
34 Computer

known and that all transitions between states are valid
and meaningful.

State machines
A state machine is a model of behavior defined by a set

of states, a set of inputs, and a set of directed transitions
between states. Transitions in a state machine change the
current state in response to some stimulus or input. A
behavior can execute during a transition or while enter-
ing or exiting a state. Figure 3 shows the state machine
implementation for an IGSTK spatial object component.

The formal semantics of state machines, coupled with
a large body of established research, influenced our deci-
sion to adopt this trusted architectural pattern. State
machines in IGSTK provide:

• safety and reliability. State machines ensure that
component behavior is deterministic and that all
components are in a known and error-free state at
any given moment.

• a cleaner design. Because developers must anticipate
all possible inputs, states, and transitions, state
machines encourage and enforce a cleaner and more
robust design without untested assumptions.

• API simplicity. A focused, clearly expressed applica-
tion programming interface is essential for supporting
robustness and reliability. In the context of surgical
guidance, flexibility and abundance of features are
undesirable because they create more opportunities
for things to go wrong during an intervention.

• a consistent integration pattern. IGSTK’s value as it
matures will be tied to the incorporation of additional
functionality at the component level, often in the form
of reusable code from existing toolkits. State machines
provide a consistent pattern for integrating this func-
tionality while adhering to the safety-first principles
necessitated by the application domain.

• quality control. State machines facilitate code cov-

erage in terms of lines of code tested, as well as path
coverage on a per component basis. Using code not
based on state machines can result in applications
that, at runtime, enter into any number of untold
states unexplored by the developer, leading to error
conditions that may not become visible to users.

Most component-based architectures do not exploit
explicit state machines to represent component state. Such
relaxed programming practices lead to components with
poorly defined and understood states—this can cause the
components to behave unpredictably, which is unaccept-
able in image-guided surgery. In contrast, IGSTK encour-
ages explicit knowledge of component state and
determines whether a given behavior can be executed
while in that state. The toolkit thus combines reliability
with dynamic management of available behavior.4

Components
Component-based computing is prevalent in modern

computing architectures. Strict contract-based interfaces
govern component boundaries within IGSTK, and com-
ponent realizations encapsulated behind these bound-
aries make it possible to manage the complexity required
in a safety-critical domain.

IGTSK exploits components in several ways. First,
rigid component boundaries with well-understood and
easily visualized interaction patterns enable rigorous
testing and the creation of component-level “safe
zones.” In addition, by mapping specialized implemen-
tations of behaviors to concrete realizations of base
interfaces, the framework supports controlled extensi-
bility via bounded component behavior. Moreover,
IGTSK safely and predictably integrates third-party
component implementations such as the National
Library of Medicine Insight Segmentation and
Registration Toolkit (ITK; www.itk.org) and the open
source Visualization Toolkit (VTK; www.vtk.org).
Finally, from a development process perspective, team
members can focus on individual components’ capabil-
ities rather than on component interactions.

These advantages do not come without costs. Extra
method incursions due to wrapping third-party inter-
faces, as well as overhead associated with dynamic bind-
ing in a polymorphic language such as C++, incur
potential performance penalties. As with any object-ori-
ented software system that relies on encapsulation, spe-
cialization, and loose coupling, abstraction layers
obscure linear views of realized functionality, making it
difficult to unwind component interactions to trou-
bleshoot issues during development.

Despite these concerns, we decided to leverage a com-
ponent-based architecture to meet IGTSK’s high-priority
safety requirements. As Figure 4 shows, this architecture
consists of four main components: a tracker, spatial
objects, spatial object representations, and viewers.

Figure 3. State machine for IGSTK spatial object component.
A state machine is defined by a set of states (black), a set of
inputs, and a set of directed transitions (blue) between states.

TrackedLostState

TrackedState

TrackingRestoredInputTrackingLostInput

NonTrackedState

InitialState

TrackingDisabledInputTrackingEnabledInput

TrackingDisabledInput

SpatialObjectValidInput

A Great Project, needs a great Quote.

Kevin will think about this
one. . .

An Open Source C++ Software Library
by Kevin Cleary and the IGSTK team

Image-Guided Surgery Toolkit

Kevin Gary
Luis Ibanez
David Gobbi

Patrick Cheng

Stephen Alyward
Julien Jomier

Andient Enquobahrie
Hui Zhang

Hee-su Kim
Brian Blake
Rick Avila

IGSTK
OVERVIEW
The Image-Guided Surgery Toolkit (IGSTK) is an open source C++ software library which
provides the basic components needed to develop image-guided surgery applications.
The focus of the toolkit is on robustness using a state machine architecture.

DESCRIPTION
This project is a collaboration between Georgetown University, Kitware Inc., Arizona State
University, and Atamai Inc. All of the software is freely available for download and can
be used in research or commercial applications. More information can be found on the
website at http://www.igstk.org.

ACKNOWLEDGEMENTS
This work was funded by NIBIB/NIH grant 2R42EB000374-02 under project officer
John Haller. Additional support was provided by U.S. Army grant W81XWH-04-1-007,
administered by the Telemedicine and Advanced Technology Research Center (TATRC),
Fort Detrick, Maryland. The content of this manuscript does not necessarily reflect the
position or policy of the U.S. Government. We thank our other collaborators and advisors
throughout the project, including Will Schroeder of Kitware Inc.; Ivo Wolf of the University
of Heidelberg; Peter Kazanzides and Anton Deguet of Johns Hopkins University; Sohan
Ranjan of GE Research; Mihai Mocanu of the University of Craiova, and Ingmar Bitter, Matt
McAuliffee, and Terry Yoo of the NIH.

IGSTK Image-Guided Surgery Toolkit

IGSTK Image-Guided Surgery Toolkit: An Open-Source C+
+

 Library
by Kevin Cleary
and the IGSTK team

