Although none of the tracker’s
components are hazardous materials, proper disposal is important, especially, in the European Union
where these components cannot be consigned to a landfill. Wherever available, tracker components
should be brought to centralized recycling and collection points. Please contact Ascension Technical
Support for further instructions on the correct disposal procedures in your country. If you have
biologically contaminated components, please refer to your organizational procedures for disposing of
biologically contaminated material.

264

http://www.ascension-tech.com/technical/�

Chapter 9: Regulatory
Information and Specifications

L Bl In accordance with EN60601-1 (Medical electrical equipment — general requirements for
: i safety), this equipment is classified as follows:
h : Class I
- ‘ Type CF Applied Patt /Defib Proof

Not AP/APG

Class I: Non-invasive electric/electronic equipment without a monitoting function, which has a reliable ground
and thus provides the type of protection against electric shock as defined by EN60601-1.

Type CF Applied Part: An applied part (sensors) complying with the specified requirements of
EN 60601-1 to provide protection against electric shock, particularly regarding allowable leakage
. current. Type CF specifies the degree of electric shock protection provided by the unit.

Defib Proof signifies the sensor’s capability to withstand the energy discharged from a defibrillator, as specified
in the waveform detailed in IEC 60601-1, Amendment 2, Clause 17h

Note that the Defibrillation-Proof Type CF symbol (IEC symbol 60417-5336) is marked on the front panel of
the electronics unit, next to the sensor input ports.

Not AP/APG means unsuitable for use in the presence of flammable gases.

Modification or use of the equipment in any way that is not specified by Ascension Technology Corporation may
impair the protection and accuracy provided by the equipment.

AThe lightning flash arrow symbol within an equilateral triangle is intended to alert the user to the presence of
uninsulated dangerous voltage within the product’s enclosure. That voltage may constitute a risk of electric shock
to persons.

A’I’he exclamation point within an equilateral triangle is intended to alert the user to the presence of important
operating and maintenance (setvicing) instructions in the appliance literature.

A Warning: This tracker does not have approval from the FDA for patient contact applications

APPLIED PART CAN COME IN CONTACT WITH PATIENT!!! PROVIDED ITS USER
COMPLIES WITH ALL PERTINENT FDA/CE/IRB REQUIREMENTS.

265

Regulatory Information and Specifications

EC Declaration of Conformity
Issued by

ASCENSION TECHNOLOGY CORPORATION
PO Box 527
Burlington, VT 05402 USA
802-893-6657

Equipment Description: 3D Guidance medSAFE
(Applies to tracking system utilizing ATC electronics unit PCB and
ATC electronics unit enclosure.)

Applicable Directive: 93/42/EEC, Medical Devices

Applicable Standards: IEC 60601-1 Ed. 2 1997
Medical Electrical Equipment: Part 1: General
Requirements for Safety

IEC 60601-1-2 Ed. 2 2001

Medical Electrical Equipment: Part 1: General Requirements

for Safety —2. Collateral Standard: Electromagnetic Compatibility-
Requirements and Test

Authorized by: Date:

Ernie Blood
President/Chief Technology Officer
Ascension Technology Corporation

266

Regulatory Information and Specifications

FCC Compliance Statement

Radio and television interference

Warning: Changes or modifications to this unit not expressly approved by the party responsible for
compliance could void the user’s authority to operate the equipment.

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant
to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful
interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy
and, if not installed and used in accordance with the instructions, may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a particular installation. If this
equipment does cause harmful interference to radio or television reception, which can be determined by turning
the equipment off and on, the user is encouraged to try and correct the interference by one or more of the
following measures:

= Reorient or relocate the receiving antenna.

® Increase the separation between the equipment and receiver.

= Connect the equipment into an outlet on a circuit different from that to

which the receiver is connected.
= Consult the dealer or an expetienced radio/ TV technician for help.

Declaration of Conformity

Model Number: 3D Guidance medSAFE
Trade Name: Ascension
Responsible Party: Ascension Technology Corporation
Address: P.O. Box 527

Butlington, Vermont 05402
Telephone Number: (802) 893-6657

This device complies with Part 15 of the FCC rules.

Operation is subject to the following two conditions:
1. This device may not cause harmful interference, and
2. This device must accept any interference received, including interference that
may cause undesired operation.

267

Product Specifications
Performance

Degrees of freedom:

Translation range:

Angular range:

Static accuracy:
(see note below)

Update rate:

Position:

Outputs:

Interface:

Regulatory Information and Specifications

Short-, Mid-Range and 4-Axis-Flat Transmitter:
Six (position and orientation)

Short-Range Transmitter:
46 cm in any direction

Mid-Range Transmitter:
176 cm in any direction

Flat Transmitter:
+46 cm in Z direction

All attitude: £180 deg azimuth and roll, £90 deg elevation

1.4mm RMS position
0.5 degree RMS orientation

Short- and Mid-Range Transmitter:
Up to 375 updates/second.
Calibrated at 80.0Hz measurement rate (240 updates/second).

4-Axis-Flat Transmitter:
Up to 200 updates per second
Calibrated at 40.5 Hz measurement rate (162 updates/second).

9-Axis-Flat Transmitter:
Up to 198 updates per second
Calibrated at 22 Hz measurement rate (198 updates/second).

Because of symmetries in the transmitted field for short and mid-range
transmitters, operation of the sensor with these transmitters shall be
confined to one of six hemispheres of operation, selectable by the user at
runtime. In order to meet accuracy specifications, the system must operate
in the forward (positive X) hemisphere.

X, Y, Z positional coordinates, orientation angles, otientation matrix and
quaternion.

USB / RS232

268

Physical

Size:

Regulatory Information and Specifications

Mid-Range Transmitter:
3.75” (9.6cm) cube with 10” (3.3m) cable

Short-Range Transmitter:
2.477(6.27cm) x 1.81”(4.6cm) x 2.05”(5.2cm)

4-Axis Flat Transmitter:
22”(56cm) x 227 (56cm) x 1.17(2.8cm)

9-Axis Flat Transmitter:
227”(56¢m) x 22”(56¢m) x 1.17(2.8cm)

Model 800 Sensor:
Sensor max OD 8.0mm
Sensor max length 20mm
Cable max OD 3.8mm
Cable length: 2 meters

Model 180 Sensor:
Sensor max OD 2.0mm
Sensor max length 9.9mm
Cable max OD 1.2mm
Cable length: 2 meters

Model 130 Sensor:
Sensor max OD 1.5mm
Sensor max length 7.6mm
Cable max OD 1.2mm
Cable length: 2 meters

Model 90 Sensor:

Sensor max OD 0.87mm
Sensor max length 8.8mm
Cable OD 0.6mm

Cable length: 2 meters

180,130,and 90 Sensor Materials:

Ascension Medi-Mag cable,

USP class 6 cable jacket material.

USP class 6 sensor housing material..

USP class 6 epoxy potting in tip.

Sensor assembly and cable materials are EtO and cold sterilant
tolerant. Do no use Gamma Radiation or autoclaving on sensor
assemblies. Semiconductor devices in the connector are not gamma
shielded and may be damaged or erased if exposed to gamma radiation
and/or heat of autoclaving.

Connectors are not sealed and must not be subjected to immersion in
liquids of any type.

Do not subject cable to an axial pull greater than 200 grams.

269

Power:

Operating temperature:
Warm up:

Note on static accuracy:

Regulatory Information and Specifications

Pre-amp unit

Module max OD (minus threaded cap): 23.5mm
Module max length (including sensor conn.) 163mm.
Module length (excluding sensor connector) 144mm
Cable max OD 5mm

Cable length 3 meters

NOTE: Current pre-amplifiers are designed with consumer grade
materials and construction. Specifically, they are not designed to be
resistant to sterilization methods of any kind and are IPA wipe down
only. Immersion in liquids will render them inoperable.

Electronics Unit
Dimensions (Lx Wx H): 27.1cm x 28.1cm x 7.0cm
Weight: 2.06 Kg

The unit’s internal supplies will operate from 100 to 240V at 50/60 Hz.
Power consumption is 60 VA.

59°F to 95°F (15°C to 35°C), 90% non-condensing humidity.
System shall meet accuracy specifications after 5 mins.

Accuracy is defined as the RMS position error of the magnetic center of a
single sensor with respect to the magnetic center of a single transmitter over
the Performance Motion Box. Accuracy will be degraded if there are
interfering electromagnetic noise sources or metal in the operating
environment.

270

Appendix I: medSAFE Utility

Running medSAFE Utility

Setup
Before changing settings or beginning an upgrade, setup the tracker with either the RS232 or USB
interface.

1. Connect the RS232 or USB cable and the Power cable to the rear panel of the tracker.

2. Connect the other end of the RS232 or USB cable to an open COM port or USB port on the

host PC (PC that will run the utility)
/ Note:
3. Power on the Tracker. The Utility can
be run using
- ither th
Run the Utility gszeéz (EOM
4. Start the utility by running the ‘medSAFEUtility.exe’ file. ﬁgg_gigzzﬁ)‘gr
This will open the interface configuration window of the Utllity. e

5. If using the RS232 interface, select the COM port from the pull down
menu, and click Connect.

Conmunications Init H=E
Miedia o Baud Rate C/ e
urrent
[Raz:z =] [cower =] [t15200 =] operation
supports 115200
Shalus baud only.

el | Cancel |

If using the USB interface, select ‘USB’ from the ‘Media’ pull down menu and click Connect.

This will establish communication with the tracker, and initiate a reading of the current
configuration. Progression of the reading is shown in the Status window.

271

Appendix I: medSAFE Utility

& medSAFEULtility- (Rev. 2.0)

lFIash Maintenance | Product Info | Data |

i~ Gystem Settings
IP Address {12168, 200 51
Baud Rate I1'|521]|;| vI

Measurement Rate I4[15

Hemisphere iFFlDNT - I

Scale k0 x l

Data Fosmat POSAMAMI =

Repart Rate 1

Line Freq B0 -
Filters

W AC‘wide DN Alpha
[T ACManow OM Alpha

Mask[235.255.00 Port [6000
5 = 3 f Z Port: 'lype;:
Ofsetafinches) [0 [0 [0 1 [600F ~|
Az El Rl [e00F +]
2 |eDOF -
Angle
Aligndegress) 0 |ﬂ 1y 3 Im

Reference e]
Franeidegress]l® | o 4 [6DOF +

-

S5 e

65 o5 [os [o5 o5 [o5 [o5 Jos [o5 o5

vl W[5 [[0 @ E R
[Maoise Reduction

K.alman Filter]
Pastion Process Makse Velocity Model [T Orientation Process Noise Velocity Model 10|
Poskion Process Noise Static I‘l_ Orientation Process Moize Static FIEI_-
Moise Filker Parameter I—ﬂ‘ﬁ_— Starting Senzor Gain s |
Gain O Static ﬁEHUEH Gain 0 Dynamic E—I-]E_'
Falman b odek Bath = | Starting Position and Orentation: Ak -
Starting % mm] [0 Starting Azimuth [deg) o
Stattirg ¥ {rrm] [0 Starting Elevation (deg) o |
Stanting Z (mm] [0 Starting Rl deg) o

Set To Defauts Refresh | Apply Hesze |

When the reading has completed, select ‘Continue’. This will open the Utility to the main

display and the ‘Settings’ tab:

If you want to change any of the power-up default settings, enter them
here, and click ‘Apply’ to send them to the Flash memory.

To upgrade Flash Sectors, click the ‘Flash Maintenance’ tab to show the
contents of the flash memory device.

Click the flash sector to be upgraded. Select the new loader file and click
‘Open’. This will begin the upgrade of the flash sector. A progress bar will indicate status.
When the upgrade of the sector is complete, the new contents of the Flash will be displayed in

the ‘Rev’ field next to each sector.

,/ Note:

Changes to
power-up setting
apply to non-
dipole
transmitters
only.

272

9.

Appendix I: medSAFE Utility

% medSAFEULtility- (Rev. 2.0)

HonDipole Settings _F _‘l Product [nfol Data]

Sector 00: Inactive Rev3.1 Multi Boot Used - 016314 of 020000

Saector 02: Active Rev22.45 Dipole PO Ised - D37F50 of 050000

Sector 07 Active Rev2B6.27 NonDipole PO Used - 03C410 of 050000

Saector OC: Active Rev23.34 Aquisition DSP Used - 018D0DC of 050000
Sector 11 Active Rev28.17 5DOF DSP Used - 02F1B0 of 040000
Saector 15 Active Rev 27.45 6DOF DSP Used - 02D5E8 of 040000
Sector 19: Inactie Diagnostics | Used - 000000 of 050000

Saector 1E: Inactive Used - 000000 of 200000

Resarved

Sector 3E: Active Startup Config Used - DO03A5 of 010000
Sector 3F: Active FCB Used - 000100 of 010000

[Sresr

Close the Utlity (X in title bar) and cycle the power on the tracker. %
Note:

First sector
(Sector 00)
should contain
Rev 2.0 or
greater of the
Boot loader. If
not; contact
Tech Support.

273

Appendix II: Application Notes

Computing Stylus Tip Coordinates

In many applications that require a sensor mounted on a tool or pointing device, the position of
the tip must be known and tracked. . This type of pointing device is generically referred to as a
stylus or stylet.

The sensor position and orientation values are presented with respect to the center of the sensor.
The corresponding X, Y, Z coordinates at the tip of the stylus may be easily calculated knowing
the tip offset from the sensor center.

The stylus coordinates can be computed from the following:
X=X+ X *M(A,1) + Y, * M(2,1) + Z, * M(3,1)
Yo=Yy + X *M(1,2) + Yo *M(2,2) + Zo * M(3,2)
Zs="7p+ Xo*M(1,3) + Y, *M(2,3) + Z * M(3,3)
Where: X, Yy, Zy are the X, Y, Z position outputs from the 3DGuidance sensor with
respect to the transmitter's center.
Xo» Yo, Z, are the offset distances from the sensot's center to the tip of the stylus.

Xs, Y, Zg are the coordinates of the stylus's tip with respect to the transmittet's
centet.

M(, j) are the elements of the rotation matrix.

Often the values of X, Y, Z, are not known ahead of time and must be calculated. This may be
done by placing the tip of the stylus at a set location, collecting data of the stylus being
repositioned with the tip fixed, and solving for X, Y, Z. Since the tip location (X, Y, Zy) is
fixed, and the 3DGuidance sensor position (X, Yy, Zy) and orientation (M(, j)) are reported by
the system, solving for X, Y,,, Z, may be solved.

Collect many measurement points over a large range of angles and rotations for maximum
accuracy.

274

	How this Guide is Organized
	Guide Conventions
	System Requirements
	Intended Use Statement
	Software Requirements
	Hardware Requirements

	Unpacking the Tracker
	Safe Performance & Handling Precautions
	Environmental Conditions
	Temperature
	Humidity

	Install the Software
	Cable Connections
	Installing the Driver
	System Checkout
	Running the USB Demo Software
	Running the RS232 Demo Utility

	Default Configuration
	Configurable Power-up Settings:
	Default Reference Frames
	Mid and Short-Range Transmitter Reference Frame
	Flat Transmitters

	Changing Your Settings

	Mounting the Hardware
	Mid-Range Transmitter Mounting and Location
	Short-Range Transmitter Mounting and Location
	Sensor Mounting
	Locating Your Electronics Unit
	Flat Transmitter Mounting
	Pre-amplifier Mounting

	Rear Panel Connectors
	Power
	RS232
	USB
	SYNC
	SWITCH

	Basic Operation
	Dipole Transmitter
	Non-Dipole Transmitter
	6DOF Sensor
	5DOF Sensor
	Pre-Amplifier
	Electronics
	Measurement Cycle
	Calibration

	Performance Factors
	Electromagnetic and Other Interference in Tracking
	Excessive Electrical Noise
	CAUSES OF NOISE
	REDUCING NOISE

	Magnetic Distortion
	CAUSES OF DISTORTION
	REDUCING DISTORTION
	METAL DETECTION
	QUALITY/ METAL NUMBER

	Tracker as the Cause of Interference

	Factors in Tracker Accuracy
	Warm-up
	Default Measurement Rate
	Equipment Alteration
	Power Grid Magnetic Interference
	Performance Motion Box

	Software Overview
	3DGuidance API
	Sample Programs

	Ascension RS232 Interface
	Ascension RS232 Driver
	Direct Communication: Ascension’s RS232 Protocol
	RS232 Sample Program

	Using 3D Guidance medSAFE
	Quick Reference
	SYSTEM
	SENSOR
	BOARD
	TRANSMITTER

	System Initialization
	ATC3DGm.ini File
	System Setup
	Sensor Setup
	Transmitter Setup
	Acquiring Tracking Data
	Error Handling

	3DGuidance API
	3DGuidance API Functions
	InitializeBIRDSystem
	GetBIRDSystemConfiguration
	GetTransmitterConfiguration
	GetSensorConfiguration
	GetBoardConfiguration
	GetSystemParameter
	GetSensorParameter
	GetTransmitterParameter
	GetBoardParameter
	SetSystemParameter
	SetSensorParameter
	SetTransmitterParameter
	SetBoardParameter
	GetAsynchronousRecord
	GetSynchronousRecord
	GetBIRDError
	GetErrorText
	GetSensorStatus
	GetTransmitterStatus
	GetBoardStatus
	GetSystemStatus
	SaveSystemConfiguration
	RestoreSystemConfiguration
	CloseBIRDSystem

	3D Guidance API Structures
	SYSTEM_CONFIGURATION
	TRANSMITTER_CONFIGURATION
	SENSOR_CONFIGURATION
	BOARD_CONFIGURATION
	ADAPTIVE_PARAMETERS
	QUALITY_PARAMETERS
	VPD_COMMAND_PARAMETER
	BOARD_REVISIONS
	SHORT_POSITION_RECORD
	SHORT_ANGLES_RECORD
	SHORT_MATRIX_RECORD
	SHORT_QUATERNIONS_RECORD
	SHORT_POSITION_ANGLES_RECORD
	SHORT_POSITION_MATRIX_RECORD
	SHORT_POSITION_QUATERNION_RECORD
	DOUBLE_POSITION_RECORD
	DOUBLE_ANGLES_RECORD
	DOUBLE_MATRIX_RECORD
	DOUBLE_QUATERNIONS_RECORD
	DOUBLE_POSITION_ANGLES_RECORD
	DOUBLE_POSITION_MATRIX_RECORD
	DOUBLE_POSITION_QUATERNION_RECORD
	DOUBLE_POSITION_TIME_STAMP_RECORD
	DOUBLE_ANGLES_TIME_STAMP_RECORD
	DOUBLE_MATRIX_TIME_STAMP_RECORD
	DOUBLE_QUATERNIONS_TIME_STAMP_RECORD
	DOUBLE_POSITION_ANGLES_TIME_STAMP_RECORD
	DOUBLE_POSITION_MATRIX_TIME_STAMP_RECORD
	DOUBLE_POSITION_QUATERNION_TIME_STAMP_RECORD
	DOUBLE_POSITION_TIME_Q_RECORD
	DOUBLE_ANGLES_TIME_Q_RECORD
	DOUBLE_MATRIX_TIME_Q_RECORD
	DOUBLE_QUATERNIONS_TIME_Q_RECORD
	DOUBLE_POSITION_ANGLES_TIME_Q_RECORD
	DOUBLE_POSITION_MATRIX_TIME_Q_RECORD
	DOUBLE_POSITION_QUATERNION_TIME_Q_RECORD
	SHORT_ALL_RECORD
	DOUBLE_ALL_RECORD
	DOUBLE_ALL_TIME_STAMP_RECORD
	DOUBLE_ALL_TIME_STAMP_Q_RECORD
	DOUBLE_ALL_TIME_STAMP_Q_RAW_RECORD
	DOUBLE_POSITION_ANGLES_TIME_Q_BUTTON_RECORD
	DOUBLE_POSITION_MATRIX_TIME_Q_BUTTON_RECORD
	DOUBLE_POSITION_QUATERNION_TIME_Q_BUTTON_RECORD

	3D Guidance API Enumeration Types
	BIRD_ERROR_CODES
	SENSOR_PARAMETER_TYPE
	MESSAGE_TYPE
	TRANSMITTER_PARAMETER_TYPE
	Receiver Zero Orientation (8mm Sensor)

	BOARD_PARAMETER_TYPE
	SYSTEM_PARAMETER_TYPE
	HEMISPHERE_TYPE
	AGC_MODE_TYPE
	DATA_FORMAT_TYPE
	BOARD_TYPES
	DEVICE_TYPES

	3D Guidance API Status/Error Bit Definitions
	ERRORCODE
	DEVICE_STATUS

	3D Guidance Initialization Files
	3D Guidance Initialization File Format Reference
	[System]
	[Sensorx]
	[Transmitterx]

	RS232 Signal Description
	Using the 'reset on CTS' feature

	RS232 Commands
	Command Summary
	Command Utilization
	Response Format
	Position/Orientation Data Format

	RS232 Command Reference
	ANGLES
	ANGLE ALIGN
	BORESIGHT
	 BORESIGHT REMOVE
	BUTTON MODE
	BUTTON READ
	CHANGE VALUE
	EXAMINE VALUE
	TRACKER STATUS
	SOFTWARE REVISION NUMBER
	TRACKER COMPUTER CRYSTAL SPEED
	POSITION SCALING
	FILTER ON/OFF STATUS
	MEASUREMENT RATE
	DISABLE/ENABLE DATA READY OUTPUT
	SET DATA READY CHARACTER
	ERROR CODE
	DC FILTER TABLE Vm
	DC FILTER CONSTANT TABLE ALPHA_MAX
	SUDDEN OUTPUT CHANGE LOCK
	SYSTEM MODEL IDENTIFICATION
	XYZ REFERENCE FRAME
	FILTER LINE FREQUENCY
	HEMISPHERE
	ANGLE ALIGN
	REFERENCE FRAME
	TRACKER SERIAL NUMBER
	SENSOR SERIAL NUMBER
	TRANSMITTER SERIAL NUMBER
	METAL
	REPORT RATE
	GROUP MODE
	SYSTEM STATUS
	AUTOCONFIG
	SENSOR OFFSET
	BOOT LOADER FIRMWARE REVISION
	MDSP FIRMWARE REVISION
	NON DIPOLE POSERVER FIRMWARE REVISION
	FIVE DOF FIRMWARE REVISION
	SIX DOF FIRMWARE REVISION
	DIPOLE POSERVER FIRMWARE REVISION

	HEMISPHERE
	 MATRIX
	METAL
	OFFSET
	POINT
	POSITION
	POSITION/ANGLES
	POSITION/MATRIX
	POSITION/QUATERNION
	QUATERNION
	READ_VPD
	REFERENCE FRAME
	REPORT RATE
	RESET
	RS232 TO FBB
	RUN
	SLEEP
	STREAM
	STREAM STOP
	WRITE_VPD

	Error Reporting
	Error Code Listing
	Error Codes

	User Maintenance
	Maintenance Prior to Each Use
	Periodic Maintenance (As needed)
	Cleaning and Disinfecting
	Sensor Sterilization
	BROAD GUIDELINES WHEN CONSIDERING THE CIDEX (GLUTARALDEHYDE) PROCESS
	BROAD GUIDELINES WHEN CONSIDERING THE ETO STERILIZATION PROCESS

	Software and Firmware Updates

	Repair
	Warranty
	Disposal
	EC Declaration of Conformity
	FCC Compliance Statement
	Product Specifications
	Performance
	Physical

	Running medSAFE Utility
	Setup
	Run the Utility

	Computing Stylus Tip Coordinates

