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ABSTRACT 
This paper describes the development of an open source toolkit 
for medical interventions. The problem domain is elucidated 
along with a brief history of the project. A description of an 
ongoing clinical trial using the toolkit is then provided, followed 
by a discussion of the toolkit architecture along with the project’s 
emphasis on safety. Our approach is then discussed in contrast to 
classical approaches to real-time, safety critical systems. The 
paper concludes with some discussion of validation.  
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1. Problem Domain and Rationale 
In the most general sense, image-guided surgery refers to 
the use of medical images to guide surgical decisions or 
minimally invasive procedures. However, the term is also 
used to describe an image-guided surgery system, which is 

a specially engineered system that provides virtual image 
overlay and tracking of instruments during these 
procedures. A typical image-guided surgery system (Figure 
1) will include a 1) control computer; 2) software for image 
processing and display; and 3) a localizer for tracking 
instruments and the patient.  
Image-guided surgery systems were initially applied to 
neurosurgical procedures, since the brain is an organ where 
precision is critical. The brain is also surrounded by a rigid 
skull, which simplifies the registration task (registration 
involves making the correspondence between image space 
and localizer space).  These systems incorporated optical 
localizers (as shown in the top left of Figure 1), which are 
highly accurate but depend on maintaining a line of sight 
between the localizer and the organ of interest.   
As the image-guided field evolved, it broadened to include 
other organs of interest, including more deformable organs 
such as the liver. The recent development of 
electromagnetic localizers, which could track small sensor 
coils embedded in instruments, eliminated the link of sight 
tracking requirement and made it possible to track inside 
the body. There was a great amount of interest in these new 
electromagnetic trackers, and many research groups such as 
ours began to develop prototype systems, which were 
software intensive. 
It was out of this environment that the image-guided 
surgical toolkit (IGSTK) was conceived. To enable the 
rapid development of new image-guided systems, the lead 
author proposed that an open source software package for 
image-guided surgery be developed. With funding from 
NIH, the project began in 2003, and has now developed to 
the point where a clinical trial based on the toolkit will 
begin soon, as described in the next section.  
After describing the clinical trial process, this paper 
presents the architecture of IGSTK, first comparing and 
contrasting the requirements, systems architecture, and 
software architecture to classic approaches to real-time 
systems. The differences in architecture and software 
development process motivate the need for an architecture 
validation framework.  Figure 1. Typical computer-aided surgery system 

(courtesy Medtronic Surgical Navigation Technologies) 



2. Clinical Trial for Biopsy 
From the beginning, one of the major goals for the toolkit 
was to use the software in a clinical trial. Clinical trials are 
the standard method for evaluating the effectiveness and 
safety of drugs and medical devices. To conduct a clinical 
trial, a written document describing the trial and related 
issues such as safety must be written and approved by a 
review board.  
Since biopsy is one of the most common procedures in 
Radiology, the Georgetown group decided to focus on lung 
biopsy for the initial clinical trial. It was also felt that the 
guidance system could potentially improve the procedure 
by tracking the biopsy needle and providing a continuous 
3D visualization of the anatomy.  
The study’s purpose was to evaluate the safety and efficacy 
of the electromagnetic navigation system to help 
radiologists accurately place needles into lung lesions 
during CT-guided biopsies. Our hypothesis was that an 
electromagnetic (EM) tracking system for image-guidance 
can augment standard CT fluoroscopy-guided needle 
biopsy.  To ensure the proper operation of our software and 
the electromagnetic tracking system, we carried out 
feasibility tests targeting simulated lesions in swine under 
an approved animal study protocol (see Figure 2 below). 
These tests showed that the system could work successfully 
in the clinical environment. 

 
Figure 2:  Swine study in CT 

(GUI at top left, swine at bottom left,  
electromagnetic tracker on right) 

Following these tests, we felt confident that the system was 
ready for clinical trial. The next step was to obtain IRB 
(institutional review board) approval and FDA IDE 
(investigational device exemption) approval. These 
approvals were obtained, and we are beginning to recruit 
patients (hopefully we will have results at the workshop). 
The workflow of the procedure is as follows (Figure 3): 

1) Patient is positioned on the CT table 
2) Five skin markers are placed to serve as fiducials 
3) CT scan is taken, which consists of a series of cross-

sectional images 
4) CT scan is exported to the image-guided system  

5) Electromagnetic tracking is enabled 
6) Image registration is performed: fiducials are identified in 

CT space and in electromagnetic space 
7) Image overlay is displayed 
8) Suitable path to lesion is defined (rib and critical organ 

interposition is avoided while minimizing the path 
distance to the lesion). 

9) Biopsy needle is directed toward target using image 
overlay 

10) Confirming image is obtained. 
11) Biopsy sample is taken. 

 

 
Figure 3:  Workflow of procedure  
using electromagnetic navigation  

This explanation of the clinical trial provides a backdrop 
for IGSTK’s efforts to obtain IRB and FDA approval. 
Turning to the technology, we next consider how the 
IGSTK’s architecture is derived from domain 
requirements. 

3. IGSTK Architecture Requirements 
IGSTK’s main architecture requirement is safety. To 
IGSTK, safety means patient safety. It is important that the 
system is always in a responsive, known state, and that 
information presented to the surgeon is accurate at the 
given point in time. In a surgical application, a system that 
becomes unresponsive or reports incorrect information may 
have catastrophic (loss of life) consequences. 
When a surgical scene is rendered on a computer display 
for the surgeon, it is the view of the operating room at a 
very recent time. Since many of the objects in the scene are 
in continuous movement, because they are inside of the 
patient or because the surgeon is controlling them, the 
accuracy of the position is related to the consistency of 



time for each object. In other words, when the graphic 
display shows where the surgical needle was located at 
9:06 am, it should appear along with the location of the 
patient’s liver at 9:06AM. IGSTK takes measures for 
preventing the accidental display of the position of the 
needle where it was at 9:06AM along with the patient’s 
liver where it was at 8:54AM. Synchronicity of the objects 
in the scene is extremely important because it is from their 
relative position that the surgeon will derive the most 
useful information for proceeding with the intervention. 
Similarly, when a surgical system is in use, the system 
cannot “lock up” or become unresponsive without some 
notification to the surgeon and a fail-safe mechanism that 
allows the technology to be removed from the 
environment. IGSTK does not control physical objects 
whose malfunction would cause loss of life. However, an 
unresponsive surgical application may result in a 
misinterpretation of a surgical scene if indicators are not 
present to notify the surgeon. Furthermore, fault detection 
within the system must be handled in such a way that 
ensures the current state of the system is (at all times) 
known. IGSTK implements a variation of the State Pattern 
[1] using state machines to ensure operations are only 
performed when the system is in a known state which 
permits the operation. 

4. IGSTK Architecture 
Given IGSTK’s requirements one would expect it is a 
candidate for a classic real-time systems approach. 
However, IGSTK’s approach differs somewhat from this 
expectation. We describe IGSTK’s approach in contrast to 
classic approaches to real-time, safety-critical systems. 

4.1 IGSTK Systems Architecture 
From a hardware perspective, an image-guided surgical 
system supported by IGSTK includes the surgical 
environment (often outfitted with imaging devices), a 
computer, tracking devices, and tracker tools. Tracker tools 
are physical objects one holds in her/his hand, such as a 
surgical instrument. These instruments have attached 
fiducials or markers that allow their position to be read by 
the tracking device via a vendor-defined interface. The 
tracker device itself is connected to a computer via a 
standard interface. The nature of the connector is not a hard 
constraint in IGSTK; RS232 serial, USB, or firewire may 
be used provided the component interface encapsulates the 
communication interface. 
The tracker device has its own processor and a given frame 
rate which determines how often it reads the position of its 
attached tools. Typical frame rates may vary between 15 
Hz and 60 Hz. IGSTK currently supports the NDI 
POLARIS optical trackers, the NDI AURORA magnetic 
trackers, the Claron Micron tracker, and the Ascension 
Flock of Birds magnetic trackers. The IGSTK team is 

currently working on integrating other tracker devices and 
new hardware components such as video frame grabbing 
boards.  
IGSTK considers the computational power of the computer 
to be an application-level requirement. While there are 
minimal requirements such as the ability to render images, 
perform complex mathematical operations, and store image 
data in memory, these do not go beyond the capabilities of 
a low-cost off-the-shelf (OTS) workstation. If a particular 
application requires specialized processing or additional 
displays, it is up to the systems application developer to 
determine the computational resources required. 

4.2 IGSTK Software Architecture 
IGSTK employs the component-based layered software 
architecture shown in Figure 4. Requests from an IGSTK-
enabled application enter the View layer on the left. From 
there requests are made left-to-right across layers, and 
responses are passed back right-to-left. 
 

 
Figure 4. IGSTK component-based layered architecture 

View objects are responsible for rendering representations 
of physical objects on the computer display. In Figure 4, 
the existence of four view objects suggests an application 
with a four-quadrant display. The Representation layer 
provides a canonical representation of spatial object that 
can then be mapped on to multiple views. Spatial objects 
are the internal representation of physical objects in visible 
and invisible space (inside a patient’s anatomy), and the 
Tracker and Tools are software components representing 
these physical devices. 

Communication between components in different layers 
uses a request-response paradigm. A component in one 
layer requests a service of a component in an adjacent 
layer. The service provider passes a response back (with or 
without a data payload) via events; requestors must first 
register interest in receiving the response event. This 
pattern is shown in Figure 5. 



 
Figure 5. IGSTK component interaction pattern 

In Figure 5, CLIENT is performing some behavior while in a 
well-known state (1). CLIENT makes a request (2) via a 
public method invocation on SERVICE. SERVICE accepts the 
request (3) and translates it to an input to an internal state 
machine (4). Based on the transition, a private method 
invocation on component SERVICE also can occur (5). 
Upon successful completion of the computation (6), 
SERVICE generates an event (7) and dispatches the event to 
CLIENT (8). CLIENT translates the event into an input to its 
state machine (9), thereby avoiding error-prone conditional 
logic on return values. 
This call sequence that governs a component behavior in 
IGSTK takes place within timing constraints. IGSTK 
provides two mechanisms, a Pulse Generator object and a 
pseudo Real-Time Clock (RTC) to enforce timing and 
synchronization. The Pulse Generator generates discrete 
ticks at an application-specified interval. Pulse Generator 
objects are employed for the main application thread (upper 
left Figure 4) and the tracker’s internal thread (right side 
Figure 4), and set to the appropriate refresh rates for the 
application’s view and tracker components. The refresh 
rates of View classes must be selected according to the 
capabilities of the graphics hardware available, the 
complexity of the scene to be rendered, and the actual rate 
of interaction required by the clinician.  The refresh rate of 
the Tracker classes must be selected according to the actual 
tracker hardware rate of refreshing position information, 
the rate of transmission set on the communication layer, for 
instance the baud rate of the serial link, and the purpose of 
displaying the tracked object in the surgical scene. 
The left-to-right request pattern of Figure 4 means that the 
main application thread determines the responsiveness of 
the application as a whole; the user sees refreshes at the 
rate of View’s Pulse Generator. Typically (though not 
always) the Tracker’s Pulse Generator will operate at a 
higher frequency, yet it merely writes last know transforms 
to a buffer area, whose data is then pulled from a request in 
the main application thread. This is the only situation 
where thread safety comes into play.  
The RTC mechanism is responsible for assigning time 
intervals for the validity of tracker data (matrix 
transforms). Timestamps on transforms are a time-to-live 
(TTL) mechanism that lets downstream IGSTK 
components know when transforms should not be used in 

object position calculations, and when to expect a new 
transform. If the transform of an object has expired by the 
time it needs to render its appearance on the display, then it 
can decide not to show that particular instrument, or to flag 
it in blinking mode, or in a special color. The purpose of 
this change in representation is to warn the surgeon that the 
current position of that object is not known at this point. 
Such an event may be the consequence of someone 
blocking the line of sight of an optical tracker, or an 
accidental disconnect of a physical tracking tool. In either 
case, it is very important to let the surgeon know that the 
position of that particular object in the display cannot be 
trusted. 
The application of internal state machines, request-
response pattern using events, and timing mechanisms may 
lead one to believe the IGSTK software architecture has 
reactive, concurrent, and asynchronous characteristics, but 
(for the most part) this is not the case. IGSTK applications 
make synchronous requests within a main application 
thread. Software components are not required to be thread 
safe nor mapped onto a separate processor such as is 
typical in a distributed systems environment. Although the 
tracker is a notable exception, even its processing is 
bounded within the IGSTK framework through the 
software component’s interface to the rest of the software 
architecture. 

4.3 Discussion: IGSTK Architecture 
At first glance, IGSTK’s systems and software architecture 
would appear to follow several commonly found design 
principles and practices in real-time systems. A closer 
consideration of the architecture’s guiding requirements 
and the key design decisions with respect to those 
requirements reveals this is not the case. 
To clarify IGSTK’s approach, it is worthwhile to consider 
if applications constructed on top of the IGSTK platform 
are real-time systems at all. Many definitions of real-time 
systems abound; we consider the definition widely 
referenced by Stankovic [2] who says that in a real-time 
system the “correctness of the system depends not only on 
the logical result of the computation but also on the time at 
which the results are produced.”  This is certainly the case 
in IGSTK, as the position of objects reported by the tracker 
device must correspond in time with the rendering of the 
corresponding objects in the computer application. If 
timing constraints are not met in IGSTK, information is 
lost. However, losing such information is not catastrophic 
from an application perspective, as IGSTK will not report 
incorrect information at any time. As described above, a 
visual indicator may be presented to the surgeon when 
valid information is not available to render the surgical 
scene so the result is not catastrophic. Therefore, according 
to the above definition, IGSTK applications are in the class 
of real-time systems. 



The architectures of real-time systems, however, are 
typically constructed on design principles that have 
evolved over the past two-plus decades. For example, a 
real-time operating system (RTOS) is often employed to 
help guarantee scheduling and other timing considerations.  
IGSTK supports several OTS operating systems, including 
various flavors of Windows and UNIX. Hard real-time 
systems typically have specialized (embedded) processing 
capabilities. IGSTK integrates with tracker devices which 
have embedded processing capabilities, though the 
computer it is attached to can be an OTS workstation. Hard 
real-time systems typically use multiple distributed 
processors and/or multithreading to facilitate throughput 
and guarantee performance with respect to timing 
constraints. IGSTK currently assumes a non-distributed 
computing environment employing only a single 
application thread (though additional threads are used 
within the bounds of the tracker component and services 
such as logging). The result is that IGSTK is not a reactive, 
concurrent system in the classic sense, but instead is able 
to make simplifying timing assumptions in the name of 
safety. 
Returning to the principle architectural requirement of 
safety, IGSTK also takes a different approach to address 
this requirement than most safety-critical systems. Leveson 
[3] provides the accepted definition for safety as “freedom 
from accidents”, where an accident is “an undesired and 
unplanned event that results in a loss (including loss of 
human life or injury, property damage, environmental 
pollution, etc.).”  IGSTK takes the view that accidents, 
while undesirable, are not unavoidable, particularly in an 
environment under few restrictions. Recall IGSTK is an 
open source platform intended to be used on OTS hardware 
and operating system environments; as such there are too 
many variables not under its control. To state another way, 
IGSTK does not assume underlying services provide 
guaranteed quality of service with respect to reliability. 
IGSTK instead takes the approach that although an 
“undesired and unplanned event” may happen, IGSTK 
should always maintain a known state in response to the 
event. IGSTK uses an implementation of the State Pattern 
based on internally referenced state machines to maintain a 
set of known states of its components and services at any 
given instant in time. Even in situations where system 
faults occur, from a software perspective IGSTK maintains 
consistent state, and may only enact appropriate behaviors 
(including the reporting of data to the application or the 
rendering of the surgical scene) in that state. 
We have already suggested examples of such faults – a 
person obstructing the line of sight of an optical tracker; or 
the sudden disconnection of a tracker tool. In either 
situation, the IGSTK components transition to appropriate 
states that restrict the set of behaviors (services) an 
application may request. In these examples, an application 

will no longer be able to request the position of an 
instrumented surgical tool during this period. 
To summarize, as a software platform IGSTK employs the 
State Pattern through internal state machines to provide 
software safety in the face of an environment that may not 
guarantee a high degree of system reliability. IGSTK takes 
this approach as part of its mission to be an open source, 
portable platform that supports both surgical applications 
and research endeavors. A surgical system must take 
additional measures to ensure system safety and 
application-defined levels of reliability. 

5. IGSTK Architecture Validation 
Section 4 describes IGSTK’s approach to architectural 
requirements at the system and software level, and 
contrasts these with accepted approaches in real-time and 
safety-critical systems. IGSTK’s development process also 
differs from approaches typically used in real-time and 
safety-critical systems. IGSTK’s employs an Agile 
methodology1, which favors continuous builds and testing 
over extensive design activities. 
For example, consider the “classic” approach when basing 
an architecture on state machines. Typically, one would 
create a model of the state machine in a tool or formal 
language. Then the model would be verified through 
analytical (provable) means or extensive simulation. The 
model would then be used to generate code through a 
correctness-preserving automated or manual process.  
IGSTK provides its own internal state machine execution 
semantics. State machines are coded “by hand”, without the 
aid of visual modeling tools, formal languages, or OTS 
runtime support. The ability to completely control 
execution semantics, and not introduce a 3rd party 
dependence is viewed as a safety benefit to IGSTK.  It 
means IGSTK is not tied to OTS technologies, and does 
not have to map IGSTK execution semantics onto tools 
whose semantics generally were intended for embedded 
systems with asynchronous, multithreaded, (and perhaps 
distributed, concurrent) runtime environments. 
Agile methods and a lack of a formal specification of the 
architecture are an unusual combination for real-time 
safety-critical software, although it is not unprecedented 
within the medical device community [6]. A particular 
concern is that although IGSTK’s continuous testing 
process emphasizes both black box (functional) white box 
(structural) testing at the component level, it does not 
validate state machine structure (static analysis) or 
expected runtime properties (dynamic analysis). An IGSTK 
component that exhibits proper functional behavior with 
respect to unit tests may have an undiscovered defect in the 

                                                                 
1 Space limitations preclude a detailed description of IGSTK’s 

Agile process. The interested reader is referred to [4] or [5]. 



construction of its state machine. Further, there is currently 
no means by which the global state of the system, taken as 
the composition of states of its instantiated components, is 
validated for consistency over time.    
To address these issues, we are currently working on 
architecture validation post-construction. We extract a 
model of component state machines from the source code, 
and then validate this model with respect to architecture 
characteristics relevant to IGSTK. Our current areas of 
emphasis are on static (structural) analysis and global state 
consistency through dynamic analysis (runtime constraint 
checks). These techniques are being integrated into the 
continuous build and testing Agile process to ensure these 
checks are performed as often as the traditional unit tests. 
For static analysis, we consider domain independent and 
domain dependent situations. Domain independent analysis 
includes checking for determinism, and performing state 
machine variants of node, edge, and path coverage through 
simulation. Domain dependent analysis includes checking 
that all state machines conform to IGSTK-specific design 
principles – for example, ensuring all component state 
machines respond to all possible inputs at all times.  
Dynamic analysis is entirely domain dependent; the 
constraints placed on the valid states in a composed state 
machine2 depend on the nature of the components. For 
example, a Spatial Object instance should not report a 
location if the Tracker is in an “OFF” state and unable to 
report the actual location of the physical object. 
IGSTK’s informal architecture approach and reliance on 
Agile process principles (particularly the continuous build 
and test practices) create unique constraints on our 
validation efforts. Reorienting toward a full architecture 
specification (with review), model verification, and code 
generation with underlying runtime support is not an 
option.  The validation toolset has to validate state machine 
structure and execution and report its results as part of the 
Agile process. Our challenge is to create a toolset that not 
only addresses the unique approach to state machine design 
and implementation in IGSTK, but to integrate these 
validation tools into an Agile development process that 
relies heavily on automated tool support. 

6. Summary 
This paper presented the Image-Guided Surgical Toolkit 
(IGSTK), focusing on the project motivation and derived 
architectural requirements. IGSTK is an open source, open 
platform software toolkit for practitioners and researchers 
working on technology supported surgical applications. 
IGSTK applications fall under the category of real-time 

                                                                 
2 The reader may suspect that “composed state machines” with 

“global state” are equivalent to Harel [7] hierarchical 
statecharts, and we suspect this is indeed the case. 

applications with safety-critical requirements. However, 
several distinctions in IGSTK’s architecture and process 
that differ from more traditional approaches in these areas 
were discussed. 
As a software toolkit, IGSTK is limited in the assumptions 
it can make at the system level. This creates an additional 
burden on the software to be, in a sense, self-aware. 
IGSTK software is always in a known state with 
predictable behaviors given that state in the face of a 
potentially unreliable system environment. 
As a toolkit developed through Agile software 
development methods, IGSTK’s approach does not include 
rigorous design activities. The lack of a verifiable model 
and the emphasis on continuous testing forced us to devise 
a collection of architectural validation practices that can be 
incorporated into the existing process. 
There have been two major releases of IGSTK and it is in 
active development for future releases.  A clinical trial is in 
process that will hopefully yield positive results in the near 
future. Interested readers may visit the community website 
at http://www.igstk.org 
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