
 1

Abstract! Software evaluation plays a critical role in the
realization of a successful software project. While this role is
typically performed by the organization building and distr ibuting
the software, an open source development paradigm, one where
project artifacts are made public, makes it possible to evaluate
project data that otherwise might not be available. This project
will evaluate the open source Image Guided Surgery Toolkit
(I GST K) project in order to demonstrate how public data can aid
in the evaluation of the architectural and evolutionary aspects of
an open source project and how these two aspects are related.
F irst, a short review of historical public data in the form of C VS
logs will take place in order to help understand its significance in
terms of the evolution of the architecture of the system. This
exercise represents an evaluation of evolutionary aspects of the
system. Second, an architectural review will be performed using
a quasi-form of the A rchitectural T radeoff Analysis M ethod
(A T A M) developed by the Software Engineering Institute (SE I)
at Carnegie M ellon. This second architectural evaluation will
draw from documentation made public by the project
contributors

I. INTRODUCTION
This project will use the IGSTK project in order to perform a
software evaluation. This study relies on publicly available
software artifacts that can be valuable tools in evaluating
software projects. The availability of these tools is facilitated
by an open source development model, where project artifacts
are made public. CVS log data, as will be shown, can help to
demonstrate how the software project has grown and evolved
over time. While the growth and evolution of a system is not
typically associated with software architecture, it is a critical
component in understanding how the architecture was
implemented. It can address the process by which the
architecture was realized [2]. The majority of the work of this
project represents an architectural review of the IGSTK
project. This architectural evaluation will use the ATAM
model developed by SEI, drawing from documentation made
public by the project contributors.

II. PROBLEM STATEMENT
Software architecture underscores the importance of modeling
and planning high level design in order to realize the
organization of a software system that effectively achieves the

quality requirements necessary for it to be deemed successful.
With this in mind it becomes important for software project
contributors as they participate in the software process to
understand and conceptualize the architecture. In addition the
ability to effectively evaluate a software project in terms of its
growth as well as its architecture can perform a critical role in
its acceptance by the software community [1]. Open source
software artifacts, which are publicly available, offer
tremendous value in terms of their ability to evaluate how the
software was written [1].

III. METHODOLOGY & RESULTS

A. IGSTK Historical Analysis Data Retrieval Methods
An evolutionary analysis helps to answer key question as to a

software project. Was it written by many or a few? Were
releases rolled out more or, less frequently? How steady was
the growth of the code? All of the project evolution data
retrieved for the IGSTK project indicates a growth pattern that
follows an agile approach.

For this analysis several data extraction and visualization
tools are used. It can be helpful to use source control
management tools such as CVS and SVN, as empirical data
gathering tools for open source software evaluation. Table I
lists a few of the tools that were used to mine data in this
study.

TABLE I

CVS ANALYSIS TOOLS
CVSGrab

CVSGrab is both a data mining and data
visualization tool that allows a researcher to
quickly make assessments about the nature of
a project that would have otherwise taken a
researcher a great deal of time meeting with
project participants. It visualizes the evolution
of software projects, showing data all the way
down to the file level. It allows for the
correlation of data based on activity and
contributors [3].

StatCVS

StatCVS provides basic usage reports. Data is
displayed in easy to read graphs. The CVS
data is summed up and displayed in a format
that is more cognitively understandable,

An Architectural Investigation of the Open
Source Image-Guided Surgery Toolkit (IGSTK)

Project
John F. Heidenreich

Arizona State University, East
John.Heidenreich@asu.edu

 2

through visual representation [4].
CVSGraph

This tool is a graphical representation of all
the branches and revisions in a CVS repository
[5].

B. Historical Analysis Results
The tools that were used to analyze the IGSTK project

consistently resulted in some key observation. As shown in
figure 1. The figure below shows that the IGSTK project has
resulted in a fairly steady rate of continuous development. The
number of lines of source code has grown at a sub-linear rate
spanning across frequent public releases and sandbox releases.
This pattern demonstrates that even though development is
ongoing, it is being performed in an incremental fashion that
allows for frequent testing.

Fig 1. Lines of Code over time and across releases – StatCVS-XML

The frequent number of commits represented by thin lines in

figure 2 represents an active group of developers who are
working at an active rate. The frequent rate of released
working versions, with at least six iterations in a given year
can be characterized as rapid development. It is common for
software projects to release only one or two version releases
each year. This demonstrates that there is a steady rate of
development release iterations being made public.

Fig 2. Blue lines represent commits over, time indicating an active

developer base. – CVSGrab

Figure 3 demonstrates that a substantial number of new

source files and new lines of code were not added until later in
the life of the project. This is a sign of the willingness of
developers to incorporate changes late into the development
process. Previous releases indicate a working version.

Fig 4. Files modified by developers – CVSGrab. Bars represent code files
over time. The changing colors represent changing ownership of files by
different developers. Such a breadth of color across virtually all files
represents an understandable code base that is understood by a variety of
project developers who have maintained a consistent level of self organization
over time.

It can be gathered that the rate of developer participation

tends to spread throughout the life of the project indicating that
the number of committed developers remains fairly constant.
It is common with open source projects for the majority of the
work to shift to a smaller group of developers rather than a
consistent distribution between participants over time. As
shown in Figure 4, coding responsibilities seem to shift from
one developer to another quite readily. Different colors are
associated with distinct contributors. This would suggest a
degree of simplicity or understandability that would allow a
straightforward transfer of development responsibilities from
one file to the next. Likely, this is facilitated through
appropriate documentation or adherence to common coding

Fig. 3. New Source files over version releases – CVS-Graph

2005 2006 2007

 3

styles. The frequency of file ownership changes also suggests
that developers are being assigned to different areas of work
with a constant frequency. Such a high change in developer
responsibility seems to be intentional as it appears that other
developers check out files that had been previously been
checked out by other developers. This suggests a degree of
strong self organization.

Upon review of the release patterns it appears that each
version release of the IGSTK module follows a release of the
Sandbox module which is released with the intention of testing
the newly released code that has not been subjected to higher
policies of quality. This method of sandboxing demonstrates a
high level of attention to good design methods and a serious
commitment to technical quality.

These observations all seem to represent an agile approach
to software design. This approach is marked by examples of
rapid, continuous development over the life of the project,
frequently released versions of the software, an active self
organized team of developers with a demonstrated pattern of
planned organization. The visualization suggests a design that
facilitates understandability as developers moved from control
of files to others readily. It also suggests that IGSTK was
designed with an emphasis on testability. The visualization
suggested good attention to solid design principles and
technical strength through rigid testing processes. All of these
are signature elements of agile methods in software
construction [6]. Through this analysis it is evident that
testability and understandability are two architectural qualities
that this agile design methodology supports. Testability also
leads to supporting another architectural quality, safety.

Can this type of observed agile behavior be used to support
the IGSTK architecture? If the architecture requires strong
support for safety and robustness, will an agile approach
support these quality goals? One of the major faulty
criticisms of the agile software development model is that it
represents an undisciplined approach to software construction
[7]. This criticism embodies the resistance from the school of
thought that places more value on a plan-driven method such
as a waterfall model, for software construction. Proponents of
agile methods in turn argue that a focus on talented individuals
working with customers to achieve goals is preferred over the
weighed down process oriented development associated with
plan driven methods [6].

It is interesting to note that several industry leaders,
expressing concerns over the appropriateness of agile methods
in mission critical projects, have suggested that a risk analysis
model should be used to decide whether to use a plan-driven
method or agile methods [7]. The IGSTK project
demonstrates the extent to which care has been taken to
consistently issue sandbox releases. This process appears to
represent a significant portion of the development process.
Sandboxing allows for a platform to test new or prototyped
code. In the case of IGSTK it appears that strict adherence
through the implementation of sandboxing as evidenced in the
SCM visualization, as a means to validate quality as well as

extensive guidelines for testing requirements and best
practices, could be used to ensure the required level of quality
that is needed for safety critical applications [7]. The open
source historical artifact analysis has uncovered a pattern of
agile testing centric design process. For the next portion of
the project a software architecture validation tool will be used
to evaluate the IGSTK architecture, paying particular attention
to any effect that an agile software process may have had on
the architectural decisions.

C . Architectural Tradeoff Analysis Method (ATAM)
Phase 1 - Present the Modified ATAM Approach

This evaluation model was chosen to explore elements of
the IGSTK Architecture in order to clarify the quality attribute
requirements of the architecture through mapping of
architectural decisions. It is also meant to provide a set of
risks, sensitivity points and tradeoffs. The ATAM affords a
concise presentation of the architecture [10]. The ATAM
developed by the SEI at Carnegie Mellon, is made up of nine
steps. Steps 7 and 8 are repeat attempts of steps 5 and 6 with
the only difference being that they are performed at varying
levels of the organization. For this implementation of the
ATAM all information is extracted from the same set of
documentation and not from individuals at different levels of
the organization. For this reason, these two steps will not be
performed leaving us with only 7 steps in total. The first of
these steps encompasses an explanation of the ATAM and
what it attempts to accomplish. The steps continue as follows
[10]:

Step 1 - Present ATAM
Step 2 - Present Business Drivers
Step 3 - Present Architecture
Step 4 - Identify Architectural Approaches
Step 5 - Generate Quality Attribute U tility Tree
Step 6 - Analyze Architectural Approaches
Step 7 - Present Results
While a typical ATAM process would rely on extensive

interactions with the project architects, in this case the process
relies on the existing documentation of the IGSTK project.
While a typical ATAM exercise draws from the collective
knowledge of an organization, this study will draw primarily
from the following documents: "IGSTK: An Open Source
Software Platform for Image-Guided Surgery", submitted to
IEEE Computer December 2005 [11], the recently released
IGSTK The Book for release 2.0, authored by Kevin Cleary
and the Insight Software Consortium [8], an exhaustive
IGSTK wiki site [12] as well as a legacy version of the wiki
site[13]. This evaluation will generate the following: a set of
discovered and prioritized scenarios, questions for better
understanding and evaluating the architecture, a “utility” tree,
a description and prioritization of the driving architectural
requirements, architectural approaches and styles used in the
IGSTK, the risks and non-risks, points of sensitivity points and
tradeoffs. The main goal of the ATAM will be to determine to

 4

what extent the quality requirements are satisfied by the
different architectural approaches.
Phase 2 - Present the Business Drivers

There are several important functional requirements of the
IGSTK system. The main goal of IGSTK is to create an open
source framework for creating and validating reusable, robust
image-guided software specifically for surgical applications.
The IGSTK framework sets out to accomplish the following
[8]:
• The ability to read and display medical images including

CT and MRI in DICOM format.
• An interface to common tracking.
• A graphical user interface and visualization capability

including a four-quadrant view (axial, sagittal, coronal,
and 3D) as well as a multi-slice axial view (from 1 by 1 to
many by many such as 10 by 10).

• Registration: point based registration and a means for
selecting these points.

• Robust common internal software services for logging,
exception-handling and problem resolution.

As an open source community there are certain
organizational constraints. Those participating on IGSTK are
separated by spatial boundaries. Communication is mostly
restricted to email, message boards, teleconferences or other
types of non face-to-face forms of communication. The fact
that IGSTK is a framework built for others to create image
guided surgery applications, the project contributors are faced
with technical constraints associated with creating a product
that is flexible enough for other systems to adopt yet rigid
enough to maintain levels of quality and safety. Another
significant technical constraint is that of domain complexity.
Building an image guided surgery application framework
requires significant collaboration between developers and
industry experts.

The concept for creating IGSTK arose partly from a group
of researchers at Georgetown University who observed that
providing an open source framework layer specifically for
creating image guided surgery, on top of other existing open
source frameworks could be of great value to those who work
in the area of image guided surgery. By creating a way to
greatly simplify the implementation of image guided surgery
tools through the use of standard components for reading
DICOM images, image display, segmentation, registration, and
an AURORA interface, biomedical researchers and clinicians
stand to benefit a great deal from the IGSTK architecture [11].

The major architectural drivers that shape this architecture
are closely linked to the fact that these tools will be used in the
operating room where the well being of others are placed at
risk. As such, safety is of the utmost concern. Reliability and
fault tolerance are also major quality attribute goals.

Phase 3 ! Present the Architecture

The architecture presentation begins with a run-through of
some of the technical platform constraints associated with the
architecture. IGSTK is built to compile on the following
operating system compilers; Microsoft Windows Visual C++

7.0, Microsoft Windows Visual C++ 7.1, Microsoft Windows
Visual C++ 8.0, Linux GCC 3.4, Linux GCC 4.1, and Mac
OSX GCC 4.0 [8].

IGSTK is a layered framework and as such is built on other

open source toolkits. In this layered architecture the operating
system is the foundation layer with a set of others above. The
Insight Toolkit (ITK) offers image analysis functionalities and
infrastructure classes. The Visualiation Toolkit (VTK)
provides image and geometrical model displays. It also
manages substantial user interaction. The Fast Light Toolkit
FLTK or QT can be used for the GUI. The IGSTK is built on
top of these other layers. Image-Guided Surgery (IGS)
applications are built on top of IGSTK. Figure 5 offers a
representation of the layered architecture

Fig 5. IGSTK Layered Architecture [8]

IGS code can only interface with IGSTK classes not with

the underlying ITK and VTK classes. The reason for this level
of abstraction is to force application developers to pass
through the safeguards that IGSTK enforces. IGSTK classes
restrict the ability of IGS developers to use a class in a way
that is not in keeping with the limited use cases enforced by
the IGSTK class.

Figure 6 represents the main components of the IGSTK
system. It gives a concise summary of the main pieces that
make up the toolkit. The Display category deals with classes
that will be rendering and displaying the surgical scene. It is
close to the GUI. Next are two categories that deal with issues
surrounding geometrical aspects of scene objects and visual
representations of those objects. Tracking is a category that
has to do with mapping trackers that track the geometric
position and orientation of the surgical tools to the 3D space.
The Reader category represents all the classes that bring data
into a visual representation. The Calibration category is used
for computing the common points between the image and the
tracker to capture an accurate representation of the surgical
scene. The Services category provides encapsulated services
to IGSTK components. Timing contains the classes that
manage the real-time coordination of everything that the
surgeon sees in the room and on the display. It is necessary
that this represents a consistent, real-time view of the surgical
operation.

 5

Fig 6. Components of the IGSTK [8]

No master class is needed for controlling all the activities at
the top level of the application. This is due to the timing
architecture which provides self contained behavior of each
component of the toolkit. Below is a state machine diagram of
the igstk::PulseGenerator class. The pulse generator is
constantly alternating between the PulsingState and the
WaitingEventReturnState, when it is actually on. Inserting
items into the state machine queue is what is accomplished
through alternating to the appropriate state.

The decision to use a state machine based architecture
strikes at the heart of the main architectural requirement to
protect the patient. The need for a lightweight robust fault
tolerant system is another architectural requirement, which
arises from the overall safety risk which overshadows the
project. These requirements are satisfied through a state
machine implementation as well as a layered architecture
consisting of medium size components communicating via an
event observer pattern implementation. The logic of these
components is controlled by a state machine in order to restrict
misuse.

Fig 8. State Machine Diagram of the PulseGenerator Class [8]

Phase 4 - Identify Architectural Approaches

This short step lists the already identified architectural styles
and approaches that were identified in the previous section
where the key elements of the architecture were presented.
Safety has been identified as the first and foremost concern.
This is addressed through the state machine implementation.
Communication between components occurs through an event
observer pattern. This has the result of preserving decoupling
and encapsulation as well promoting reuse of code. The
IGSTK Framework is a layered architecture built on top of a

 6

set of other components in order to abstract functionality into a
top layer.

Phase 5 - Generate Quality Attribute U tility Tree

In this step the main goal will be to capture quality attribute
scenarios. This will be done through the creation of a quality
attribute utility tree. This approach relies on a top-down
approach which starts with “utility”, serving as the single most
important quality goal. Quality goals are the further refined to
more specific goals such as performance, security, or
interoperability. The final leaf nodes are specific instances of
quality scenarios. Each of these specific characterized
attribute scenarios is weighted in two areas with a respective
rating of high (H), medium (M), and low (L). The first rating
indicates the importance of the item in achieving the overall
success of the system. The second rating indicates the relative
difficulty in achieving the specific quality for which it was
written.

TABLE I I

QUALITY ATTRIBUTE UTILITY TREE

 Quality
Attr ibutes

Quality Sub-
Factors

A ttr ibute
Character izations

Utility

Safety/Robus
tness

Framework
Misuse

H , H Prevent framework
misuse and ensure IGS
applications access to a
basic unified layer
H , H - IGSTK classes will
not throw exception in
order to curb misuse

Visual/Instrume
ntation Failure

H , H – Ensure that the
surgical view is up to date.

Component
Failure

H , M – Provide logging
when lower level
component failure occurs
and provide failure
meausre to user.

Testability

Error Detection

H , M – Provide logging
when lower level
component failure occurs
and provide failure
meausre to user.
H , H - Create a set of
predictable deterministic
behaviors with a high level
of code coverage 90%

Code
Incorrectness
Detect-ability

H , M - Create a system of
testing that uses
sandboxing to test and
prototype all release

Usability Latency
M , M - Response Time for
visualization is reduced to
the smallest possible delay

Phase 6 - Analyze Architectural Approaches

This is the presented outline for capturing architectural

approaches for the scenarios pulled from the utility tree. The
main purpose of this phase is to document the relationship
between the architectural decisions that have been made and
the quality attribute requirements. Architectural approaches
have been discussed in phase 4, however it is yet to be
explained how these approaches help to realize the quality
requirements. For this purpose a set of architectural approach
descriptions is created using the scenarios generated as
attribute characterizations from the utility tree to help
understand these approaches more in depth, helping to identify
risks, sensitivity points and tradeoffs. The IGSTK
architectural approach descriptions that were generated as a
part of this step can be found in appendix A. Table III is a
template for an architectural approach description.

TABLE I I I

ARCHITECTURAL ATTRIBUTE DESCRIPTION

Scenario: <a scenario from the utility tree of from scenario
brainstorming>
Attribute: <performance, security, availability, etc. >
Environment: <relevant assumptions about the
environment in which the system resides >
Stimulus: <a precise statement of the quality attribute
stimulus (e.g., failure, threat, modification, …) embodied by
the scenario>
Response: <a precise statement of the quality attribute
response (e.g., response time, measure of difficulty of
modification)>
A rchitectural
Decisions:

Risk Sensitivity T radeoff

< list of
architectural
decisions
affecting quality
attribute
response >

<risk #> <sens. point
#>

< tradeoff
#>

Reasoning: <rationale for why the list of architectural
decisions contribute to meeting the quality attribute
response requirement >
A rchitectural Diagram: <potential diagram or diagrams
of architectural views>
F igure 2.4 Architectural Approach Documentation Template

[10]

 The main point of generating these architectural attribute
descriptions is to generate as much information as possible
with regard to the approach in question. The goal is to reason
that the approach being evaluated will fulfill the requirements
of the system. From the description a list of sensitivity points,
risks, and tradeoffs are created. Each item on these lists will
be associated with achieving the scenario that satisfies the sub-
quality requirements from the utility tree.

 7

Summary of Approaches
A set of risks, sensitivity points and tradeoffs associated

with the architectural approaches were uncovered with the help
of the architectural approach description generation activity.
These activities can be found in the appendix. The resulting
lists of tradeoffs, risks, and sensitivity points are also found in
the appendix, however in this portion of the paper, these risks,
sensitivity points and tradeoffs are summarized and explored
for each of the three main architectural approaches; state
machine implementation, encapsulation of the layered
architecture and communication via the event observer pattern.

State Machine
The implementation of a state machine forces all events to

pass through the IGSTK model for handling states, transitions
and actions. The developer sacrifices flexibility over lower
layer api calls for the convenience and safety that the IGSTK
has to offer in the form of a state machine which manages all
behavior of the system. By implementing a state machine
architecture all behavior passes through the state machine and
as such the state machine implementation is aware of nearly all
possible behavior. The requirement to account for all possible
behaviors in the state machine makes it substantially easier for
the creators of IGSTK to provide at least 90% code coverage,
as all decisions are accounted for. This heightened code
coverage results in a limited set of functionality in comparison
to the combined size of the underlying third party APIs. By
limiting the number of choices (functions) available to IGS
developers, the IGSTK developers can ensure a limited
number of use cases that can cover nearly the entire set of
possible scenarios for which to test resulting in a high level of
code coverage. The tradeoff between increased features and
required safety levels is necessary. Despite the limited size of
objects in IGSTK a sensitivity point can be found in the
requirement to account for all potential outcomes. This
sensitivity is negatively correlated the size of the object and
with the number of methods it extends.

Layered Architecture

The layered nature of the IGSTK implements encapsulation
of toolkit functionalities to prevent developers from directly
manipulating objects. This is another example of tradeoffs
between flexibility and managing safety. By using safe
encapsulation to restrict functionality the IGSTK can better
manage lower level APIs forcing all API calls through safe
checks managed via tactics such as a state machine
implementation. One potential risk results from
implementation of a layered architecture that depends on other
toolkits/APIs not maintained by IGSTK developers, the
reliability of the IGSTK is limited to the APIs that it depends
on. The state machine carries the onus for handling lower
level errors and this way safety is maintained, however
potential problems with lower level encapsulated objects could
still result in undesirable behavior.

Observer Pattern
A critical component of the IGSTK architecture is the timing

mechanism. One of the most important tasks of the IGSTK is
to manage surgical views. Keeping a real time view of the
physical view is essential to patient safety and is a potential
sensitivity point. A series of steady pulses are used to manage
the rate of visual and physical representations over time.
Expired views are not displayed and visual indicators are
displayed. In order to ensure safety, surgical views may not be
available at critical times. There is an implicit tradeoff
between usability and performance. The amount of buffered
data is set with an expiration data and measured against the
pseudo real-time clock (RTC) implementation in order to
generate a user notification as to whether the view can be
trusted. If this management fails serious damage could result
from mismanaged physical and logical views. The IGS
application developer can set the rate of operations per pulse
intervals resulting in a more contiguously updated view, while
transforms may expire if they are not able to process at the
desired rate. Logging data is buffered in order to improve
performance. Logging data is in risk of not being written
quick enough to disk in case of immediate component failure.
Errors can be reported in the form of events. The state
machine acts as an observer when an event is transduced as an
input into the state machine that results in writing to the log
file and notifying the user interface. This is a tradeoff with
respect to the flexibility of an IGS developers ability to handle
an error generated from a lower level component and to
provide his/her own mechanism for handling the error.

Phase 7 ! Presenting the Results
A concise presentation of the architecture has been offered.

The project goals and motivations were discussed. A
discussion was presented focusing around the quality
requirements of IGSTK in particular and the importance of
safety as a quality requirement. The utility tree allowed for the
mapping of architectural decisions to quality requirements and
the generation of specific scenarios. A set of tradeoffs,
sensitivity points, and risks were developed through an
architectural approach description generation activity, the
results of which are available in the appendix. Specific lists of
tradeoffs, sensitivity points, and risks associated with each
description generation were generated and are also available in
the appendix.

IV. CONCLUSIONS
This paper presented a method for analyzing the architecture

that provided a way to map architectural approaches to quality
requirements. This has been accomplished through performing
the Architectural Tradeoff Analysis Method developed by SEI.
A search for risks, sensitivities and tradeoffs, was apart of this
analysis. In addition to this architectural evaluation another
evaluation was performed that relied on the availability of
publicly available software artifacts to mine for historical data

 8

that suggests a software development process for the open
source IGSTK. It was determined that the data represents the
implementation of testing-centric agile methods approach to
software design. It was concluded that this agile test-centric
design process reinforced both the understandability and
testability quality attributes.

This study provides fertile ground for the exploration of the
role between software methodology and software architecture
exploration in open source systems.

APPENDIX

A. Architectural Approach Descriptions

Scenario: S1 Prevent framework misuse and ensure IGS
applications access to a basic unified layer
Attribute: Safety/Robustness
Environment: Normal / Strained Use
Stimulus: Developer Misuse
Response: Classes that inherit lower level component
behavior are restricted to basic functionality.
A rchitectural
Decisions

Risk Sensitivity T radeoff

Encapsulation of
toolkit
functionalities

 T1

Layered
architecture

R1

Medium sized
objects

 T2

Reasoning:
- Encapsulation of toolkit functionalities, preventing

developers from directly manipulating objects without
passing first safeguards. Here there is a choice between
flexibility and managing safety. By using safe
encapsulation to restrict functionality the IGSTK can
better manage lower level APIs forcing all API calls
through safe checks managed via tactics such as a state
machine implementation.

- By implementing an architecture that depends on other
toolkits/APIs not maintained by IGSTK developers, the
reliability of the IGSTK is limited to the APIs that it
depends on. While safety may be managed from the
IGSTK layer, reliability can only be maintained to the
extent to which it can be tested.

- Medium sized objects resulting in reduced functionality
again sacrifice flexibility in order to achieve safety. A
limited set of function calls allow IGSTK to manage
complexity that could threaten safety.

A rchitectural Diagram:

Layered Architecture[8]

Scenario: S2 Reduce the IGS Application’s ability to miss
potentially harmful errors.
Attribute: Safety/Robustness
Environment: Normal Use / Strained Use
Stimulus: An error is thrown by any element of the IGSTK
or underlying layer of components.
Response: IGSTK classes will not throw exception in order
to curb misuse
A rchitectural
decisions

Risk Sensitivity T radeoff

Limited use case. T3
State Machine T4
Reasoning:
- By limiting the number of choices (functions) available to
IGS developers the IGSTK developers can ensure a
limited number of use cases that can cover nearly the
entire set of possible scenarios for which to test resulting
in a high level of code coverage.

- The implementation of a state machine forces all events to
traverse through the IGSTK model for handling states,
transitions and actions. The developer sacrifices
flexibility for the convenience and safety that the IGSTK
has to offer.

A rchitectural Diagram:

Separation Between Public and Private Interface of IGSTK

Components [8]

Scenario: S3 Ensure that the surgical view is up to date
Attribute: Safety/Robustness
Environment: Normal use
Stimulus: System may experience stress conditions
Response: Synchronicity is maintained through an event
observer pattern. Through a series of pulses a tracker class
will query the actual hardware tracker device and will get
from it information about the position of the tracked
instruments in the operating room.
A rchitectural
decisions

Risk Sensitivity T radeoff

Event observer pattern
to facilitate updated
surgical views

 S1

Reasoning:
- Event observer pattern used to track and manage visual
and physical representations over time through a series of
steady pulses. Expired views are not displayed and visual
indicators are displayed. If this management fails serious
damage could result from a mismanaged physical and
logical views

A rchitectural Diagram:

 9

UML Sequence Diagram of the IGSTK Timing

Collaboration [8]

Scenario: S5 Provide logging when lower level component
failure occurs, and provide failure message to user.
Attribute: Testability
Environment: System is performing tracking functions
Stimulus: lower layer component failure
Response: Logging is buffered and written to file for later
review
A rchitectural
decisions

Risk Sensitivity T radeoff

Buffered logging R2
Events T5
Reasoning:
- When logging is buffered, buffered data is in risk of not
being written quick enough in case of immediate
component failure

- Errors can be reported in the form of events. The state
machine acts as an observer when an event is transduced
as an input into the state machine that results in writing to
the log file and notifying the user interface. This is a
tradeoff with respect to the flexibility of an IGS
developers ability to handle an error generated from a

lower level component and to provide his/her own
mechanism for handling the error.

A rchitectural Diagram:

Event Observer Transduction Diagram [8]

Scenario: S6 Create a set of predictable deterministic
behaviors with a high level of code coverage 90%
Attribute: Testability
Environment: The system operating in all possible
environments (stressed, regular use, heavy use)
Stimulus: An intentional planned testing environment
where all possible behaviors are tested under every known
environment
Response: Use a state machine based architecture to
implement a high level of code coverage
A rchitectural
decisions

Risk Sensitivity T radeoff

Sate machine
architecture

 S2 T4

Reasoning:
- By implementing a state machine architecture a tradeoff

between IGS developer flexibility/freedom and
safety/reliability/predictability.

- A sensitivity of the system may manifest itself through the
difficulty in creating a state machine that consists of every
single set of possible outcomes. This sensitivity may be
directly correlated to the size of the objects , as smaller
sized objects would result in a reduced set of behaviors

A rchitectural Diagram:

Separation Between Public and Private Interface of IGSTK

Components [8]

Scenario: S7 Create a system of testing that uses
sandboxing to test and prototype all release
Attribute: Testability
Environment: An intentional planned testing environment
where all possible behaviors are tested under every known
environment
Stimulus: A nightly process attempting to build the
changes committed to the project.
Response: Sandbox implementation for multiple codelines
A rchitectural Risk Sensitivity T radeoff

 10

decisions
Sandboxing T6
Reasoning:
- While sandboxing may tend to be considered a

development process approach as opposed to an actual
architectural approach, it may also be considered
architectural in that it is a replica of elements of a system
with a reduced level of overall quality. This approach
exchanges quality as a tradeoff for testability. In the
nightly test environment code is more testable as it is not
a threat to any production level.

Scenario: S8 Response Time for visualization is reduced to
the smallest possible delay
Attribute: Usability
Environment: Stressed/Normal Use
Stimulus: Tracking functionality
Response: Creating a timing mechanism to manage the real
time nature of surgical views
A rchitectural
decisions

Risk Sensitivity T radeoff

Event/Observer Pattern S1
Timing Architectural
Design

R3 T8, T7

Reasoning:
- The IGS application developer can set the rate of

operations per pulse intervals resulting in a more
contiguously updated view, while transforms mayexpire if
they are not able to process at the desired rate.

- In order to ensure safety surgical views may not be
available at critical times.

- There is an implicit tradeoff between usability and
performance. The amount of buffered data is set with an
expiration data and measured against the pulse tracker
mechanism in order to generate a user notification as to
whether the view can be trusted.

A rchitectural Diagram:

UML Sequence Diagram of the IGSTK Timing

Collaboration [8]

V . APPE NDIX B
 Risks
R1 Layered architecture relying on other toolkits/APIs

not maintained by developers
R2 When logging is buffered, buffered data is in risk

of not being written quick enough in case of
immediate component failure

R3 In order to ensure safety surgical views may not be
available at critical times.

 11

Sensitivities

S1 Event observer pattern used to track and manage
visual and physical representations over time
through a series of steady pulses. Expired views
are not displayed and visual indicators are
displayed. If this management fails serious
damage could result from a mismanaged physical
and logical views

S2 Difficulty in creating a state machine that consists
of every single set of possible outcomes. This
sensitivity may be directly correlated to the size of
the objects

 T radeoffs

T1 Encapsulation of toolkit functionalities, trading
flexibility for safety.

T2 Medium sized objects resulting in a tradeoff
between reduced functionality for robust
applications.

T3 By limiting the number of choices (functions)
available to IGS developers the IGSTK developers
can ensure a limited number of use cases that can
cover nearly the entire set of possible scenarios for
which to test resulting in a high level of code
coverage.

T4 The implementation of a state machine forces all
events to traverse through the IGSTK model for
handling states, transitions and actions. The
developer sacrifices flexibility for the convenience
and safety that the IGSTK has to offer.

T5 Forcing error handling of lower layer components
to be handled by the observer state machine, using
error events as inputs into the state machine

T6 This approach exchanges quality as a tradeoff for
testability. In the nightly test environment code is
more testable as it is not a threat to any production
level.

T7 There is an implicit tradeoff between usability and
performance. The amount of buffered data is set
with an expiration data and measured against the
pulse tracker mechanism in order to generate a
user notification as to whether the view can be
trusted.

T8 The IGS application developer can set the rate of
operations per pulse intervals resulting in a more
contiguously updated view, while transforms may
expire if they are not able to process at the desired
rate.

REFERENCES
[1] G. Polancic, R.V. Horvat, T. Rozman, “Comparative assessment of open

source software using easy accessible data,” International Conference on
Information Technology Interfaces, 2004, Vol. 1, pp. 673 - 678

[2] I. Alsmadi, K. Magel, “Software Maintenance, 2006. ICSM '06. 22nd
IEEE International Conference on “, 2006, Sept, pp. 276-278

[3] CVSGrab Available: http://www.win.tue.nl/~lvoinea/VCN.html
[4] StatCVS-XML Available: http://statcvs-xml.berlios.de/
[5] CVSGraph Available: http://www.akhphd.au.dk/~bertho/cvsgraph/

[6] V. Subramaniam, Andy Hunt, Practices of an Agile Developer, Raleigh
North Carolina, The Pragmatic Bookshelf, 2006

[7] B. Boehm, R. Turner, Balancing Agility and Discipline: A Guide for the
Perplexed, Boston, MA, Addison-Wesley, 2004

[8] K. Cleary, The Insight Software Consortium, IGSTK: The Book For
release 2.0, Gaithersburg, Maryland, Signature Book Printing, 2007

[9] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice,
Second Edition, Addison Wesley, 2004

[10] R. Kazman, M. Klein, P. Clements, ATAM: Method for Architecture
Evaluation CMU/SEI-2000-TR-004, ADA382629). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University, 2000.
Available:
http://www.sei.cmu.edu/publications/documents/00.reports/00tr004.htm
l

[11] K. Gary, M. B. Blake, L. Ibanez, D. Gobbi, S. Aylward, K. Cleary.”
IGSTK: An Open Source Software Platform for Image-Guided Surgery.”
Submitted to IEEE Computer

[12] IGSTK wiki papge, Available: http://public.kitware.com/IGSTKWIKI
[13] IGSTK Legacy wiki papge, Available:

http://public.kitware.com/IGSTKWIKI/index.php/Previous_wiki_page

