
The Development of the Image-Guided Surgical Toolkit (IGSTK):
An Open Source Package for Medical Interventions
Kevin Cleary

Patrick Cheng
Ziv Yaniv

The ISIS Center
Department of Radiology

Georgetown University Medical Center
Washington, D.C.

{cleary, cheng, yaniv}@isis.georgetown.edu

Andinet Enquobahrie
Luis Ibanez

Kitware Inc.
Clifton Park, NY

{andinet.enquobahrie, luis.ibanez}@kitware.com

Kevin Gary
Division of Computing Studies

Arizona State University
Mesa, Arizona

kgary@asu.edu

ABSTRACT
This paper describes the development of an open source toolkit
for medical interventions. The problem domain is elucidated
along with a brief history of the project. A description of an
ongoing clinical trial using the toolkit is then provided, followed
by a discussion of the toolkit architecture along with the project’s
emphasis on safety. Our approach is then discussed in contrast to
classical approaches to real-time, safety critical systems. The
paper concludes with some discussion of validation.

Keywords
Architecture Validation, Agile Methods, Safety-critical Software,
Real-Time systems, State Machines

1. Problem Domain and Rationale
In the most general sense, image-guided surgery refers to
the use of medical images to guide surgical decisions or
minimally invasive procedures. However, the term is also
used to describe an image-guided surgery system, which is

a specially engineered system that provides virtual image
overlay and tracking of instruments during these
procedures. A typical image-guided surgery system (Figure
1) will include a 1) control computer; 2) software for image
processing and display; and 3) a localizer for tracking
instruments and the patient.
Image-guided surgery systems were initially applied to
neurosurgical procedures, since the brain is an organ where
precision is critical. The brain is also surrounded by a rigid
skull, which simplifies the registration task (registration
involves making the correspondence between image space
and localizer space). These systems incorporated optical
localizers (as shown in the top left of Figure 1), which are
highly accurate but depend on maintaining a line of sight
between the localizer and the organ of interest.
As the image-guided field evolved, it broadened to include
other organs of interest, including more deformable organs
such as the liver. The recent development of
electromagnetic localizers, which could track small sensor
coils embedded in instruments, eliminated the link of sight
tracking requirement and made it possible to track inside
the body. There was a great amount of interest in these new
electromagnetic trackers, and many research groups such as
ours began to develop prototype systems, which were
software intensive.
It was out of this environment that the image-guided
surgical toolkit (IGSTK) was conceived. To enable the
rapid development of new image-guided systems, the lead
author proposed that an open source software package for
image-guided surgery be developed. With funding from
NIH, the project began in 2003, and has now developed to
the point where a clinical trial based on the toolkit will
begin soon, as described in the next section.
After describing the clinical trial process, this paper
presents the architecture of IGSTK, first comparing and
contrasting the requirements, systems architecture, and
software architecture to classic approaches to real-time
systems. The differences in architecture and software
development process motivate the need for an architecture
validation framework. Figure 1. Typical computer-aided surgery system

(courtesy Medtronic Surgical Navigation Technologies)

2. Clinical Trial for Biopsy
From the beginning, one of the major goals for the toolkit
was to use the software in a clinical trial. Clinical trials are
the standard method for evaluating the effectiveness and
safety of drugs and medical devices. To conduct a clinical
trial, a written document describing the trial and related
issues such as safety must be written and approved by a
review board.
Since biopsy is one of the most common procedures in
Radiology, the Georgetown group decided to focus on lung
biopsy for the initial clinical trial. It was also felt that the
guidance system could potentially improve the procedure
by tracking the biopsy needle and providing a continuous
3D visualization of the anatomy.
The study’s purpose was to evaluate the safety and efficacy
of the electromagnetic navigation system to help
radiologists accurately place needles into lung lesions
during CT-guided biopsies. Our hypothesis was that an
electromagnetic (EM) tracking system for image-guidance
can augment standard CT fluoroscopy-guided needle
biopsy. To ensure the proper operation of our software and
the electromagnetic tracking system, we carried out
feasibility tests targeting simulated lesions in swine under
an approved animal study protocol (see Figure 2 below).
These tests showed that the system could work successfully
in the clinical environment.

Figure 2: Swine study in CT

(GUI at top left, swine at bottom left,
electromagnetic tracker on right)

Following these tests, we felt confident that the system was
ready for clinical trial. The next step was to obtain IRB
(institutional review board) approval and FDA IDE
(investigational device exemption) approval. These
approvals were obtained, and we are beginning to recruit
patients (hopefully we will have results at the workshop).
The workflow of the procedure is as follows (Figure 3):

1) Patient is positioned on the CT table
2) Five skin markers are placed to serve as fiducials
3) CT scan is taken, which consists of a series of cross-

sectional images
4) CT scan is exported to the image-guided system

5) Electromagnetic tracking is enabled
6) Image registration is performed: fiducials are identified in

CT space and in electromagnetic space
7) Image overlay is displayed
8) Suitable path to lesion is defined (rib and critical organ

interposition is avoided while minimizing the path
distance to the lesion).

9) Biopsy needle is directed toward target using image
overlay

10) Confirming image is obtained.
11) Biopsy sample is taken.

Figure 3: Workflow of procedure
using electromagnetic navigation

This explanation of the clinical trial provides a backdrop
for IGSTK’s efforts to obtain IRB and FDA approval.
Turning to the technology, we next consider how the
IGSTK’s architecture is derived from domain
requirements.

3. IGSTK Architecture Requirements
IGSTK’s main architecture requirement is safety. To
IGSTK, safety means patient safety. It is important that the
system is always in a responsive, known state, and that
information presented to the surgeon is accurate at the
given point in time. In a surgical application, a system that
becomes unresponsive or reports incorrect information may
have catastrophic (loss of life) consequences.
When a surgical scene is rendered on a computer display
for the surgeon, it is the view of the operating room at a
very recent time. Since many of the objects in the scene are
in continuous movement, because they are inside of the
patient or because the surgeon is controlling them, the
accuracy of the position is related to the consistency of

time for each object. In other words, when the graphic
display shows where the surgical needle was located at
9:06 am, it should appear along with the location of the
patient’s liver at 9:06AM. IGSTK takes measures for
preventing the accidental display of the position of the
needle where it was at 9:06AM along with the patient’s
liver where it was at 8:54AM. Synchronicity of the objects
in the scene is extremely important because it is from their
relative position that the surgeon will derive the most
useful information for proceeding with the intervention.
Similarly, when a surgical system is in use, the system
cannot “lock up” or become unresponsive without some
notification to the surgeon and a fail-safe mechanism that
allows the technology to be removed from the
environment. IGSTK does not control physical objects
whose malfunction would cause loss of life. However, an
unresponsive surgical application may result in a
misinterpretation of a surgical scene if indicators are not
present to notify the surgeon. Furthermore, fault detection
within the system must be handled in such a way that
ensures the current state of the system is (at all times)
known. IGSTK implements a variation of the State Pattern
[1] using state machines to ensure operations are only
performed when the system is in a known state which
permits the operation.

4. IGSTK Architecture
Given IGSTK’s requirements one would expect it is a
candidate for a classic real-time systems approach.
However, IGSTK’s approach differs somewhat from this
expectation. We describe IGSTK’s approach in contrast to
classic approaches to real-time, safety-critical systems.

4.1 IGSTK Systems Architecture
From a hardware perspective, an image-guided surgical
system supported by IGSTK includes the surgical
environment (often outfitted with imaging devices), a
computer, tracking devices, and tracker tools. Tracker tools
are physical objects one holds in her/his hand, such as a
surgical instrument. These instruments have attached
fiducials or markers that allow their position to be read by
the tracking device via a vendor-defined interface. The
tracker device itself is connected to a computer via a
standard interface. The nature of the connector is not a hard
constraint in IGSTK; RS232 serial, USB, or firewire may
be used provided the component interface encapsulates the
communication interface.
The tracker device has its own processor and a given frame
rate which determines how often it reads the position of its
attached tools. Typical frame rates may vary between 15
Hz and 60 Hz. IGSTK currently supports the NDI
POLARIS optical trackers, the NDI AURORA magnetic
trackers, the Claron Micron tracker, and the Ascension
Flock of Birds magnetic trackers. The IGSTK team is

currently working on integrating other tracker devices and
new hardware components such as video frame grabbing
boards.
IGSTK considers the computational power of the computer
to be an application-level requirement. While there are
minimal requirements such as the ability to render images,
perform complex mathematical operations, and store image
data in memory, these do not go beyond the capabilities of
a low-cost off-the-shelf (OTS) workstation. If a particular
application requires specialized processing or additional
displays, it is up to the systems application developer to
determine the computational resources required.

4.2 IGSTK Software Architecture
IGSTK employs the component-based layered software
architecture shown in Figure 4. Requests from an IGSTK-
enabled application enter the View layer on the left. From
there requests are made left-to-right across layers, and
responses are passed back right-to-left.

Figure 4. IGSTK component-based layered architecture

View objects are responsible for rendering representations
of physical objects on the computer display. In Figure 4,
the existence of four view objects suggests an application
with a four-quadrant display. The Representation layer
provides a canonical representation of spatial object that
can then be mapped on to multiple views. Spatial objects
are the internal representation of physical objects in visible
and invisible space (inside a patient’s anatomy), and the
Tracker and Tools are software components representing
these physical devices.

Communication between components in different layers
uses a request-response paradigm. A component in one
layer requests a service of a component in an adjacent
layer. The service provider passes a response back (with or
without a data payload) via events; requestors must first
register interest in receiving the response event. This
pattern is shown in Figure 5.

Figure 5. IGSTK component interaction pattern

In Figure 5, CLIENT is performing some behavior while in a
well-known state (1). CLIENT makes a request (2) via a
public method invocation on SERVICE. SERVICE accepts the
request (3) and translates it to an input to an internal state
machine (4). Based on the transition, a private method
invocation on component SERVICE also can occur (5).
Upon successful completion of the computation (6),
SERVICE generates an event (7) and dispatches the event to
CLIENT (8). CLIENT translates the event into an input to its
state machine (9), thereby avoiding error-prone conditional
logic on return values.
This call sequence that governs a component behavior in
IGSTK takes place within timing constraints. IGSTK
provides two mechanisms, a Pulse Generator object and a
pseudo Real-Time Clock (RTC) to enforce timing and
synchronization. The Pulse Generator generates discrete
ticks at an application-specified interval. Pulse Generator
objects are employed for the main application thread (upper
left Figure 4) and the tracker’s internal thread (right side
Figure 4), and set to the appropriate refresh rates for the
application’s view and tracker components. The refresh
rates of View classes must be selected according to the
capabilities of the graphics hardware available, the
complexity of the scene to be rendered, and the actual rate
of interaction required by the clinician. The refresh rate of
the Tracker classes must be selected according to the actual
tracker hardware rate of refreshing position information,
the rate of transmission set on the communication layer, for
instance the baud rate of the serial link, and the purpose of
displaying the tracked object in the surgical scene.
The left-to-right request pattern of Figure 4 means that the
main application thread determines the responsiveness of
the application as a whole; the user sees refreshes at the
rate of View’s Pulse Generator. Typically (though not
always) the Tracker’s Pulse Generator will operate at a
higher frequency, yet it merely writes last know transforms
to a buffer area, whose data is then pulled from a request in
the main application thread. This is the only situation
where thread safety comes into play.
The RTC mechanism is responsible for assigning time
intervals for the validity of tracker data (matrix
transforms). Timestamps on transforms are a time-to-live
(TTL) mechanism that lets downstream IGSTK
components know when transforms should not be used in

object position calculations, and when to expect a new
transform. If the transform of an object has expired by the
time it needs to render its appearance on the display, then it
can decide not to show that particular instrument, or to flag
it in blinking mode, or in a special color. The purpose of
this change in representation is to warn the surgeon that the
current position of that object is not known at this point.
Such an event may be the consequence of someone
blocking the line of sight of an optical tracker, or an
accidental disconnect of a physical tracking tool. In either
case, it is very important to let the surgeon know that the
position of that particular object in the display cannot be
trusted.
The application of internal state machines, request-
response pattern using events, and timing mechanisms may
lead one to believe the IGSTK software architecture has
reactive, concurrent, and asynchronous characteristics, but
(for the most part) this is not the case. IGSTK applications
make synchronous requests within a main application
thread. Software components are not required to be thread
safe nor mapped onto a separate processor such as is
typical in a distributed systems environment. Although the
tracker is a notable exception, even its processing is
bounded within the IGSTK framework through the
software component’s interface to the rest of the software
architecture.

4.3 Discussion: IGSTK Architecture
At first glance, IGSTK’s systems and software architecture
would appear to follow several commonly found design
principles and practices in real-time systems. A closer
consideration of the architecture’s guiding requirements
and the key design decisions with respect to those
requirements reveals this is not the case.
To clarify IGSTK’s approach, it is worthwhile to consider
if applications constructed on top of the IGSTK platform
are real-time systems at all. Many definitions of real-time
systems abound; we consider the definition widely
referenced by Stankovic [2] who says that in a real-time
system the “correctness of the system depends not only on
the logical result of the computation but also on the time at
which the results are produced.” This is certainly the case
in IGSTK, as the position of objects reported by the tracker
device must correspond in time with the rendering of the
corresponding objects in the computer application. If
timing constraints are not met in IGSTK, information is
lost. However, losing such information is not catastrophic
from an application perspective, as IGSTK will not report
incorrect information at any time. As described above, a
visual indicator may be presented to the surgeon when
valid information is not available to render the surgical
scene so the result is not catastrophic. Therefore, according
to the above definition, IGSTK applications are in the class
of real-time systems.

The architectures of real-time systems, however, are
typically constructed on design principles that have
evolved over the past two-plus decades. For example, a
real-time operating system (RTOS) is often employed to
help guarantee scheduling and other timing considerations.
IGSTK supports several OTS operating systems, including
various flavors of Windows and UNIX. Hard real-time
systems typically have specialized (embedded) processing
capabilities. IGSTK integrates with tracker devices which
have embedded processing capabilities, though the
computer it is attached to can be an OTS workstation. Hard
real-time systems typically use multiple distributed
processors and/or multithreading to facilitate throughput
and guarantee performance with respect to timing
constraints. IGSTK currently assumes a non-distributed
computing environment employing only a single
application thread (though additional threads are used
within the bounds of the tracker component and services
such as logging). The result is that IGSTK is not a reactive,
concurrent system in the classic sense, but instead is able
to make simplifying timing assumptions in the name of
safety.
Returning to the principle architectural requirement of
safety, IGSTK also takes a different approach to address
this requirement than most safety-critical systems. Leveson
[3] provides the accepted definition for safety as “freedom
from accidents”, where an accident is “an undesired and
unplanned event that results in a loss (including loss of
human life or injury, property damage, environmental
pollution, etc.).” IGSTK takes the view that accidents,
while undesirable, are not unavoidable, particularly in an
environment under few restrictions. Recall IGSTK is an
open source platform intended to be used on OTS hardware
and operating system environments; as such there are too
many variables not under its control. To state another way,
IGSTK does not assume underlying services provide
guaranteed quality of service with respect to reliability.
IGSTK instead takes the approach that although an
“undesired and unplanned event” may happen, IGSTK
should always maintain a known state in response to the
event. IGSTK uses an implementation of the State Pattern
based on internally referenced state machines to maintain a
set of known states of its components and services at any
given instant in time. Even in situations where system
faults occur, from a software perspective IGSTK maintains
consistent state, and may only enact appropriate behaviors
(including the reporting of data to the application or the
rendering of the surgical scene) in that state.
We have already suggested examples of such faults – a
person obstructing the line of sight of an optical tracker; or
the sudden disconnection of a tracker tool. In either
situation, the IGSTK components transition to appropriate
states that restrict the set of behaviors (services) an
application may request. In these examples, an application

will no longer be able to request the position of an
instrumented surgical tool during this period.
To summarize, as a software platform IGSTK employs the
State Pattern through internal state machines to provide
software safety in the face of an environment that may not
guarantee a high degree of system reliability. IGSTK takes
this approach as part of its mission to be an open source,
portable platform that supports both surgical applications
and research endeavors. A surgical system must take
additional measures to ensure system safety and
application-defined levels of reliability.

5. IGSTK Architecture Validation
Section 4 describes IGSTK’s approach to architectural
requirements at the system and software level, and
contrasts these with accepted approaches in real-time and
safety-critical systems. IGSTK’s development process also
differs from approaches typically used in real-time and
safety-critical systems. IGSTK’s employs an Agile
methodology1, which favors continuous builds and testing
over extensive design activities.
For example, consider the “classic” approach when basing
an architecture on state machines. Typically, one would
create a model of the state machine in a tool or formal
language. Then the model would be verified through
analytical (provable) means or extensive simulation. The
model would then be used to generate code through a
correctness-preserving automated or manual process.
IGSTK provides its own internal state machine execution
semantics. State machines are coded “by hand”, without the
aid of visual modeling tools, formal languages, or OTS
runtime support. The ability to completely control
execution semantics, and not introduce a 3rd party
dependence is viewed as a safety benefit to IGSTK. It
means IGSTK is not tied to OTS technologies, and does
not have to map IGSTK execution semantics onto tools
whose semantics generally were intended for embedded
systems with asynchronous, multithreaded, (and perhaps
distributed, concurrent) runtime environments.
Agile methods and a lack of a formal specification of the
architecture are an unusual combination for real-time
safety-critical software, although it is not unprecedented
within the medical device community [6]. A particular
concern is that although IGSTK’s continuous testing
process emphasizes both black box (functional) white box
(structural) testing at the component level, it does not
validate state machine structure (static analysis) or
expected runtime properties (dynamic analysis). An IGSTK
component that exhibits proper functional behavior with
respect to unit tests may have an undiscovered defect in the

1 Space limitations preclude a detailed description of IGSTK’s

Agile process. The interested reader is referred to [4] or [5].

construction of its state machine. Further, there is currently
no means by which the global state of the system, taken as
the composition of states of its instantiated components, is
validated for consistency over time.
To address these issues, we are currently working on
architecture validation post-construction. We extract a
model of component state machines from the source code,
and then validate this model with respect to architecture
characteristics relevant to IGSTK. Our current areas of
emphasis are on static (structural) analysis and global state
consistency through dynamic analysis (runtime constraint
checks). These techniques are being integrated into the
continuous build and testing Agile process to ensure these
checks are performed as often as the traditional unit tests.
For static analysis, we consider domain independent and
domain dependent situations. Domain independent analysis
includes checking for determinism, and performing state
machine variants of node, edge, and path coverage through
simulation. Domain dependent analysis includes checking
that all state machines conform to IGSTK-specific design
principles – for example, ensuring all component state
machines respond to all possible inputs at all times.
Dynamic analysis is entirely domain dependent; the
constraints placed on the valid states in a composed state
machine2 depend on the nature of the components. For
example, a Spatial Object instance should not report a
location if the Tracker is in an “OFF” state and unable to
report the actual location of the physical object.
IGSTK’s informal architecture approach and reliance on
Agile process principles (particularly the continuous build
and test practices) create unique constraints on our
validation efforts. Reorienting toward a full architecture
specification (with review), model verification, and code
generation with underlying runtime support is not an
option. The validation toolset has to validate state machine
structure and execution and report its results as part of the
Agile process. Our challenge is to create a toolset that not
only addresses the unique approach to state machine design
and implementation in IGSTK, but to integrate these
validation tools into an Agile development process that
relies heavily on automated tool support.

6. Summary
This paper presented the Image-Guided Surgical Toolkit
(IGSTK), focusing on the project motivation and derived
architectural requirements. IGSTK is an open source, open
platform software toolkit for practitioners and researchers
working on technology supported surgical applications.
IGSTK applications fall under the category of real-time

2 The reader may suspect that “composed state machines” with

“global state” are equivalent to Harel [7] hierarchical
statecharts, and we suspect this is indeed the case.

applications with safety-critical requirements. However,
several distinctions in IGSTK’s architecture and process
that differ from more traditional approaches in these areas
were discussed.
As a software toolkit, IGSTK is limited in the assumptions
it can make at the system level. This creates an additional
burden on the software to be, in a sense, self-aware.
IGSTK software is always in a known state with
predictable behaviors given that state in the face of a
potentially unreliable system environment.
As a toolkit developed through Agile software
development methods, IGSTK’s approach does not include
rigorous design activities. The lack of a verifiable model
and the emphasis on continuous testing forced us to devise
a collection of architectural validation practices that can be
incorporated into the existing process.
There have been two major releases of IGSTK and it is in
active development for future releases. A clinical trial is in
process that will hopefully yield positive results in the near
future. Interested readers may visit the community website
at http://www.igstk.org

7. References
1. Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design

Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading MA, 1995.

2. Stankovic, J.A., “Misconceptions about Real-time
Computing: A Serious Problem for Next-Generation
Systems” IEEE Computer, 21(10):10-19, October 1988.

3. Leveson, N. Safeware: System Safety and Computers,
Addison-Wesley, Reading, MA, 1995.

4. Cleary, K., Ibanez, L., Gobbi, D., Cheng, P., Gary, K.
Aylward, S., Jomier, J., Enquobahrie, A., Zhang, H., Kim,
HS., and Blake, M.B. IGSTK: The Book. Self-published
Manuscript, The ISIS Center, Georgetown University, 2007.

5. Gary, K., Ibanez, L., Aylward, S. Gobbi, D., Blake, M.B.,
and Cleary, K. IGSTK: An Open Source Software Toolkit
for Image-Guided Surgery. IEEE Computer, 39(4):46-53,
April 2006.

6. Spence, J.W., “There has to be a better way! [software
development]” Proceedings of the Agile Conference,
July 2005.

7. Harel, D. “Statecharts: A Visual Formalism for Complex
Systems” Science of Computer Programming 8, North
Holland Publishing Company, the Netherlands, 1987.

Acknowledgments. This project is a collaboration between Georgetown
University, Kitware Inc., Arizona State University, SINTEF Norway, and
Atamai Inc. This work was funded by NIBIB/NIH grant R01 EB007195.
Additional support was provided by U.S. Army grant W81XWH-04-1-
007. We thank our other collaborators throughout the project, including
David Gobbi of Atamai Inc. and Frank Lindseth, Geir Arne Tangen, Ole
Vegard Solberg, Arild Wollf, Torleif Sandnes of SINTEF Health
Research, Medical Technology (and the National Centre for 3D
Ultrasound in Surgery), Trondheim, Norway

