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Abstract! Software evaluation plays a critical role in the 
realization of a successful software project.  While this role is 
typically performed by the organization building and distr ibuting 
the software, an open source development paradigm, one where 
project artifacts are made public, makes it possible to evaluate 
project data that otherwise might not be available.  This project 
will evaluate the open source Image Guided Surgery Toolkit 
(I GST K) project in order to demonstrate how public data can aid 
in the evaluation of the architectural and evolutionary aspects of 
an open source project and how these two aspects are related. 
F irst, a short review of historical public data in the form of C VS 
logs will take place in order to help understand its significance in 
terms of the evolution of the architecture of the system.  This 
exercise represents an evaluation of evolutionary aspects of the 
system.   Second, an architectural review will be performed using 
a quasi-form of the A rchitectural T radeoff Analysis M ethod 
(A T A M) developed by the Software Engineering Institute (SE I) 
at Carnegie M ellon.  This second architectural evaluation will 
draw from documentation made public by the project 
contributors 

I. INTRODUCTION 
This project will use the IGSTK project in order to perform a 
software evaluation.  This study relies on publicly available 
software artifacts that can be valuable tools in evaluating 
software projects.  The availability of these tools is facilitated 
by an open source development model, where project artifacts 
are made public.  CVS log data, as will be shown, can help to 
demonstrate how the software project has grown and evolved 
over time.  While the growth and evolution of a system is not 
typically associated with software architecture, it is a critical 
component in understanding how the architecture was 
implemented.  It can address the process by which the 
architecture was realized [2].  The majority of the work of this 
project represents an architectural review of the IGSTK 
project.  This architectural evaluation will use the ATAM 
model developed by SEI, drawing from documentation made 
public by the project contributors. 
 

II. PROBLEM STATEMENT 
Software architecture underscores the importance of modeling 
and planning high level design in order to realize the 
organization of a software system that effectively achieves the 

quality requirements necessary for it to be deemed successful.  
With this in mind it becomes important for software project 
contributors as they participate in the software process to 
understand and conceptualize the architecture.  In addition the 
ability to effectively evaluate a software project in terms of its 
growth as well as its architecture can perform a critical role in 
its acceptance by the software community [1].  Open source 
software artifacts, which are publicly available, offer 
tremendous value in terms of their ability to evaluate how the 
software was written [1].   

III. METHODOLOGY & RESULTS 

A. IGSTK Historical Analysis Data Retrieval Methods  
An evolutionary analysis helps to answer key question as to a 

software project.  Was it written by many or a few?  Were 
releases rolled out more or, less frequently?  How steady was 
the growth of the code?  All of the project evolution data 
retrieved for the IGSTK project indicates a growth pattern that 
follows an agile approach.  

For this analysis several data extraction and visualization 
tools are used.  It can be helpful to use source control 
management tools such as CVS and SVN, as empirical data 
gathering tools for open source software evaluation. Table I 
lists a few of the tools that were used to mine data in this 
study. 

 
TABLE I 

CVS ANALYSIS TOOLS 
CVSGrab 

 
CVSGrab is both a data mining and data 
visualization tool that allows a researcher to 
quickly make assessments about the nature of 
a project that would have otherwise taken a 
researcher a great deal of time meeting with 
project participants.  It visualizes the evolution 
of software projects, showing data all the way 
down to the file level.  It allows for the 
correlation of data based on activity and 
contributors [3]. 

StatCVS 
 

StatCVS provides basic usage reports.  Data is 
displayed in easy to read graphs.  The CVS 
data is summed up and displayed in a format 
that is more cognitively understandable, 
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through visual representation [4]. 
CVSGraph 

 
This tool is a graphical representation of all 
the branches and revisions in a CVS repository 
[5]. 

 

B. Historical Analysis Results 
The tools that were used to analyze the IGSTK project 

consistently resulted in some key observation.  As shown in 
figure 1. The figure below shows that the IGSTK project has 
resulted in a fairly steady rate of continuous development.  The 
number of lines of source code has grown at a sub-linear rate 
spanning across frequent public releases and sandbox releases.  
This pattern demonstrates that even though development is 
ongoing, it is being performed in an incremental fashion that 
allows for frequent testing. 

 
Fig 1. Lines of Code over time and across releases – StatCVS-XML 

 
The frequent number of commits represented by thin lines in 

figure 2 represents an active group of developers who are 
working at an active rate.  The frequent rate of released 
working versions, with at least six iterations in a given year 
can be characterized as rapid development.  It is common for 
software projects to release only one or two version releases 
each year.  This demonstrates that there is a steady rate of 
development release iterations being made public.   

 
Fig 2. Blue lines represent commits over, time indicating an active 

developer base. – CVSGrab 
 
Figure 3 demonstrates that a substantial number of new 

source files and new lines of code were not added until later in 
the life of the project.  This is a sign of the willingness of 
developers to incorporate changes late into the development 
process.  Previous releases indicate a working version. 

 

 
Fig 4.  Files modified by developers – CVSGrab.  Bars represent code files 
over time.  The changing colors represent changing ownership of files by 
different developers.  Such a breadth of color across virtually all files 
represents an understandable code base that is understood by a variety of 
project developers who have maintained a consistent level of self organization 
over time. 

 
It can be gathered that the rate of developer participation 

tends to spread throughout the life of the project indicating that 
the number of committed developers remains fairly constant.  
It is common with open source projects for the majority of the 
work to shift to a smaller group of developers rather than a 
consistent distribution between participants over time. As 
shown in Figure 4, coding responsibilities seem to shift from 
one developer to another quite readily.  Different colors are 
associated with distinct contributors.  This would suggest a 
degree of simplicity or understandability that would allow a 
straightforward transfer of development responsibilities from 
one file to the next.  Likely, this is facilitated through 
appropriate documentation or adherence to common coding 

 
Fig. 3.  New Source files over version releases – CVS-Graph 
 

2005 2006 2007 
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styles.  The frequency of file ownership changes also suggests 
that developers are being assigned to different areas of work 
with a constant frequency.  Such a high change in developer 
responsibility seems to be intentional as it appears that other 
developers check out files that had been previously been 
checked out by other developers.  This suggests a degree of 
strong self organization. 

Upon review of the release patterns it appears that each 
version release of the IGSTK module follows a release of the 
Sandbox module which is released with the intention of testing 
the newly released code that has not been subjected to higher 
policies of quality.  This method of sandboxing demonstrates a 
high level of attention to good design methods and a serious 
commitment to technical quality. 

These observations all seem to represent an agile approach 
to software design.  This approach is marked by examples of 
rapid, continuous development over the life of the project, 
frequently released versions of the software, an active self 
organized team of developers with a demonstrated pattern of 
planned organization. The visualization suggests a design that 
facilitates understandability as developers moved from control 
of files to others readily.  It also suggests that IGSTK was 
designed with an emphasis on testability.  The visualization 
suggested good attention to solid design principles and 
technical strength through rigid testing processes.  All of these 
are signature elements of agile methods in software 
construction [6]. Through this analysis it is evident that 
testability and understandability are two architectural qualities 
that this agile design methodology supports.  Testability also 
leads to supporting another architectural quality, safety.   

Can this type of observed agile behavior be used to support 
the IGSTK architecture?  If the architecture requires strong 
support for safety and robustness, will an agile approach 
support these quality goals?   One of the major faulty 
criticisms of the agile software development model is that it 
represents an undisciplined approach to software construction 
[7].  This criticism embodies the resistance from the school of 
thought that places more value on a plan-driven method such 
as a waterfall model, for software construction.  Proponents of 
agile methods in turn argue that a focus on talented individuals 
working with customers to achieve goals is preferred over the 
weighed down process oriented development associated with 
plan driven methods [6].   

It is interesting to note that several industry leaders, 
expressing concerns over the appropriateness of agile methods 
in mission critical projects, have suggested that a risk analysis 
model should be used to decide whether to use a plan-driven 
method or agile methods [7].  The IGSTK project 
demonstrates the extent to which care has been taken to 
consistently issue sandbox releases.  This process appears to 
represent a significant portion of the development process.  
Sandboxing allows for a platform to test new or prototyped 
code. In the case of IGSTK it appears that strict adherence 
through the implementation of sandboxing as evidenced in the 
SCM visualization, as a means to validate quality as well as 

extensive guidelines for testing requirements and best 
practices, could be used to ensure the required level of quality 
that is needed for safety critical applications [7].  The open 
source historical artifact analysis has uncovered a pattern of 
agile testing centric design process.   For the next portion of 
the project a software architecture validation tool will be used 
to evaluate the IGSTK architecture, paying particular attention 
to any effect that an agile software process may have had on 
the architectural decisions. 

 

C . Architectural Tradeoff Analysis Method (ATAM) 
Phase 1 - Present the Modified ATAM Approach  

This evaluation model was chosen to explore elements of 
the IGSTK Architecture in order to clarify the quality attribute 
requirements of the architecture through mapping of 
architectural decisions.  It is also meant to provide a set of 
risks, sensitivity points and tradeoffs.  The ATAM affords a 
concise presentation of the architecture [10].  The ATAM 
developed by the SEI at Carnegie Mellon, is made up of nine 
steps.  Steps 7 and 8 are repeat attempts of steps 5 and 6 with 
the only difference being that they are performed at varying 
levels of the organization.  For this implementation of the 
ATAM all information is extracted from the same set of 
documentation and not from individuals at different levels of 
the organization.  For this reason, these two steps will not be 
performed leaving us with only 7 steps in total.  The first of 
these steps encompasses an explanation of the ATAM and 
what it attempts to accomplish.  The steps continue as follows 
[10]:   

Step 1 -  Present ATAM  
Step 2 -  Present Business Drivers 
Step 3 -  Present Architecture 
Step 4 -  Identify Architectural Approaches 
Step 5 -  Generate Quality Attribute U tility Tree 
Step 6 -  Analyze Architectural Approaches 
Step 7 -  Present Results 
While a typical ATAM process would rely on extensive 

interactions with the project architects, in this case the process 
relies on the existing documentation of the IGSTK project.  
While a typical ATAM exercise draws from the collective 
knowledge of an organization, this study will draw primarily 
from the following documents: "IGSTK: An Open Source 
Software Platform for Image-Guided Surgery", submitted to 
IEEE Computer December 2005 [11], the recently released 
IGSTK The Book for release 2.0, authored by Kevin Cleary 
and the Insight Software Consortium [8], an exhaustive 
IGSTK wiki site [12] as well as a legacy version of the wiki 
site[13]. This evaluation will generate the following: a set of 
discovered and prioritized scenarios, questions for better 
understanding and evaluating  the architecture, a “utility” tree, 
a description and prioritization of the driving architectural 
requirements, architectural approaches and styles used in the 
IGSTK, the risks and non-risks, points of sensitivity points and 
tradeoffs. The main goal of the ATAM will be to determine to 
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what extent the quality requirements are satisfied by the 
different architectural approaches. 
Phase 2 - Present the Business Drivers 

There are several important functional requirements of the 
IGSTK system. The main goal of IGSTK is to create an open 
source framework for creating and validating reusable, robust 
image-guided software specifically for surgical applications.  
The IGSTK framework sets out to accomplish the following 
[8]: 
• The ability to read and display medical images including 

CT and MRI in DICOM format. 
• An interface to common tracking. 
• A graphical user interface and visualization capability 

including a four-quadrant view (axial, sagittal, coronal, 
and 3D) as well as a multi-slice axial view (from 1 by 1 to 
many by many such as 10 by 10). 

• Registration: point based registration and a means for 
selecting these points. 

• Robust common internal software services for logging, 
exception-handling and problem resolution. 

As an open source community there are certain 
organizational constraints.  Those participating on IGSTK are 
separated by spatial boundaries.  Communication is mostly 
restricted to email, message boards, teleconferences or other 
types of non face-to-face forms of communication.  The fact 
that IGSTK is a framework built for others to create image 
guided surgery applications, the project contributors are faced 
with technical constraints associated with creating a product 
that is flexible enough for other systems to adopt yet rigid 
enough to maintain levels of quality and safety.  Another 
significant technical constraint is that of domain complexity.  
Building an image guided surgery application framework 
requires significant collaboration between developers and 
industry experts. 

The concept for creating IGSTK arose partly from a group 
of researchers at Georgetown University who observed that 
providing an open source framework layer specifically for 
creating image guided surgery, on top of other existing open 
source frameworks could be of great value to those who work 
in the area of image guided surgery.   By creating a way to 
greatly simplify the implementation of image guided surgery 
tools through the use of standard components for reading 
DICOM images, image display, segmentation, registration, and 
an AURORA interface, biomedical researchers and clinicians 
stand to benefit a great deal from the IGSTK architecture [11].   

The major architectural drivers that shape this architecture 
are closely linked to the fact that these tools will be used in the 
operating room where the well being of others are placed at 
risk.  As such, safety is of the utmost concern.  Reliability and 
fault tolerance are also major quality attribute goals. 
 
Phase 3 ! Present the Architecture 

The architecture presentation begins with a run-through of 
some of the technical platform constraints associated with the 
architecture.  IGSTK is built to compile on the following 
operating system compilers; Microsoft Windows Visual C++ 

7.0, Microsoft Windows Visual C++ 7.1, Microsoft Windows 
Visual C++ 8.0, Linux GCC 3.4, Linux GCC 4.1, and Mac 
OSX GCC 4.0 [8].   

 
IGSTK is a layered framework and as such is built on other 

open source toolkits.  In this layered architecture the operating 
system is the foundation layer with a set of others above.  The 
Insight Toolkit (ITK) offers image analysis functionalities and 
infrastructure classes. The Visualiation Toolkit (VTK) 
provides image and geometrical model displays.  It also 
manages substantial user interaction. The Fast Light Toolkit 
FLTK or QT can be used for the GUI.  The IGSTK is built on 
top of these other layers.  Image-Guided Surgery (IGS) 
applications are built on top of IGSTK.  Figure 5 offers a 
representation of the layered architecture   

 
Fig 5. IGSTK Layered Architecture [8] 
 
IGS code can only interface with IGSTK classes not with 

the underlying ITK and VTK classes.  The reason for this level 
of abstraction is to force application developers to pass 
through the safeguards that IGSTK enforces. IGSTK classes 
restrict the ability of IGS developers to use a class in a way 
that is not in keeping with the limited use cases enforced by 
the IGSTK class.   

Figure 6 represents the main components of the IGSTK 
system.  It gives a concise summary of the main pieces that 
make up the toolkit.  The Display category deals with classes 
that will be rendering and displaying the surgical scene.  It is 
close to the GUI.  Next are two categories that deal with issues 
surrounding geometrical aspects of scene objects and visual 
representations of those objects. Tracking is a category that 
has to do with mapping trackers that track the geometric 
position and orientation of the surgical tools to the 3D space. 
The Reader category represents all the classes that bring data 
into a visual representation.  The Calibration category is used 
for computing the common points between the image and the 
tracker to capture an accurate representation of the surgical 
scene.  The Services category provides encapsulated services 
to IGSTK components.  Timing contains the classes that 
manage the real-time coordination of everything that the 
surgeon sees in the room and on the display.  It is necessary 
that this represents a consistent, real-time view of the surgical 
operation.   
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Fig 6.  Components of the IGSTK [8] 
 

No master class is needed for controlling all the activities at 
the top level of the application. This is due to the timing 
architecture which provides self contained behavior of each 
component of the toolkit.  Below is a state machine diagram of 
the igstk::PulseGenerator class.  The pulse generator is 
constantly alternating between the PulsingState and the 
WaitingEventReturnState, when it is actually on.  Inserting 
items into the state machine queue is what is accomplished 
through alternating to the appropriate state. 

The decision to use a state machine based architecture 
strikes at the heart of the main architectural requirement to 
protect the patient.  The need for a lightweight robust fault 
tolerant system is another architectural requirement, which 
arises from the overall safety risk which overshadows the 
project.  These requirements are satisfied through a state 
machine implementation as well as a layered architecture 
consisting of medium size components communicating via an 
event observer pattern implementation. The logic of these 
components is controlled by a state machine in order to restrict 
misuse. 

 
 
 
Fig 8.  State Machine Diagram of the PulseGenerator Class [8] 
 
Phase 4 - Identify Architectural Approaches 

This short step lists the already identified architectural styles 
and approaches that were identified in the previous section 
where the key elements of the architecture were presented.  
Safety has been identified as the first and foremost concern.  
This is addressed through the state machine implementation.  
Communication between components occurs through an event 
observer pattern.  This has the result of preserving decoupling 
and encapsulation as well promoting reuse of code.  The 
IGSTK Framework is a layered architecture built on top of a 
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set of other components in order to abstract functionality into a 
top layer.   
 
Phase 5 - Generate Quality Attribute U tility Tree 

In this step the main goal will be to capture quality attribute 
scenarios.  This will be done through the creation of a quality 
attribute utility tree.  This approach relies on a top-down 
approach which starts with “utility”, serving as the single most 
important quality goal. Quality goals are the further refined to 
more specific goals such as performance, security, or 
interoperability.  The final leaf nodes are specific instances of 
quality scenarios.  Each of these specific characterized 
attribute scenarios is weighted in two areas with a respective 
rating of high (H), medium (M), and low (L).  The first rating 
indicates the importance of the item in achieving the overall 
success of the system.  The second rating indicates the relative 
difficulty in achieving the specific quality for which it was 
written. 

  
TABLE I I 

QUALITY ATTRIBUTE UTILITY TREE 

 Quality 
Attr ibutes 

Quality Sub-
Factors 

A ttr ibute 
Character izations  

Utility 

Safety/Robus
tness 

Framework 
Misuse 

H , H   Prevent framework 
misuse and ensure IGS 
applications access to  a 
basic unified  layer 
H , H  - IGSTK classes will 
not throw exception in 
order to curb misuse 

Visual/Instrume
ntation Failure 

H , H  – Ensure that the 
surgical view is up to date. 

Component 
Failure 

H , M  – Provide logging 
when lower level 
component failure occurs 
and provide failure 
meausre to user. 

Testability 

Error Detection  

H , M  – Provide logging 
when lower level 
component failure occurs 
and provide failure 
meausre to user. 
H , H  - Create a set of 
predictable deterministic 
behaviors with a high level 
of code coverage 90% 

Code 
Incorrectness 
Detect-ability 

H , M - Create a system of 
testing that uses 
sandboxing to test and 
prototype all release 

Usability Latency 
M , M - Response Time for 
visualization is reduced to 
the smallest possible delay 

 
Phase 6 - Analyze Architectural Approaches  

This is the presented outline for capturing architectural 

approaches for the scenarios pulled from the utility tree.  The 
main purpose of this phase is to document the relationship 
between the architectural decisions that have been made and 
the quality attribute requirements.  Architectural approaches 
have been discussed in phase 4, however it is yet to be 
explained how these approaches help to realize the quality 
requirements.  For this purpose a set of architectural approach 
descriptions is created using the scenarios generated as 
attribute characterizations from the utility tree to help 
understand these approaches more in depth, helping to identify 
risks, sensitivity points and tradeoffs.  The IGSTK 
architectural approach descriptions that were generated as a 
part of this step can be found in appendix A.  Table III is a 
template for an architectural approach description.  

 
TABLE I I I 

ARCHITECTURAL ATTRIBUTE DESCRIPTION 

Scenario: <a scenario from the utility tree of from scenario 
brainstorming> 
Attribute:  <performance, security, availability, etc. >  
Environment: <relevant assumptions about the 
environment in which the system resides >  
Stimulus: <a precise statement of the quality attribute 
stimulus (e.g., failure, threat, modification, …) embodied by 
the scenario> 
Response: <a precise statement of the quality attribute 
response (e.g., response time, measure of difficulty of 
modification)>  
A rchitectural 
Decisions: 

Risk Sensitivity T radeoff 

< list of 
architectural 
decisions 
affecting quality 
attribute 
response > 

<risk #> <sens. point 
#> 

< tradeoff 
#> 

Reasoning:  <rationale for why the list of architectural 
decisions contribute to meeting the quality attribute 
response requirement >  
A rchitectural Diagram: <potential diagram or diagrams 
of architectural views>  
F igure 2.4  Architectural Approach Documentation Template 

[10] 
 
 The main point of generating these architectural attribute 
descriptions is to generate as much information as possible 
with regard to the approach in question.  The goal is to reason 
that the approach being evaluated will fulfill the requirements 
of the system.  From the description a list of sensitivity points, 
risks, and tradeoffs are created.  Each item on these lists will 
be associated with achieving the scenario that satisfies the sub-
quality requirements from the utility tree. 
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Summary of Approaches  
A set of risks, sensitivity points and tradeoffs associated 

with the architectural approaches were uncovered with the help 
of the architectural approach description generation activity.  
These activities can be found in the appendix.  The resulting 
lists of tradeoffs, risks, and sensitivity points are also found in 
the appendix, however in this portion of the paper, these risks, 
sensitivity points and tradeoffs are summarized and explored 
for each of the three main architectural approaches; state 
machine implementation, encapsulation of the layered 
architecture and communication via the event observer pattern.  

State Machine 
The implementation of a state machine forces all events to 

pass through the IGSTK model for handling states, transitions 
and actions.  The developer sacrifices flexibility over lower 
layer api calls for the convenience and safety that the IGSTK 
has to offer in the form of a state machine which manages all 
behavior of the system.  By implementing a state machine 
architecture all behavior passes through the state machine and 
as such the state machine implementation is aware of nearly all 
possible behavior.  The requirement to account for all possible 
behaviors in the state machine makes it substantially easier for 
the creators of IGSTK to provide at least 90% code coverage, 
as all decisions are accounted for.  This heightened code 
coverage results in a limited set of functionality in comparison 
to the combined size of the underlying third party APIs. By 
limiting the number of choices (functions) available to IGS 
developers, the IGSTK developers can ensure a limited 
number of use cases that can cover nearly the entire set of 
possible scenarios for which to test resulting in a high level of 
code coverage.  The tradeoff between increased features and 
required safety levels is necessary.   Despite the limited size of 
objects in IGSTK a sensitivity point can be found in the 
requirement to account for all potential outcomes.  This 
sensitivity is negatively correlated the size of the object and 
with the number of methods it extends. 
 
Layered Architecture 

The layered nature of the IGSTK implements encapsulation 
of toolkit functionalities to prevent developers from directly 
manipulating objects.  This is another example of tradeoffs 
between flexibility and managing safety.  By using safe 
encapsulation to restrict functionality the IGSTK can better 
manage lower level APIs forcing all API calls through safe 
checks managed via tactics such as a state machine 
implementation. One potential risk results from 
implementation of a layered architecture that depends on other 
toolkits/APIs not maintained by IGSTK developers, the 
reliability of the IGSTK is limited to the APIs that it depends 
on.  The state machine carries the onus for handling lower 
level errors and this way safety is maintained, however 
potential problems with lower level encapsulated objects could 
still result in undesirable behavior. 
 

Observer Pattern 
A critical component of the IGSTK architecture is the timing 

mechanism.  One of the most important tasks of the IGSTK is 
to manage surgical views.  Keeping a real time view of the 
physical view is essential to patient safety and is a potential 
sensitivity point.  A series of steady pulses are used to manage 
the rate of visual and physical representations over time.  
Expired views are not displayed and visual indicators are 
displayed.  In order to ensure safety, surgical views may not be 
available at critical times.  There is an implicit tradeoff 
between usability and performance.  The amount of buffered 
data is set with an expiration data and measured against the 
pseudo real-time clock (RTC) implementation in order to 
generate a user notification as to whether the view can be 
trusted.  If this management fails serious damage could result 
from mismanaged physical and logical views.  The IGS 
application developer can set the rate of operations per pulse 
intervals resulting in a more contiguously updated view, while 
transforms may expire if they are not able to process at the 
desired rate.  Logging data is buffered in order to improve 
performance.  Logging data is in risk of not being written 
quick enough to disk in case of immediate component failure.  
Errors can be reported in the form of events.  The state 
machine acts as an observer when an event is transduced as an 
input into the state machine that results in writing to the log 
file and notifying the user interface.  This is a tradeoff with 
respect to the flexibility of an IGS developers ability to handle 
an error generated from a lower level component and to 
provide his/her own mechanism for handling the error. 

 

Phase 7 ! Presenting the Results 
A concise presentation of the architecture has been offered.  

The project goals and motivations were discussed.  A 
discussion was presented focusing around the quality 
requirements of IGSTK in particular and the importance of 
safety as a quality requirement.  The utility tree allowed for the 
mapping of architectural decisions to quality requirements and 
the generation of specific scenarios.  A set of tradeoffs, 
sensitivity points, and risks were developed through an 
architectural approach description generation activity, the 
results of which are available in the appendix.  Specific lists of 
tradeoffs, sensitivity points, and risks associated with each 
description generation were generated and are also available in 
the appendix. 
 

IV. CONCLUSIONS 
This paper presented a method for analyzing the architecture 

that provided a way to map architectural approaches to quality 
requirements.  This has been accomplished through performing 
the Architectural Tradeoff Analysis Method developed by SEI.  
A search for risks, sensitivities and tradeoffs, was apart of this 
analysis.  In addition to this architectural evaluation another 
evaluation was performed that relied on the availability of 
publicly available software artifacts to mine for historical data 
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that suggests a software development process for the open 
source IGSTK.  It was determined that the data represents the 
implementation of testing-centric agile methods approach to 
software design.  It was concluded that this agile test-centric 
design process reinforced both the understandability and 
testability quality attributes. 

This study provides fertile ground for the exploration of the 
role between software methodology and software architecture 
exploration in open source systems. 

APPENDIX 

A. Architectural Approach Descriptions 

Scenario: S1 Prevent framework misuse and ensure IGS 
applications access to a basic unified  layer 
Attribute:  Safety/Robustness 
Environment: Normal / Strained Use 
Stimulus: Developer Misuse 
Response: Classes that inherit lower level component 
behavior are restricted to basic functionality. 
A rchitectural 
Decisions 

Risk Sensitivity T radeoff 

Encapsulation of 
toolkit 
functionalities 

  T1 

Layered 
architecture  

R1   

Medium sized 
objects 

  T2 

Reasoning:   
- Encapsulation of toolkit functionalities, preventing 

developers from directly manipulating objects without 
passing first safeguards.  Here there is a choice between 
flexibility and managing safety.  By using safe 
encapsulation to restrict functionality the IGSTK can 
better manage lower level APIs forcing all API calls 
through safe checks managed via tactics such as a state 
machine implementation. 

- By implementing an architecture that depends on other 
toolkits/APIs not maintained by IGSTK developers, the 
reliability of the IGSTK is limited to the APIs that it 
depends on.  While safety may be managed from the 
IGSTK layer, reliability can only be maintained to the 
extent to which it can be tested. 

-  Medium sized objects resulting in reduced functionality 
again sacrifice flexibility in order to achieve safety.  A 
limited set of function calls allow IGSTK to manage 
complexity that could threaten safety. 

A rchitectural Diagram: 

 
Layered Architecture[8] 

 
Scenario: S2 Reduce the IGS Application’s ability to miss 
potentially harmful errors. 
Attribute:  Safety/Robustness 
Environment: Normal Use / Strained Use 
Stimulus: An error is thrown by any element of the IGSTK 
or underlying layer of components. 
Response: IGSTK classes will not throw exception in order 
to curb misuse 
A rchitectural 
decisions 

Risk Sensitivity T radeoff 

Limited use case.   T3 
State Machine   T4 
Reasoning:   
- By limiting the number of choices (functions) available to 
IGS developers the IGSTK developers can ensure a 
limited number of use cases that can cover nearly the 
entire set of possible scenarios for which to test resulting 
in a high level of code coverage. 

- The implementation of a state machine forces all events to 
traverse through the IGSTK model for handling states, 
transitions and actions.  The developer sacrifices 
flexibility for the convenience and safety that the IGSTK 
has to offer. 

A rchitectural Diagram:  

 
Separation Between Public and Private Interface of IGSTK 

Components [8] 
  

Scenario: S3 Ensure that the surgical view is up to date 
Attribute:  Safety/Robustness 
Environment: Normal use 
Stimulus: System may experience stress conditions 
Response: Synchronicity is maintained through an event 
observer pattern. Through a series of pulses a tracker class 
will query the actual hardware tracker device and will get 
from it information about the position of the tracked 
instruments in the operating room.  
A rchitectural 
decisions 

Risk Sensitivity T radeoff 

Event observer pattern 
to facilitate updated 
surgical views 

 S1  

Reasoning:   
- Event observer pattern used to track and manage visual 
and physical representations over time through a series of 
steady pulses.  Expired views are not displayed and visual 
indicators are displayed.  If this management fails serious 
damage could result from a mismanaged physical and 
logical views 

A rchitectural Diagram:  
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UML Sequence Diagram of the IGSTK Timing 

Collaboration [8] 
  

Scenario: S5 Provide logging when lower level component 
failure occurs, and provide failure message to user. 
Attribute:  Testability 
Environment:  System is performing tracking functions 
Stimulus:  lower layer component failure 
Response:  Logging is buffered and written to file for later 
review 
A rchitectural 
decisions 

Risk Sensitivity T radeoff 

Buffered logging R2   
Events   T5 
Reasoning:   
- When logging is buffered, buffered data is in risk of not 
being written quick enough in case of immediate 
component failure 

- Errors can be reported in the form of events.  The state 
machine acts as an observer when an event is transduced 
as an input into the state machine that results in writing to 
the log file and notifying the user interface.  This is a 
tradeoff with respect to the flexibility of an IGS 
developers ability to handle an error generated from a 

lower level component and to provide his/her own 
mechanism for handling the error.  

A rchitectural Diagram:   

 
Event Observer Transduction Diagram [8] 

 

Scenario: S6 Create a set of predictable deterministic 
behaviors with a high level of code coverage 90% 
Attribute:  Testability 
Environment:  The system operating in all possible 
environments (stressed, regular use, heavy use) 
Stimulus:  An intentional planned testing environment 
where all possible behaviors are tested under every known 
environment 
Response:  Use a state machine based architecture to 
implement a high level of code coverage 
A rchitectural 
decisions 

Risk Sensitivity T radeoff 

Sate machine 
architecture 

 S2 T4 

Reasoning:    
- By implementing a state machine architecture a tradeoff 

between IGS developer flexibility/freedom and 
safety/reliability/predictability. 

- A sensitivity of the system may manifest itself through the 
difficulty in creating a state machine that consists of every 
single set of possible outcomes.  This sensitivity may be 
directly correlated to the size of the objects , as smaller 
sized objects would result in a reduced set of behaviors 

A rchitectural Diagram:  

 
Separation Between Public and Private Interface of IGSTK 

Components [8] 
 

Scenario: S7 Create a system of testing that uses 
sandboxing to test and prototype all release 
Attribute:  Testability 
Environment:  An intentional planned testing environment 
where all possible behaviors are tested under every known 
environment 
Stimulus:  A nightly process attempting to build the 
changes committed to the project. 
Response:   Sandbox implementation for multiple codelines 
A rchitectural Risk Sensitivity T radeoff 
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decisions 
Sandboxing   T6 
Reasoning:    
- While sandboxing may tend to be considered a 

development process approach as opposed to an actual 
architectural approach, it may also be considered 
architectural in that it is a replica of elements of a system 
with a reduced level of overall quality.  This approach 
exchanges quality as a tradeoff for testability.  In the 
nightly test environment code is more testable as it is not 
a threat to any production level. 
 

Scenario: S8 Response Time for visualization is reduced to 
the smallest possible delay 
Attribute:  Usability 
Environment:  Stressed/Normal Use 
Stimulus:  Tracking functionality 
Response:  Creating a timing mechanism to manage the real 
time nature of surgical views  
A rchitectural 
decisions 

Risk Sensitivity T radeoff 

Event/Observer Pattern  S1  
Timing Architectural 
Design 

R3  T8, T7 

Reasoning:   
- The IGS application developer can set the rate of 

operations per pulse intervals resulting in a more 
contiguously updated view, while transforms mayexpire if 
they are not able to process at the desired rate. 

- In order to ensure safety surgical views may not be 
available at critical times. 

- There is an implicit tradeoff between usability and 
performance.  The amount of buffered data is set with an 
expiration data and measured against the pulse tracker 
mechanism in order to generate a user notification as to 
whether the view can be trusted. 

A rchitectural Diagram:   

 
UML Sequence Diagram of the IGSTK Timing 

Collaboration [8] 

V . APPE NDIX B 
 Risks 
R1 Layered architecture relying on other toolkits/APIs 

not maintained by developers 
R2 When logging is buffered, buffered data is in risk 

of not being written quick enough in case of 
immediate component failure 

R3 In order to ensure safety surgical views may not be 
available at critical times. 
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Sensitivities 

S1 Event observer pattern used to track and manage 
visual and physical representations over time 
through a series of steady pulses.  Expired views 
are not displayed and visual indicators are 
displayed.  If this management fails serious 
damage could result from a mismanaged physical 
and logical views 

S2 Difficulty in creating a state machine that consists 
of every single set of possible outcomes.  This 
sensitivity may be directly correlated to the size of 
the objects 

 
 T radeoffs 

T1 Encapsulation of toolkit functionalities, trading 
flexibility for safety. 

T2 Medium sized objects resulting in a tradeoff 
between reduced functionality for robust 
applications. 

T3 By limiting the number of choices (functions) 
available to IGS developers the IGSTK developers 
can ensure a limited number of use cases that can 
cover nearly the entire set of possible scenarios for 
which to test resulting in a high level of code 
coverage. 

T4 The implementation of a state machine forces all 
events to traverse through the IGSTK model for 
handling states, transitions and actions.  The 
developer sacrifices flexibility for the convenience 
and safety that the IGSTK has to offer. 

T5 Forcing error handling of lower layer components 
to be handled by the observer state machine, using 
error events as inputs into the state machine 

T6 This approach exchanges quality as a tradeoff for 
testability.  In the nightly test environment code is 
more testable as it is not a threat to any production 
level. 

T7 There is an implicit tradeoff between usability and 
performance.  The amount of buffered data is set 
with an expiration data and measured against the 
pulse tracker mechanism in order to generate a 
user notification as to whether the view can be 
trusted. 

T8 The IGS application developer can set the rate of 
operations per pulse intervals resulting in a more 
contiguously updated view, while transforms may 
expire if they are not able to process at the desired 
rate. 
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