
IGSTK: The Book
DRAFT VERSION

Kevin Cleary
and the Insight Software Consortium

December 6, 2006

http://www.igstk.org
Email: igstk-developers@public.kitware.com

http://www.igstk.org

A Great Project, needs a great Quote.

Kevin will think about this
one. . .

Abstract

The Image Guided Surgery Toolkit(IGSTK) is an open-source software toolkit for performing
. . .

IGSTK is implemented in C++. It is cross-platform, using a build environment known asCMake
to manage the compilation process in a platform-independent way.

Because IGSTK is an open-source project, developers from around the world can use, debug,
maintain, and extend the software. IGSTK uses a model of software development referred to as
Extreme Programming. Extreme Programming collapses the usual software creation methodol-
ogy into a simultaneous and iterative process of design-implement-test-release. The key features
of Extreme Programming are communication and testing. Communication among the members
of the IGSTK community is what helps manage the rapid evolution of the software. Testing is
what keeps the software stable. In IGSTK, an extensive testing process (using a system known
asDart) is in place that measures the quality on a daily basis. The IGSTK Testing Dashboard is
posted continuously, reflecting the quality of the softwareat any moment.

This book is a guide to using and developing with IGSTK.

http://www.igstk.org
http://www.cmake.org
http://public.kitware.com/dashboard.php

Contributors

The Image Guided Surgery Toolkit(IGSTK) has been created by the efforts of many talented
individuals and prestigious organizations.

This book lists a few of these contributors in the following paragraphs. Not
all developers of IGSTK are credited here, so please visit the Web pages at
http://www.igstk.org/HTML/About.htmfor the names of additional contributors, as well as
checking the CVS source logs for code contributions.

The following is a brief description of the contributors to this software guide and their contri-
butions.

Kevin Cleary

Luis Ib áñez

David Gobi

Patrick Cheng

Kevin Gary

Julien Jomier

Andinet Enquobahrie

Hui Zhang

M. Brian Black

Hee-su Kim

Stephen Aylward

Rick Avila

http://www.igstk.org
http://www.igstk.org/HTML/About.htm

CONTENTS

I Overview and Design 1

1 Introduction 3

1.1 Rationale and Background. 4

1.2 Organization. 5

1.3 Software Organization. 5

1.3.1 Obtaining the Software. 5

1.4 Downloading IGSTK. 6

1.4.1 Downloading Packaged Releases. 6

1.4.2 Downloading from CVS. 7

1.4.3 Join the Mailing List . 7

1.4.4 Directory Structure. 7

1.4.5 Documentation. 10

1.4.6 Data. 10

1.5 The Insight Community and Support. 10

1.6 A Brief History of ITK . 11

2 Getting Started 13

2.1 Downloading IGSTK. 13

2.1.1 Instruction on command line CVS client user. 13

2.1.2 Instruction on Windows GUI CVS client user. 14

2.1.3 Downloading Packaged Releases. 15

viii Contents

2.1.4 Downloading from CVS. 15

2.2 Software Organization. 15

2.2.1 Directory Structure. 16

2.2.2 Documentation. 16

2.2.3 Data. 16

2.2.4 IGSTK Community and Support. 16

2.2.5 Additional Resources. 17

2.3 Installation . 17

2.3.1 Prerequisite. 17

2.3.2 Install IGSTK on Windows System. 18

2.3.3 Install IGSTK on Unix System. 18

2.4 Hello World in IGSTK . 18

3 Architecture 23

3.1 General Background. 23

3.2 Medical Errors. 25

3.3 Layered Architecture. 26

3.4 Software Quality. 27

3.5 The Main Components. 28

3.6 Timing . 30

3.6.1 Pulse Generator Implementation. 35

3.7 State Machine Architecture. 35

3.7.1 Safe States. 35

3.7.2 Public versus Private API. 36

3.7.3 Communication Protocols. 36

Events, Inputs and Transduction. 37

3.7.4 Helper Macros . 37

4 Requirements 39

4.1 Introduction . 39

4.2 What is an IGSTK Requirement. 39

4.2.1 Types of Requirements. 39

4.2.2 Requirements Hierarchy. 40

Contents ix

4.2.3 Snapshot of Requirements at Publication Time. 40

4.2.4 Lightweight Requirements Management Process. 41

Defined Requirements Management Process. 41

Conceptualizing Requirements through Activity Modeling. 43

Integrating Requirements Management and Bug Tracking. 43

Accessing and Contributing to IGSTK Requirements. 43

5 Software Development Process 49

5.1 IGSTK Best Practices. 49

5.2 Developer Practices. 51

5.2.1 Code Conventions. 51

5.2.2 Code Reviews. 52

5.2.3 Managed Communication. 53

5.2.4 Configuration Management. 53

5.2.5 Build and Release Management Processes. 56

5.2.6 Continuous Testing using DART. 57

Software Quality Statistics. 57

5.3 Software Development Process Summary. 62

II Components 63

6 StateMachine 65

6.1 General Background. 65

6.2 Motivation . 65

6.2.1 Deterministic Behavior. 66

6.2.2 Preclude Wrong Use. 66

6.2.3 Robustness to misuse. 67

6.2.4 Managing Complexity . 67

6.2.5 Traceability. 68

6.2.6 Suitability for Testing. 68

6.2.7 Consistent Documentation. 69

6.3 Implementation. 69

6.3.1 C++ Features. 69

x Contents

6.3.2 Integration inside a Class. 70

6.3.3 State Machine API. 70

6.4 Usage. 71

7 Events 73

7.1 General Background. 73

7.2 Motivation . 73

7.3 Implementation. 74

7.3.1 Relationship with ITK . 74

7.3.2 Events with Payload. 75

7.3.3 Events and State Machines. 76

7.3.4 Observers. 77

7.4 Usage. 77

7.4.1 Internal Usage. 77

7.4.2 External Usage: The Request/Observe Pattern. 79

7.5 Conclusion. 81

8 Tracker 83

8.1 The Role of the Tracker Component in IGSTK. 83

8.2 Structure of the Tracking Component. 84

8.2.1 Communication. 85

8.2.2 Threading. 86

Safety . 86

Performance . 86

8.2.3 Buffering . 87

8.2.4 Transforms and Timestamps. 88

8.2.5 Coordinate Transformations. 89

8.3 State Machines. 91

8.3.1 States. 91

8.4 Component Interface. 93

8.4.1 Interface Methods. 93

8.4.2 Events. 93

8.5 Supporting New Devices. 93

Contents xi

8.5.1 Internal Interface. 93

8.5.2 Command Interpreters. 93

8.6 Special Topics . 93

8.6.1 Simulation and Testing. 93

8.7 Hazardous Conditions. 93

8.7.1 Tracking Device Failure. 93

8.7.2 Loss of Accuracy. 94

9 Spatial Objects 95

9.1 Introduction . 95

9.2 SpatialObject Hierarchy. 95

9.3 Common Objects. 97

9.3.1 AxesObject. 97

9.3.2 BoxObject. 98

9.3.3 ConeObject. 99

9.3.4 CylinderObject . 99

9.3.5 EllipsoidObject. 100

9.3.6 ImageObjects. 100

9.3.7 MeshObject. 102

9.3.8 TubeObject. 103

9.3.9 VascularNetwork & Vessel Objects. 105

9.4 Reading SpatialObjects. 106

9.5 Conclusion. 108

10 SpatialObject Representation 109

10.1 Introduction . 109

10.2 Displaying my first object. 109

10.3 Standard Object Representations. 111

10.3.1 Axes Object. 112

10.3.2 Box Object . 112

10.3.3 Cone Object. 112

10.3.4 Cylinder Object. 112

10.3.5 Ellipsoid Object. 113

xii Contents

10.3.6 Mesh Object. 113

10.3.7 Vascular Network Object. 114

10.4 Ultrasound Probe Representation. 114

10.5 Sharing & Duplicating Object Representations. 114

11 View 117

11.1 State Machine. 117

11.2 Component Interface. 118

11.3 Example . 118

12 Logging 121

12.1 Role of Logging in DBMS. 121

12.2 Role of Logging in IGSTK. 121

12.3 Structure of the Logging Component. 122

12.3.1 LogOutput. 122

StdStreamLogOutput. 122

MultipleOutput . 123

MultipleLogOutput . 123

FLTKTextBufferLogOutput . 123

FLTKTextLogOutput . 123

Extending LogOutput. 123

12.3.2 Logger. 123

LoggerBase. 123

PriorityLevel . 123

Flushing . 124

Formatting . 125

Timestamp . 125

Logger . 125

LoggerManager. 125

12.3.3 Multi-threaded Logging. 125

LoggerThreadWrapper. 125

ThreadLogger. 125

12.3.4 Redirecting ITK, VTK log messages to Logger. 126

Contents xiii

Overriding itk::OutputWindow. 126

Overriding vtkOutputWindow . 126

12.4 Example . 126

13 ImageIO 131

13.1 DICOM Reader . 131

13.1.1 State Machine Design. 131

13.1.2 Component Interface. 132

13.1.3 Special features. 132

13.1.4 Example. 133

13.2 Screenshot generation. 134

14 Registration 135

14.1 Landmark-based registration. 135

14.1.1 State Machine Design. 135

14.1.2 Component Interface. 136

14.1.3 Example. 137

14.2 Registration error prediction. 142

14.2.1 State Machine Design. 142

14.2.2 Component Interface. 142

14.2.3 Example. 144

14.3 Conclusion. 145

15 Calibration 147

15.1 Pivot Calibration. 148

15.1.1 Introduction. 148

15.1.2 Principle. 149

15.1.3 State Machine Diagram. 151

15.1.4 Component Interface. 151

15.1.5 Example. 152

15.2 Principal Axis Calibration. 155

15.2.1 Introduction. 155

15.2.2 Principle. 156

15.2.3 State Machine Diagram. 156

xiv Contents

15.2.4 Component Interface. 156

15.2.5 Example. 157

15.3 Calibration Data I/O. 159

15.3.1 Data Format. 159

15.3.2 Data Reader. 161

15.3.3 Example. 161

15.4 Future Extension. 164

III User Guide 167

16 HelloWorld 169

17 TwoViews 175

18 FourViews 177

19 FourViewsAndTracking 179

20 FourViewsTrackingWithCT 181

IV Example Applications 183

21 Needle Biopsy 185

21.1 Running the Application. 186

21.2 Implementation. 187

21.2.1 State Machine in Application. 187

21.2.2 Mapping clinical work flow to state machine. 187

21.2.3 Coding the state machine. 189

21.2.4 Should I use the state machine in my application?. 191

21.3 Result. 191

22 Ultrasound Guided Radio-Frequency Ablation 193

22.1 Introduction . 193

22.2 Running the Application. 193

22.3 Implementation. 195

Contents xv

22.3.1 Tracker . 195

22.3.2 Registration. 196

22.3.3 Display . 196

22.3.4 Implementation. 196

22.4 Conclusion. 197

23 Robot Assisted Needle Placement 199

23.1 Running the Application. 199

23.2 Implementation. 201

23.3 Result. 205

V Appendices 207

A IGSTK Style Guide 209

A.1 Purpose. 209

A.2 Document Overview. 209

A.3 Implementation Framework. 209

A.3.1 Implementation Language. 209

A.3.2 Generic Programming. 210

A.3.3 Generic Programming. 210

A.3.4 Portability . 210

A.3.5 CMake Configuration Environment. 210

A.3.6 Doxygen Documentation System. 210

A.3.7 vnl Math Library . 211

A.3.8 Reference Counting and SmartPointers. 211

A.3.9 CVS Environment. 211

A.3.10 Dart Dashboard Testing Environment. 211

A.4 Copyright . 211

A.5 File Organization. 213

A.6 Namespaces. 213

A.7 Naming Conventions. 214

A.7.1 Naming Classes. 214

A.7.2 Naming Files . 214

xvi Contents

A.7.3 Naming Methods and Functions. 214

A.7.4 Naming Class Data Members. 215

A.7.5 Naming Local Variables . 215

A.7.6 Naming Template Parameters. 215

A.7.7 Naming Typedefs. 215

A.7.8 Using Underscores. 216

A.7.9 Preprocessor Directives. 216

A.8 Const Correctness. 216

A.9 Code Layout and Indentation. 216

A.9.1 General Layout. 217

A.9.2 Class Layout . 217

A.9.3 Method Definition . 218

A.9.4 Use of Braces. 218

A.9.5 Use of Whitespace. 219

A.10 Doxygen Documentation System. 219

A.10.1 Documenting a Class. 219

A.10.2 Documenting a Method. 220

A.11 Using Standard Macros. 220

A.12 Exception Handling . 220

A.13 Documentation Style. 221

A.14 Programming Practices. 221

A.14.1 Choice of double or float. 221

A.14.2 Choice of signed or unsigned. 221

B State Machine Validation 223

Index 227

LIST OF FIGURES

3.1 Layered Architecture. 27

3.2 Timing Architecture. 31

3.3 Timing Architecture. 32

3.4 PulseGenerator State Machine Diagram. 35

3.5 State Machine Attempting Pattern. 36

4.1 Type of Requirements. 40

5.1 Dashboard Nightly Builds . 60

5.2 Dashboard Continuous Builds. 61

7.1 Events Class Hierarchy. 75

7.2 Event/Input Transduction. 77

7.3 Events Usage. 78

7.4 Request/Observe Pattern. 81

8.1 Tracker Component. 84

8.2 Tracker Buffer. 87

8.3 Tracker Coordinates. 90

8.4 Tracker State Machine. 92

8.5 TrackerTool State Machine. 93

10.1 Object Representation Example. 111

xviii List of Figures

10.2 AxesObject . 112

10.3 ConeObject. 113

10.4 EllipsoidObject . 113

10.5 VascularNetwork. 114

10.6 Ultrasound Probe Object. 115

11.1 View2D State Diagram. 117

13.1 DICOMReader State Diagram. 132

14.1 Landmark registration state diagram. 136

14.2 Landmark Registration Error Estimator State Diagram. 143

15.1 Pivot Calibration Routine. 149

15.2 Pivot Calibration State Diagram. 151

15.3 Tracker Handle. 155

15.4 Tracker Probe Tip. 155

15.5 Principal Axis Calibration State Diagram. 157

15.6 Pivot Calibration Reader State Diagram. 162

16.1 Hello World screen shot. 174

21.1 System setup for needle biopsy application. 186

21.2 State machine diagram (partial) for the needle biopsy application 188

21.3 User interface for needle biopsy program. 192

22.1 Typical RFA Ablation Surgery Workflow. 194

23.1 Drawing for needle placement robot. 200

23.2 Robot assisted needle placement phantom study setup. 200

23.3 Clinical Workflow for Robot Assisted Needle Placement. 202

23.4 TeraRecon reconstructed image of the robot needle holder 205

23.5 User interface for the robot application. 206

LIST OF TABLES

4.1 Requirements Hierarchy. 41

4.2 Requirements Hierarchy. 42

4.3 Guideware Placement Scenario. 44

4.4 Formal Requirements Development Process. 45

4.5 Fast-tracked Requirements Process. 46

Part I

Overview and Design

CHAPTER

ONE

Introduction

Welcome to theIGSTK: The Bookfor Image-Guided Surgery.

IGSTK is an open-source1 software toolkit designed to enable biomedical researchers to rapidly
prototype and create new applications for image-guided surgery. The purpose of this software
guide is to help you learn how to use IGSTK so that you can more easily create your application.
The material is explained using a number of examples that we encourage you to compile and
run.

IGSTK is built on top of three open source software packages:

• The Insight Segmentation and Registration Toolkit (ITK)

• The Visualization Toolkit (VTK)

• The Fast Light Toolkit (FLTK) for the user interface, although other GUI toolkits can be
accommodated

Some familiarity with these open source packages will be required to effectively use IGSTK. In
addition, IGSTK uses CMake to configure the build process in multiple platforms.

IGSTK is an open-source software system. What this means is that the user community has
great impact on the future evolution of the software. Users can make significant contributions
to IGSTK by providing bug reports, bug fixes, test cases, new classes, and other feedback. You
are encouraged to contribute your ideas to the community through the user mailing list which
can be located throughwww.igstk.org .

As opposed to popular belief, open-source software projects cannot simply be modified by
anybody. The official version of most open source packages are maintained by a small core
of very skilled developers. Users of those packages have thefreedom to download the source
code and to modify it in their own machines if they like, but they can not simply put those
modifications back into the official version of the package without passing throught the scrutiny
of the core developers. Since IGSTK is intended to be used in the operating room its developers

1Distributed under a BSD-like license

www.igstk.org

4 Chapter 1. Introduction

makes emphasis on robustness motivated by the directive of protecting patient safety. In this
context, IGSTK is a system that is open for discussion and willing to receive contributions from
the community, but that will adapt and throughly tests thosecontributions to make sure that they
satisfy the quality standards required for safety-critical applications.

1.1 Rationale and Background

The creation of the toolkit was motivated by the following scenario:

Imagine that you are a biomedical researcher and you want to develop an image-
guided surgery application. This application should include the ability to display
DICOM medical images, functionality for registration and segmentation, and an
interface to the AURORA electromagnetic tracking system. You have a clinical
partner who is anxious to test your completed system, so you begin your software
design and hope to have a prototype within a few months. But progress is slow,
as you have to develop all your own code and understand the nuances of DICOM,
segmentation, registration, and the AURORA interface. After a year or so, you
complete your prototype and proudly show it to your clinicalpartner. But your
clinical partner now wants to make several changes and add some more features,
so you are back to the drawing board for another lengthy development cycle.

Now imagine the same scenario using the IGSTK toolkit. You still need to develop
a specification for your application, but implementation isgreatly simplified as
standard components for reading DICOM images, image display, segmentation,
registration, and an AURORA interface are provided. You start by reading the
toolkit documentation and looking at the example applications. You then either
put together a set of components to build your application ormodify one of the
example applications. Because the toolkit is open-source and uses BSD2 licensing,
you have access to all the source code and are free to incorporate the code in your
program whether is an academic or commercial application. You are able to fairly
quickly put together a prototype. When your clinical partner requests changes, this
is also easily done. Your completed application is a success. You license it to a big
company and retire on the island of Fiji.

While the example above is fictitious, most biomedical researcher can probably identify with
this scenario. The reality is that software development is alarge portion of the work in many
research labs today. Most software projects are started from scratch and a great deal of time and
effort is spent “re-inventing the wheel”.

This was the situation at Georgetown University Medical Center, where one of the authors (KC)
has been leading a group of researchers in developing image-guided systems for abdominal in-
terventions for the past five years. After several years of developing new software applications,

2BSD originally stood for Berkeley Source Distribution and the BSD License was the license that the BSD software
(a version of Unix) was distributed under. This license is used by many open-source implementations today

1.2. Organization 5

the research group has been attempting to standardize theirsoftware process based on the open-
source software packagesVTK (Visualization Toolkit) andITK (Insight Segmentation and Reg-
istration Toolkit). While these packages provided an excellent start, the group noted that further
progress could be made by developing a set of components specifically for image-guided appli-
cations. A partnership was formed with Kitware Incorporated, a leading open-source software
company. A small business proposal was submitted to the National Institutes of Health and a
grant award was received to develop the toolkit. Several other collaborators, including UNC,
Atamai Inc., and the University of Arizona later joined the project. This book and the associated
software is the result of that effort.

1.2 Organization

This book is divided into three parts, each of which is further divided into several chapters.
Part I is a general introduction to IGSTK, with the next few chapters on installation, architec-
ture, requirements, and software development process. This part will give the readers a general
overview about the IGSTK project, how it started, its designphilosophy and development pro-
cess, and also a chapter showing users how to install and start using this toolkit. Part II guides
user through each single component in the toolkit such as state machine, tracker, spatial object,
registration etc. These chapters will explain how we designand implement these components
and how you can use them. Part III and IV are dedicate to help user learn to build applications
from simple “Hello World” to more complex ones based on clinical procedures.

1.3 Software Organization

The following sections describe the directory contents, summarize the software functionality in
each directory, and locate the documentation and data.

1.3.1 Obtaining the Software

There are three different ways to access the IGSTK source code (see Section1.4on page6).

1. from periodic releases available on the IGSTK Web site,

2. from direct access to the CVS source code repository.

Official releases are available a few times a year and announced on the ITK Web pages and
mailing lists. However, they may not provide the latest and greatest features of the toolkit. In
general, the periodic releases and CD-ROM releases are the same, except that the CD release
typically contains additional resources and data. CVS access provides immediate access to the
latest toolkit additions, but on any given day the source code may not be stable as compared

http://www.vtk.org
http://www.itk.org

6 Chapter 1. Introduction

to the official releases—i.e., the code may not compile, it may crash, or it might even produce
incorrect results.

This software guide assumes that you are working with the official ITK version 2.4 release
(available on the ITK Web site). If you are a new user, we highly recommend that you use
the released version of the software. It is stable, consistent, and better tested than the code
available from the CVS repository. Later, as you gain experience with ITK, you may wish to
work from the CVS repository. However, if you do so, please beaware of the ITK quality
testing dashboard. The Insight Toolkit is heavily tested using the open-source DART regression
testing system (http://public.kitware.com/dashboard.php). Before updating the CVS
repository, make sure that the dashboard isgreenindicating stable code. If not green it is likely
that your software update is unstable. (Learn more about theITK quality dashboard in Section
??on page??.)

1.4 Downloading IGSTK

ITK can be downloaded without cost from the following web site:

http://www.itk.org/HTML/Download.php

In order to track the kind of applications for which ITK is being used, you will be asked to
complete a form prior to downloading the software. The information you provide in this form
will help developers to get a better idea of the interests andskills of the toolkit users. It also
assists in future funding requests to sponsoring agencies.

Once you fill out this form you will have access to the downloadpage where two options for
obtaining the software will be found. (This page can be book marked to facilitate subsequent
visits to the download site without having to complete any form again.) You can get the tarball
of a stable release or you can get the development version through CVS. The release version
is stable and dependable but may lack the latest features of the toolkit. The CVS version will
have the latest additions but is inherently unstable and maycontain components with work in
progress. The following sections describe the details of each one of these two alternatives.

1.4.1 Downloading Packaged Releases

Please read theGettingStarted.txt 3 document first. It will give you an overview of the
download and installation processes. Then choose the tarball that better fits your system. The
options are.zip and .tgz files. The first type is better suited for MS-Windows while the
second one is the preferred format for UNIX systems.

Once you unzip or untar the file a directory calledInsight will be created in your disk and you
will be ready for starting the configuration process described in Section??on page??.

3http://www.itk.org/HTML/GettingStarted.txt

http://public.kitware.com/dashboard.php
http://www.itk.org/HTML/Download.php

1.4. Downloading IGSTK 7

1.4.2 Downloading from CVS

The Concurrent Versions System (CVS) is a tool for software version control [5]. Generally
only developers should be using CVS, so here we assume that you know what CVS is and how
to use it. For more information about CVS please see Section?? on page??. (Note: please
make sure that you access the software via CVS only when the ITK Quality Dashboard indicates
that the code is stable. Learn more about the Quality Dashboard at??on page??.)

Access ITK via CVS using the following commands (under UNIX and Cygwin):

cvs -d :pserver:anonymous@www.itk.org:/cvsroot/Insigh t login
(respond with password "insight")

cvs -d :pserver:anonymous@www.itk.org:/cvsroot/Insigh t co Insight

This will trigger the download of the software into a directory namedInsight . Any time you
want to update your version, it will be enough to change into this directoryInsight and type:

cvs update -d -P

Once you obtain the software you are ready to configure and compile it (see Section??on page
??). First, however, we recommend that you join the mailing list and read the following sections
describing the organization of the software.

1.4.3 Join the Mailing List

It is strongly recommended that you join the users mailing list. This is one of the primary
resources for guidance and help regarding the use of the toolkit. You can subscribe to the users
list online at

http://www.itk.org/HTML/MailingLists.htm

The insight-users mailing list is also the best mechanism for expressing your opinions about the
toolkit and to let developers know about features that you find useful, desirable or even unneces-
sary. ITK developers are committed to creating a self-sustaining open-source ITK community.
Feedback from users is fundamental to achieving this goal.

1.4.4 Directory Structure

To begin your ITK odyssey, you will first need to know something about ITK’s software orga-
nization and directory structure. Even if you are installing pre-compiled binaries, it is helpful
to know enough to navigate through the code base to find examples, code, and documentation.

http://www.itk.org/HTML/MailingLists.htm

8 Chapter 1. Introduction

ITK is organized into several different modules, or CVS checkouts. If you are using an official
release or CD release, you will see three important modules:theInsight , InsightDocuments
andInsightApplications modules. The source code, examples and applications are found in
theInsight module; documentation, tutorials, and material related tothe design and marketing
of ITK are found inInsightDocuments ; and fairly complex applications using ITK (and other
systems such as VTK, Qt, and FLTK) are available fromInsightApplications . Usually you
will work with the Insight module unless you are a developer, are teaching a course, or are
looking at the details of various design documents. TheInsightApplications module should
only be downloaded and compiled once theInsight module is functioning properly.

The Insight module contains the following subdirectories:

• Insight/Auxiliary —code that interfaces packages to ITK.

• Insight/Code —the heart of the software; the location of the majority of the source code.

• Insight/Documentation —a compact subset of documentation to get users started with
ITK.

• Insight/Examples —a suite of simple, well-documented examples used by this guide
and to illustrate important ITK concepts.

• Insight/Testing —a large number of small programs used to test ITK. These examples
tend to be minimally documented but may be useful to demonstrate various system con-
cepts. These tests are used by DART to produce the ITK QualityDashboard (see Section
??on page??.)

• Insight/Utilities —supporting software for the ITK source code. For example,
DART and Doxygen support, as well as libraries such aspng andzlib .

• Insight/Validation —a series of validation case studies including the source code used
to produce the results.

• Insight/Wrapping —support for the CABLE wrapping tool. CABLE is used by ITK to
build interfaces between the C++ library and various interpreted languages (currently Tcl
and Python are supported).

The source code directory structure—found inInsight/Code —is important to understand
since other directory structures (such as theTesting andWrapping directories) shadow the
structure of theInsight/Code directory.

• Insight/Code/Common —core classes, macro definitions, typedefs, and other software
constructs central to ITK.

• Insight/Code/Numerics —mathematical library and supporting classes. (Note:
ITK’s mathematical library is based on the VXL/VNL softwarepackage
http://vxl.sourceforge.net .)

• Insight/Code/BasicFilters —basic image processing filters.

http://vxl.sourceforge.net

1.4. Downloading IGSTK 9

• Insight/Code/IO —classes that support the reading and writing of data.

• Insight/Code/Algorithms —the location of most segmentation and registration algo-
rithms.

• Insight/Code/SpatialObject —classes that represent and organize data using spatial
relationships (e.g., the leg bone is connected to the hip bone, etc.)

• Insight/Code/Patented —any patented algorithms are placed here. Using this code in
commercial application requires a patent license.

• Insight/Code/Local —an empty directory used by developers and users to experiment
with new code.

The InsightDocuments module contains the following subdirectories:

• InsightDocuments/CourseWare —material related to teaching ITK.

• InsightDocuments/Developer —historical documents covering the design and creation
of ITK including progress reports and design documents.

• InsightDocuments/Latex —LATEX styles to produce this work as well as other docu-
ments.

• InsightDocuments/Marketing —marketing flyers and literature used to succinctly de-
scribe ITK.

• InsightDocuments/Papers —papers related to the many algorithms, data representa-
tions, and software tools used in ITK.

• InsightDocuments/SoftwareGuide —LATEX files used to create this guide. (Note that
the code found inInsight/Examples is used in conjunction with these LATEX files.)

• InsightDocuments/Validation —validation case studies using ITK.

• InsightDocuments/Web —the source HTML and other material used to produce the Web
pages found athttp://www.itk.org .

Similar to theInsight module, access to theInsightDocuments module is also available via
CVS using the following commands (under UNIX and Cygwin):

cvs -d :pserver:anonymous@www.itk.org:/cvsroot/Insigh t co InsightDocuments

The InsightApplications module contains large, relatively complex examples of ITK us-
age. See the web pages athttp://www.itk.org/HTML/Applications.htm for a description.
Some of these applications require GUI toolkits such as Qt and FLTK or other packages such as
VTK (The Visualization Toolkithttp://www.vtk.org). Do not attempt to compile and build
this module until you have successfully built the coreInsight module.

Similar to theInsight andInsightDocuments module, access to theInsightApplications
module is also available via CVS using the following commands (under UNIX and Cygwin):

http://www.itk.org
http://www.itk.org/HTML/Applications.htm
http://www.vtk.org

10 Chapter 1. Introduction

cvs -d:pserver:anonymous@www.itk.org:/cvsroot/Insigh t \
co InsightApplications

1.4.5 Documentation

Besides this text, there are other documentation resourcesthat you should be aware of.

Doxygen Documentation.The Doxygen documentation is an essential resource when working
with ITK. These extensive Web pages describe in detail everyclass and method in the
system. The documentation also contains inheritance and collaboration diagrams, listing
of event invocations, and data members. The documentation is heavily hyper-linked to
other classes and to the source code. The Doxygen documentation is available on the
companion CD, or on-line athttp://www.itk.org . Make sure that you have the right
documentation for your version of the source code.

Header Files. Each ITK class is implemented with a .h and .cxx/.txx file (.txx file for templated
classes). All methods found in the .h header files are documented and provide a quick
way to find documentation for a particular method. (Indeed, Doxygen uses the header
documentation to produces its output.)

1.4.6 Data

The Insight Toolkit was designed to support the Visible Human Project and its as-
sociated data. This data is available from the National Library of Medicine at
http://www.nlm.nih.gov/research/visible/visible human.html .

Another source of data can be obtained from the ITK Web site ateither of the following:

http://www.itk.org/HTML/Data.htm
ftp://public.kitware.com/pub/itk/Data/ .

1.5 The Insight Community and Support

ITK was created from its inception as a collaborative, community effort. Research, teaching,
and commercial uses of the toolkit are expected. If you wouldlike to participate in the commu-
nity, there are a number of possibilities.

• Users may actively report bugs, defects in the system API, and/or submit feature requests.
Currently the best way to do this is through the ITK users mailing list.

• Developers may contribute classes or improve existing classes. If you are a developer,
you may request permission to join the ITK developers mailing list. Please do so by

http://www.itk.org
http://www.nlm.nih.gov/research/visible/visible_human.html
http://www.itk.org/HTML/Data.htm
ftp://public.kitware.com/pub/itk/Data/

1.6. A Brief History of ITK 11

sending email to will.schroeder “at” kitware.com. To become a developer you need to
demonstrate both a level of competence as well as trustworthiness. You may wish to
begin by submitting fixes to the ITK users mailing list.

• Research partnerships with members of the Insight SoftwareConsortium are encouraged.
Both NIH and NLM will likely provide limited funding over thenext few years, and will
encourage the use of ITK in proposed work.

• For those developing commercial applications with ITK, support and consulting are avail-
able from Kitware athttp://www.kitware.com . Kitware also offers short ITK courses
either at a site of your choice or periodically at Kitware.

• Educators may wish to use ITK in courses. Materials are beingdeveloped for this pur-
pose, e.g., a one-day, conference course and semester-longgraduate courses. Watch the
ITK web pages or check in theInsightDocuments/CourseWare directory for more in-
formation.

1.6 A Brief History of ITK

In 1999 the US National Library of Medicine of the National Institutes of Health awarded
six three-year contracts to develop an open-source registration and segmentation toolkit, that
eventually came to be known as the Insight Toolkit (ITK) and formed the basis of the Insight
Software Consortium. ITK’s NIH/NLM Project Manager was Dr.Terry Yoo, who coordi-
nated the six prime contractors composing the Insight consortium. These consortium members
included three commercial partners—GE Corporate R&D, Kitware, Inc., and MathSoft (the
company name is now Insightful)—and three academic partners—University of North Carolina
(UNC), University of Tennessee (UT) (Ross Whitaker subsequently moved to University of
Utah), and University of Pennsylvania (UPenn). The Principle Investigators for these partners
were, respectively, Bill Lorensen at GE CRD, Will Schroederat Kitware, Vikram Chalana at
Insightful, Stephen Aylward with Luis Ibanez at UNC (Luis isnow at Kitware), Ross Whitaker
with Josh Cates at UT (both now at Utah), and Dimitri Metaxas at UPenn (now at Rutgers). In
addition, several subcontractors rounded out the consortium including Peter Raitu at Brigham
& Women’s Hospital, Celina Imielinska and Pat Molholt at Columbia University, Jim Gee at
UPenn’s Grasp Lab, and George Stetten at the University of Pittsburgh.

In 2002 the first official public release of ITK was made available. In addition, the National Li-
brary of Medicine awarded thirteen contracts to several organizations to extend ITK’s capabili-
ties. NLM funding of Insight Toolkit development is continuing through 2003, with additional
application and maintenance support anticipated beyond 2003. If you are interested in potential
funding opportunities, we suggest that you contact Dr. Terry Yoo at the National Library of
Medicine for more information.

http://www.kitware.com

CHAPTER

TWO

Getting Started

This chapter will guide you though downloading, installing, and writing the first simple IGSTK
program.

2.1 Downloading IGSTK

IGSTK is an open source software toolkit freely available toall individuals and institutions for
both academia research and commercial usages. The detaileddisclaimer can be found on the
following IGSTK copy right page. Please read this page carefully before you proceed.

http://www.igstk.org/copyright.htm

There are different ways to obtain the IGSTK source code. Youcan get the tarball of stable
release version for your operating system from the following website:

http://www.igstk.org/download.htm

If you want to stay on top of the most recent development of this toolkit, you can get a copy of
the source code from the CVS repository. The CVS version willhave the latest feature added
to the toolkit but is inherently unstable and may contain components in working progress. The
source code repository is being hosted by Kitware, The following sections describe how to
access the CVS repository.

2.1.1 Instruction on command line CVS client user

The Concurrent Versions System (CVS) is a powerful open-source tool for source code mainte-
nance. It comes standard with nearly all Unix and Unix like systems, MAC OS X, and Cygwin
on Windows system. There is no need to install extra software, user should be able to use the
CVS command line client. CVSNT is a command line CVS client for windows, you need to
install it on the windows machine before you can use it in command window.

http://www.igstk.org/copyright.htm
http://www.igstk.org/download.htm

14 Chapter 2. Getting Started

1. First, in your terminal, shell, or command line window,’cd’ into a directory where you
want to put the source code.

2. Type the following command:

cvs -d :pserver:anonymous@public.kitware.com:/cvsroot /IGSTK login

answer by’igstk’

cvs -d :pserver:anonymous@public.kitware.com:/cvsroot /IGSTK co IGSTK

Now you will have a new directory called’IGSTK’ in your current directory. you can
later ’cd’ into this directory and use the following CVS command to get the latest copy
of the source code:

cvs update -dAP

CAUTION: The CVS version might be unstable, please refer to the nightly dashboard of
IGSTK.

http://public.kitware.com/dashboard.php?name=igstk

You can browse through the dashboard for the past 15 days too see on which day the
dashboard is more stable, no errors, warnings, failing tests, generally speaking, the dash-
board looks more ’green’. To get a snapshot of the source codefor a specific day, for
example ’April 15th, 2006’, use the following CVS command:

cvs update -D 2006-04-15

2.1.2 Instruction on Windows GUI CVS client user

There are a number of CVS GUI clients for windows system freely available, such as WinCVS,

Luis: fill out a form ? bookmark the page?. It seems that this paragraph was copied from the
web page. We may want to rephrase it for the book.Once you fill out this form you will have
access to the download page where two options for obtaining the software will be found. (This
page can be book marked to facilitate subsequent visits to the download site without having
to complete any form again.) You can get the tarball of a stable release or you can get the
development version through CVS. The release version is stable and dependable but may lack
the latest features of the toolkit. The CVS version will havethe latest additions but is inherently
unstable and may contain components with work in progress. The following sections describe
the details of each one of these two alternatives.

http://public.kitware.com/dashboard.php?name=igstk

2.2. Software Organization 15

2.1.3 Downloading Packaged Releases

Luis: and introduction section is missing here. We should talk about the fact that IGSTK de-
pends on ITK and VTK, and optionally on FLTK. Then we can proceed with the explanations
on how to download each one of those toolkits.

Please read theGettingStarted.txt 1 document first. It will give you an overview of the
download and installation processes. Then choose the tarball that better fits your system. The
options are.zip and .tgz files. The first type is better suited for MS-Windows while the
second one is the preferred format for UNIX systems.

Once you unzip or untar the file a directory calledInsight will be created in your disk and you
will be ready for starting the configuration process described in Section??on page??.

2.1.4 Downloading from CVS

The Concurrent Versions System (CVS) is a tool for software version control [5]. Generally
only developers should be using CVS, so here we assume that you know what CVS is and how
to use it. For more information about CVS please see Section?? on page??. (Note: please
make sure that you access the software via CVS only when the ITK Quality Dashboard indicates
that the code is stable. Learn more about the Quality Dashboard at??on page??.)

Access ITK via CVS using the following commands (under UNIX and Cygwin):

cvs -d :pserver:anonymous@www.itk.org:/cvsroot/Insigh t login (respond with
password "insight")

cvs -d :pserver:anonymous@www.itk.org:/cvsroot/Insigh t co Insight

This will trigger the download of the software into a directory namedInsight . Any time you
want to update your version, it will be enough to change into this directoryInsight and type:

cvs update -d -P

http://www.igstk.org/download.htm

1. Download periodic stable release.

2. Using CVS to get the latest code and stay updated

2.2 Software Organization

The following sections describe the structure of this toolkit and How to get this software and its
documentation and data.

1http://www.itk.org/HTML/GettingStarted.txt

http://www.igstk.org/download.htm

16 Chapter 2. Getting Started

Like most other open source projects, the source code of IGSTK is managed and developed
by a group of distributed developers. To coordinate this development process and control the
quality of this software, we use two centralized CVS repositories to manage the source code,
one called”IGSTK” and the other called”IGSTKSandbox”. IGSTK is the main repository
for the stable release of the source code, and it might have some minor bug fixes in between
releases.IGSTKSandboxis the active source code pool. Source code in this repository are under
rapid development and might experience lots of refactoringor changes in API.

The standard approach for writing code in IGSTK is as follows: First, based on the require-
ments for each iteration. We start developing new components/classes in theIGSTKSandbox,
or copying existing ones from main repository to sandbox forfeature extension. After go-
ing through cross platform test, code coverage improvement, and code review, the code meets
both functional requirements and software engineering standards(platform compatibility, code
coverage, and coding style), and reach its maturity. Then the new components/classes will
be moved into the man repository, also the extended featureswill be merged back into the
original classes in the main repository. This whole processis called one iteration. The main
repository is more rigorous in accepting changes. It requires a bug number from bug tracker
(http://public.kitware.com/Bug/index.php) before it can accept the code changes. Thus
bug should be logged in bug tracker first, before the fix can be committed into the main repos-
itory. This two repositories strategy leverage between theneed of having a stable and reliable
release and the rapid development of the toolkit(For detailon this process, please refer to Chap-
ter5).

2.2.1 Directory Structure

2.2.2 Documentation

2.2.3 Data

2.2.4 IGSTK Community and Support

The Insight Toolkit is an open-source software system. Whatthis means is that the community
of ITK users and developers has great impact on the evolutionof the software. Users and
developers can make significant contributions to ITK by providing bug reports, bug fixes, tests,
new classes, and other feedback. Please feel free to contribute your ideas to the community (the
ITK user mailing list is the preferred method; a developer’smailing list is also available).

Mailing lists are used by developers and users to communicate information about the projects.
It is strongly recommended that you join the IGSTK mailing list. This is one of the primary
resources for guidance and help regarding the use of the toolkit. You can subscribe to the list
online at

http://www.igstk.org/contact.htm

Currently, two mailing lists exist: the developers and users.

http://public.kitware.com/Bug/index.php
http://www.igstk.org/contact.htm

2.3. Installation 17

• Theusers listis open to the public. Use this list to post general questions, postbug reports,
or offer suggestions to improve IGSTK. Email:igstk-users@public.kitware.com

• The developers listis for developers. Use this list if you are interested in developing
and contributing your own classes. Approval is required to join the list. Email: igstk-

developers@public.kitware.com

Both mail lists are archived and searchable through Kitwaresearch page(
http://www.kitware.com/search.html). This will return hits from the IGSTK mail-
ing list as well a the related projects (CMake, VTK and ITK) mailing lists.

2.2.5 Additional Resources

For more information about Image-Guided Surgery Toolkit (IGSTK), please refer to the follow-
ing website.

• IGSTK Homepage.http://www.igstk.org

• IGSTK Wiki. http://public.kitware.com/IGSTKWIKI

• IGSTK Dashboard.http://public.kitware.com/dashboard.php?name=igstk

• IGSTK Bug Tracker.http://public.kitware.com/dashboard.php?name=igstk

• . . .

2.3 Installation

This chapter gives instruction on how to install IGSTK and other libraries IGSTK depends on
in your system.

2.3.1 Prerequisite

First, you must download, configure and build three toolkitsthat are required in order to build
IGSTK. These three toolkits are VTK, ITK and FLTK.

• VTK provides visualization functionalities

• ITK provides image processing, segmentation and registration

• FLTK provides Graphical User Interface (GUI) functionalities

http://public.kitware.com/mailman/listinfo/igstk-users
http://public.kitware.com/mailman/listinfo/igstk-developers
http://www.kitware.com/search.html
http://www.igstk.org
http://public.kitware.com/IGSTKWIKI
http://public.kitware.com/dashboard.php?name=igstk
http://public.kitware.com/dashboard.php?name=igstk

18 Chapter 2. Getting Started

It is very important to make sure that you use the appropriateversions of those toolkits since
that will ensure that your ge the code is coherent with the current version of IGSTK.

IGSTK relies on other toolkits. This page specifies the versions of those other toolkits that must
be used in order to build the current version of IGSTK.What is the current version of IGSTK?
Rlease 7, 8, or 9

• ITK CVS from January 27, 2006

• VTK 5.0 or CVS version

• FLTK. A snapshot of this toolkit is available on IGSTK wiki papgeHow to direct the
reader to this complicated link? this zip file with the snapshot of FLTK 1.1 Fltk-1.1-12-
16-05.zip

• CMake 2.2

Note 1: FLTK 1.1 already has a CMakeLists.txt file, thereforeit can be configured with CMake.

Note 2: How to obtain ITK through CVS:

cvs -d :pserver:anonymous@www.itk.org:/cvsroot/Insigh t login answer with
password : insight

cvs -d :pserver:anonymous@www.itk.org:/cvsroot/Insigh t co Insight cd Insight

cvs update -D 2006-01-27

Note 3 : How to obtain VTK 5.0

Downloadable versions of VTK 5.0 are available

http://www.vtk.org/get-software.php#latest

2.3.2 Install IGSTK on Windows System

2.3.3 Install IGSTK on Unix System

2.4 Hello World in IGSTK

The source code for this section can be found in the file
Examples/HelloWorld/HelloWorld.cxx .

To add a graphical user interface to the application, we use FLTK. FLTK is a a light weight
cross-platform GUI toolkit. FLTK stores a description of aninterface in files with extension .fl.
The FLTK toolfluid takes this file and uses it for generating C++ code in two files.One header

http://www.vtk.org/get-software.php#latest

2.4. Hello World in IGSTK 19

file with extension .h, and an implementation file with extension .cxx. In order to use that GUI
from the main program of our application we must include the header file generated by fluid.
This is done in the following line.

#include "HelloWorldGUI.h"

The geometrical description of the Cylinder and the Sphere in the scene are managed by
SpatialObjects. For this purpose we need the two classesigstk::EllipsoidObject and
igstk::CylinderObject . Their two header files are included below.

#include "igstkEllipsoidObject.h"
#include "igstkCylinderObject.h"

The visual representation of SpatialObjects in the visualization window is cre-
ated using SpatialObject Representation classes. Every SpatialObject has
one or several representation objects associated with it. We include now
the header files of the igstk::EllipsoidObjectRepresentation and
igstk::CylinderObjectRepresentation .

#include "igstkEllipsoidObjectRepresentation.h"
#include "igstkCylinderObjectRepresentation.h"

As stated above, the tracker in this minimal application is represented by a
igstk::MouseTracker . This class provides the same interface of a real tracking device
but with the convenience of running based on the movement of the mouse in the screen. The
header file of this class is included below.

#include "igstkMouseTracker.h"

Since image guided surgery applications are used in a critical environment, it is quite important
to be able to trace the behavior of the application during theintervention. For this purpose
IGSTK uses a igstk::Logger class and some helpers. The logger is a class that receives
messages from IGSTK classes and forward those messages to LoggerOutput classes. Typical
logger output classes are the standard output, a file and a popup window. The Logger classes
and their helpers are taken from the Insight Toolkit (ITK).

#include "itkLogger.h"
#include "itkStdStreamLogOutput.h"

We are now ready for writing the code of the actual application. Of couse we start with the
classicalmain() function.

int main(int , char**)
{

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1EllipsoidObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1CylinderObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1EllipsoidObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1CylinderObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1MouseTracker.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Logger.html

20 Chapter 2. Getting Started

The first IGSTK command to be invoked in an application is the one that initialize the param-
eters of the clock. Timing is critical for all the operationsperformed in an IGS application.
Timing signals make possible to synchronize the operation of different components and to en-
sure that the scene that is rendered on the screen actually displays a consistent state of the
environment on the operating room.

igstk::RealTimeClock::Initialize();

First, we instantiate the GUI application.

HelloWorldGUI * m_GUI = new HelloWorldGUI();

Next, we instantiate the ellipsoidal spatial object that wewill be attaching to the tracker.

igstk::EllipsoidObject::Pointer ellipsoid = igstk::Ell ipsoidObject::New();

The ellipsoid radius can be set to one in all dimensions (X,Y and Z) using the SetRadius
member function as follows.

ellipsoid->SetRadius(1,1,1);

To visualize the ellipsoid spatial object, an object representation class is created and the ellipsoid
spatial object is added to it.

igstk::EllipsoidObjectRepresentation::Pointer
ellipsoidRepresentation = igstk::EllipsoidObjectRepre sentation::New();

ellipsoidRepresentation->RequestSetEllipsoidObject(ellipsoid);
ellipsoidRepresentation->SetColor(0.0,1.0,0.0);
ellipsoidRepresentation->SetOpacity(1.0);

Similarly, a cylinder spatial object and cylinder spatial object representation object are instanti-
ated as follows.

igstk::CylinderObject::Pointer cylinder = igstk::Cylin derObject::New();
cylinder->SetRadius(0.1);
cylinder->SetHeight(3);

igstk::CylinderObjectRepresentation::Pointer
cylinderRepresentation = igstk::CylinderObjectReprese ntation::New();

cylinderRepresentation->RequestSetCylinderObject(cy linder);
cylinderRepresentation->SetColor(1.0,0.0,0.0);
cylinderRepresentation->SetOpacity(1.0);

Next, the spatial objects are added to the view, and the camera position of is reset to observe all
objects in the scene.

2.4. Hello World in IGSTK 21

m_GUI->Display->RequestAddObject(ellipsoidRepresent ation);
m_GUI->Display->RequestAddObject(cylinderRepresenta tion);
m_GUI->Display->RequestResetCamera();
m_GUI->Display->Update();

FunctionRequestEnableInteractions() allows the user to interactively manipulate (rotate,
pan, zoomm etc.) the camera. Forigstk::View2D class,vtkInteractorStyleImage is used;
For igstk::View3D class,vtkInteractorStyleTrackballCamera is used. In IGSTK, the
keyboard events are disabled, so it doesn’t support the original VTK key-mouse-combined in-
teractions. In summary the mouse events are as follows: Leftbutton click triggers pick event;
Left button hold rotates the camera, inigstk::View2D , camera direction is always perpendic-
ular to image plane, so there is no rotational movement available for igstk::View2D ; Middle
mouse button pans the camera; Right mouse button dollys the camera.

m_GUI->Display->RequestEnableInteractions();

The following code instantiate a new mouse tracker and initialize it. The scale factor is just a
number to scale down the movement of the tracked object in thescene.

igstk::MouseTracker::Pointer tracker = igstk::MouseTra cker::New();
tracker->Open();
tracker->Initialize();
tracker->SetScaleFactor(100.0);

Now we attach previously created spatial object to the tracker and set the tracker to monitor the
mouse events from the user interface. The tool port and tool number is naming convention from
NDI trackers.Reference to tracker chapterobject in the scene.

const unsigned int toolPort = 0;
const unsigned int toolNumber = 0;
tracker->AttachObjectToTrackerTool(toolPort, toolNum ber, ellipsoid);
m_GUI->SetTracker(tracker);

Now we setup a logger. We will direct the log output to both thestandard output (std::cout) and
a file (log.txt).need reference to logger chapter about priority level

itk::Logger::Pointer logger = itk::Logger::New();
itk::StdStreamLogOutput::Pointer logOutput = itk::StdS treamLogOutput::New();
itk::StdStreamLogOutput::Pointer fileOutput = itk::Std StreamLogOutput::New();

logOutput->SetStream(std::cout);
logger->AddLogOutput(logOutput);
logger->SetPriorityLevel(itk::Logger::DEBUG);

std::ofstream ofs("log.txt");
fileOutput->SetStream(ofs);
logger->AddLogOutput(fileOutput);

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1View2D.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1View3D.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1View2D.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1View2D.html

22 Chapter 2. Getting Started

By connecting the logger to the Display and the Tracker, messages from the these components
will be redirected to the logger.

m_GUI->Display->SetLogger(logger);
tracker->SetLogger(logger);

Next, we set the refresh frequency of the display window. After we call theRequestStart()
function, the pulse generator inside the display window will start ticking, and call the display to
update itself 60 times per second.

m_GUI->Display->RequestSetRefreshRate(60);
m_GUI->Display->RequestStart();

All application should includes the following code. This isthe main event loop of the
application. First it checks if the application is aborted by user, if not, it calls for the
igstk::PulseGenerator to check its time out.

while(!m_GUI->HasQuitted())
{
Fl::wait(0.001);
igstk::PulseGenerator::CheckTimeouts();
}

Finally, before exiting the application, the tracker is properly closed and other clean up proce-
dures are executed.

tracker->StopTracking();
tracker->Close();
delete m_GUI;
ofs.close();
return EXIT_SUCCESS;

Add the application wizard here?

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PulseGenerator.html

CHAPTER

THREE

Architecture

K2 General Comments: - Lots of spelling errors, ran it through a spellcheck - Several gram-
matical errors, tried to fix obvious ones - Uses passive voicea lot, only changed a few of these
- I have put several comment blocks prefixed with K2 throughout. - My main general comments
are 1) some things are talked about or referred to before concept is explained (this chapter is
early in the book), and 2) I get a lot of information/lecture on the importance of safety-driven
programming, but an unlevel explanation of IGSTK’s architecture and how it addresses these
issues.

3.1 General Background

“As to diseases, make a habit of two things - to help, or at least, to do no harm.”
Hippocrates, Epidemics Book 1, Section XI.

The fundamental characteristic of the IGSTK toolkit is thatit is software intended to be used in
the operating room. Applications using IGSTK will provide informative graphic displays to a
clinician with the purpose of facilitating the execution ofa surgical procedure. In that context,
the main consideration driving the design of the IGSTK toolkit is to do as much as possible to
protect the patient from harm.

Safety was the first consideration during the design, implementation and testing decisions of the
toolkit. Whenever the development team found software requirements conflicting with patient
safety this latter took precedence.

The IGSTK architecture is designed to try to take advantage of every possible software mecha-
nism that could prevent errors from happening when the application were running in the surgery
room. These mechanisms include

• Defensive Programming

• Safety by Design

• Software Verification

http://en.wikipedia.org/wiki/Hippocrates
http://en.wikipedia.org/wiki/Defensive_programming
http://en.wikipedia.org/wiki/Software_verification

24 Chapter 3. Architecture

• High Code coverage

• State MachineProgramming

Some of these techniques, such as Defensive Programming andHigh Code Coverage, are closer
to the actual software writing process while the others are closer to the high level design process.
Among these techniques, the use of State Machines stands outas the primary mechanism by
which to ensure patient safety. The reasons for using State Machines in critical application
design is that they offer the opportunity for performing formal validation of the software, they
make possible to guarantee that the application is never in an error state, and they make explicit
their behavior face to any interactions with the user or withother pieces of software. State
machines are an accepted pattern in software design for safety-critical applications, in particular
real-time systems and embedded applications [2, 3].

Implementing the software as a collection of components is another architectural decision moti-
vated by the commitment to reduce or eliminate patient risk.When software is written in small
components it is easier to fully verify the behavior of each component by testing it throughly.
Every component was designed with a very compact Application Programmer Interface (API)
that prevented the introduction of arbitrary features and kept the complexity of the software at
a level where it can be throughly tested.

One of the postulates held during the design process is that in the context of safety-critical
applications

Freedom is dangerous,
Flexibility is bad,
Generality brings risk.

Although this may sound like a statement fromGeorge Orwell’s novel “1984”, it is indeed
critical for raising the quality of the software, facilitating maintenance, making possible to have
100% code coverage and preventing the complexity of the software from increasing to the point
where it can not be entirely tested.

Feature creep is a well known disease affecting most software projects, from the library level to
the end user application level. Developers can rarely resist the temptation of adding a cool fea-
ture to the software, sometimes for as little justification as because the opportunity presented it-
self at their fingertips. Developers of toolkits tend to do asmuch as possible for offering options
to application developers. This tendency has to be reversedin the context of a safety-critical
software because every new feature added to the code resultsin a combinatorial explosion of
states that can never be tested nor documented. Of course, a well controlled software develop-
ment process can also prevent the insertion of arbitrary features by enforcing the discussion of
requirements, code reviews and traceability. The softwaredevelopment practices followed in
IGSTK are described in detail in Chapter5.

Further motivation for the emphasis on safety came from the development team’s awareness
of the fact that clinical conditions are already tense, evenbefore software is introduced in that
environment. Adding the risk of software to an already unstable clinical situation is something

http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/State_machine
http://en.wikipedia.org/wiki/George_Orwell
http://en.wikipedia.org/wiki/Nineteen_Eighty-Four

3.2. Medical Errors 25

that must be done with careful consideration. The followingtwo sections provide some of the
background of what is publicly accepted as the evidence of continuous danger in a clinical
environment, and what is know about the frailties and vulnerabilities of software development
endeavors.

3.2 Medical Errors

K2 You have two ways of citing the report - with a URL in a footnote and as a citation. Which
is it? Luis: Good point. The footnote has now been removed.

The following quote was taken from the report“To Err is Human” prepared by the U.S.
Institute of Medicine1 in 2001 [10].

Two large studies, one conducted in Colorado and Utah and theother in New
York, found that adverse events occurred in 2.9 and 3.7 percent of hospitalizations,
respectively. In Colorado and Utah hospitals, 6.6 percent of adverse events led
to death, as compared with 13.6 percent in New York hospitals. In both of these
studies, over half of these adverse events resulted from medical errors and could
have been prevented.

When extrapolated to the over 33.6 million admissions to U.S. hospitals in 1997,
the results of the study in Colorado and Utah imply that at least 44,000 Americans
die each year as a result of medical errors. The results of theNew York Study
suggest the number may be as high as 98,000. Even when using the lower estimate,
deaths due to medical errors exceed the number attributableto the 8th-leading
cause of death. More people die in a given year as a result of medical errors than
from motor vehicle accidents (43,458), breast cancer (42,297), or AIDS (16,516).

This report is a striking revelation of how much risk is inherent to the practice of health care
delivery. The report is particularly unsettling when considered under the light that those statis-
tics were gathered only from the medical errors that areofficially reported. The numbers do not
include, of course, the medical error that are not reported to hospital officials, and much less,
those errors that go unnoticed by nurses and medical practitioners.

The report also refers to the economic cost of medical errors

Total national costs (lost income, lost household production, disability, health care
costs) are estimated to be between$37.6 billion and$50 billion for adverse events
and between$17 billion and$29 billion for preventable adverse events. Health
care costs account for over one-half of the total costs. Evenwhen using the lower
estimates, the total national costs associated with adverse events and preventable
adverse events represent approximately 4 percent and 2 percent, respectively, of
national health expenditures in 1996. In 1992, the direct and indirect costs of

1www.iom.edu

http://www.nap.edu/books/0309068371/html
http://www.iom.edu

26 Chapter 3. Architecture

adverse events were slightly higher than the direct and indirect costs of caring for
people with HIV and AIDS.

The notion that medical errors are expensive in human, social and economical terms was kept
in mind during the design and development process of the toolkit. It became relevant every time
that arguments were raised in favor of relaxing the safety rules of the toolkit with the purpose
of making easier or more convenient the work of developers. In such instances it was useful
to remember that the cost of toolkit and application developers is insignificant compared to the
tragic consequences that a potential adverse event may havein a patient when produced in the
operating room as a consequence of a software deficiency.

In the analysis of “Why errors happen?” the report emphasizes the following fact

When large systems fail, it is due to multiple faults that occur together in an unan-
ticipated interaction, creating a chain of events in which the faults grow and evolve.
Their accumulation results in an accident. “An accident is an event that involves
damage to a defined system that disrupts the ongoing or futureoutput of that sys-
tem.”

This passage of the report provided background motivation for developing IGSTK as a toolkit
with minimal functionalities and with well defined interactions between components. When
compared to other toolkits such as VTK and ITK, the application developer will notice that
IGSTK is very compact and that it provides a very restricted set of functionalities. Such charac-
teristics, that could have been perceived as a weakness in a general software toolkit, are indeed
the strength of IGSTK because they make the toolkit safe and reliable enough for being used in
a clinical setting.

The dreadful consequences of medical errors and their high rate of occurrence are important for
understanding the architectural design decisions made in the toolkit as described in the rest of
this chapter.

The lessons to remember from this section are

• Medical errors are very common.

• Medical errors are irreversible.

• Medical errors are expensive.

• Good design practices help to prevent medical errors.

3.3 Layered Architecture

Figure3.1illustrates the layered architecture of IGSTK starting from the operating system layer
as a foundation. The Insight Toolkit ITK is used for providing all the image analysis functional-
ities in IGSTK as well as a good portion of the infrastructureclasses. The Visualization Toolkit

3.4. Software Quality 27

IGS Application

ITK FLTKVTK

IGSTK+FLTKIGSTK

Operating System

Figure 3.1:IGSTK Layered Architecture.

is used for supporting the display of image an geometrical models as well as managing a good
portion of the user interaction. The Fast Light Toolkit FLTKis optionally used for proving GUI
functionalities. Although most of the examples in this bookare based on FLTK, it is possible to
use IGSTK with other GUI libraries such as Qt and MFC. IGSTK internally makes use of ITK
and VTK classes but does not expose any of them in its API2.

Image Guided Surgery applications will be built on the top ofIGSTK. The application code can
only have access to IGSTK classes, not to the ITK or VTK classes that are used underneath.
The purpose of this encapsulation of toolkit functionalities is to improve the safety of the final
application by preventing developer to directly manipulate objects without passing first through
the many safeguards that have been included in IGSTK.

3.4 Software Quality

The practice of software development and software engineering is farther from being a science
than what most of us would like to think. Unfortunately, software design and development
involves such high levels of complexity that most of it is still an art rather than a science. This
section illustrates how fragile and error prone is the process of software development, and what
good practices may help to make it safer and more reliable.

K2 I have several comments on this quality section. - With it being back-to-back with the
previous section, we have several consecutive pages of being almost ”preachy” to the reader,
instead of telling them about architecture. - It implies up above (correctly) that better process
yields better quality. If so, may some of this motivation should be in the process chapter? - the
first subsection on ”Software Quality Statistics” equates quality with testing, which is accepted
in software engineering as a failed endeavor. The accepted axiom is ”the more defects you
find and fix, the more that remain that you do not know about”. Despite our aggressive unit
testing, I would not want to imply that quality equals testing. We do a number of other activities
- code reviews, requirements review every week, requirements management, clinician feedback,

2Application Programmer Interface

28 Chapter 3. Architecture

coding standards, etc. that do as much if not more to ensure quality. - I think the combination
of this section and the previous section overstate the situation of modern software development
as being in dire straights. True, there is a lot of bad code outthere, and often end-users accept
it as a cost of doing business, and we can say that. But data show that the general trend in
software intensive systems, and especially in mission critical systems, is toward a declining
defect density in delivered source code.

3.5 The Main Components

The main components of the toolkit are the following

• igstk::Tracker

• igstk::View

• igstk::SpatialObject

• igstk::SpatialObjectRepresentation

• igstk::ImageReader

Some of the main components have derived classes for managing specific implementation is-
sues. In those cases the base class is implemented as an abstract class, which means that it is
not intended to be instantiated by the application developer. Instead, the developer must use one
of the derived classes. This is done as part of the safetybydesign approach in IGSTK. The idea
is that derived classes allow to further restrict the expected behavior of a particular class, and in
that way preclude the misuse of the class by adding specific tests that ensure that the interaction
of the class with other pieces of software are limited to a well defined set of use cases. A typical
example of this implementation of safetybydesign is the family of the igstk::ImageReader
classes. Where an abstractigstk::DICOMImageReader class implements the basic actions re-
quired for reading any DICOM files, while its derived classesthe igstk::CTImageReader and
igstk::MRImageReader deal with specific modalities. Since these classes know whatmodal-
ity they are expecting, they can perform extra verification at the moment of reading an image.
In the event that the image provided to the reader do not matchthe expected modality, then the
reader will report the failure of the action and it will remain in a safe state declaring that no
image has been read. The DICOMImageReader class can not be instantiated by an application
developer, so there is no way of creatingGenericreaders that will introduceambiguity, and
thereforeuncertainty, and thereforerisk into the application.

K2 presenting a long laundry list of class names does not provide the reader with any infor-
mation as to the purpose and relationships of the classes. Our other papers have a component
diagram. Then within the component diagram you could have class diagrams that describe the
classes that realize that component’s behavior. In short, the bulleted lists in this section would
be better served with diagrams.

Other classes for supporting infrastructure include

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Tracker.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1View.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1SpatialObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1SpatialObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1ImageReader.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1ImageReader.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1DICOMImageReader.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1CTImageReader.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1MRImageReader.html

3.5. The Main Components 29

• igstk::RealTimeClock

• igstk::PulseGenerator

• igstk::TimeStamp

• igstk::Transform

• igstk::StateMachine

• igstk::StateMachineInput

• igstk::StateMachineState

• igstk::SerialCommunication

The igstk::DICOMImageReader is further specialized in the two classes

• igstk::CTImageReader

• igstk::MRImageReader

The family of SpatialObjects form the hierarchy

• igstk::SpatialObject

• igstk::GroupObject

• igstk::AxesObject

• igstk::BoxObject

• igstk::ConeObject

• igstk::CylinderObject

• igstk::EllipsoidObject

• igstk::ImageSpatialObject

• igstk::CTImageSpatialObject

• igstk::MRImageSpatialObject

• igstk::USImageSpatialObject

• igstk::MeshObject

• igstk::TubeObject

• igstk::TubeGroupObject

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1RealTimeClock.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PulseGenerator.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1TimeStamp.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Transform.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1StateMachine.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1StateMachineInput.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1StateMachineState.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1SerialCommunication.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1DICOMImageReader.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1CTImageReader.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1MRImageReader.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1SpatialObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1GroupObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1AxesObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1BoxObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1ConeObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1CylinderObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1EllipsoidObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1ImageSpatialObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1CTImageSpatialObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1MRImageSpatialObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1USImageSpatialObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1MeshObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1TubeObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1TubeGroupObject.html

30 Chapter 3. Architecture

• igstk::UltrasoundProbeObject

These classes have their corresponding Representation Objects

• igstk::ObjectRepresentation

• igstk::AxesObjectRepresentation

• igstk::BoxObjectRepresentation

• igstk::ConeObjectRepresentation

• igstk::CylinderObjectRepresentation

• igstk::EllipsoidObjectRepresentation

• igstk::ImageSpatialObjectRepresentation

• igstk::CTImageSpatialObjectRepresentation

• igstk::MRImageSpatialObjectRepresentation

• igstk::USImageSpatialObjectRepresentation

• igstk::MeshObjectRepresentation

• igstk::TubeObjectRepresentation

• igstk::UltrasoundProbeObjectRepresentation

K2 A diagram appears in my PDF right here of a Timing Collaboration, which apparently goes
with the next section. It appears before any reference or discussion.

3.6 Timing

In action, timing is everything.
Force doesn’t matter.
Weight doesn’t matter.
Even being morally right does not matter.
All that matters is timing.
Deng Ming-Dao,Everyday Tao

The primary use of IGSTK in a surgical application will involve presenting information to the
surgeon in the form of a graphical display. This display willtypically include some elements
that are physically visible to the surgeon in the operating room, combined with other elements
that are only visible in the display. The surgeon will make a decision and take actions based on
the relative position of those elements as presented in the display. It is therefore of the utmost

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1UltrasoundProbeObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1ObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1AxesObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1BoxObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1ConeObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1CylinderObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1EllipsoidObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1ImageSpatialObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1CTImageSpatialObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1MRImageSpatialObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1USImageSpatialObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1MeshObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1TubeObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1UltrasoundProbeObjectRepresentation.html

3.6. Timing 31

Tracker Tool 1

Tracker Tool 2

Tracker Tool 3

Spatial Object Representation C

Spatial Object Representation D

TrackerView2D A

View2D B

View2D C

View3D D

Spatial Object

Spatial Object Representation A

Spatial Object Representation B

Figure 3.2:Timing Collaboration between the main IGSTK components.

importance that the positions and orientations of all the objects in the display correspond to a
consistent view in time of the surgical scenario.

When a display is presented to the surgeon, it is implicitly claiming that this is the view of the
operating room at a very recent time. Since many of the objects in the scene are in continuous
movement, whether because they are inside of the patient or because the surgeon is controlling
them, the accuracy of the position is related to the consistency of time for each object. In other
words, when the graphic display shows where the surgical needle was located at 9:06 am, it
should appear along with the location of the patient’s liverat 9:06am. The toolkit design takes
measures for preventing the accidental display of the position of the needle where it was at
9:06am along with the patient’s liver where it was at 8:54am.Synchronicity of the objects in
the scene is extremely important because it is from their relative position that the surgeon will
derive the most useful information for proceeding with the intervention.

The collaboration between the main component of the toolkitis illustrated in Figure3.2. Tracker
and View classes have their own pulse generators that will keep them updating at a rate specified
by the application developer. A Tracker device can usually drive multiple tracked tools, that in
IGSTK are managed by theigstk::TrackerTool class. Once information about Transform
updates is passed from the Tracker into the TrackerTool, it is then pushed into the SpatialObject.
One SpatialObject can be attached to one an only one TrackerTool. A TrackerTool can only be
attached to a single SpatialObject.

K2 The push and pull semantics of Spatial Objects and TrackerTools does not match between
the TimingCollaboration diagram and the TimingArchitectureSequenceDiagram. In the former
the tool pushes the transform to the SO, and the text describes this. In the latter, the SO pulls
information from the tool

Also, the sequence diagram is very awkward because it implies a linear sequence of events
between the tracker operations and the left-side. These things actually happen in 2 threads,
one internal to the tracker - so in actual time they may be interleaved. In practice you would
expect the right-side (tracker) to update more times that the left-side (view). Threads are tricky
to convey in UML sequence diagrams, but it can be done.

Also, the syntax ”xxx : class” in a box on the sequence diagrammeans there is a object whose
unique identity is ”xxx” of type ”class”. Therefore you should not have two boxes with ”id:
PulseGenerator”. In fact, you should not all of these objects using ”id:”. I would just re-
move ”id” and use ”:View”, ”:SpatialObject” etc., but use ”viewPG : PulseGenerator” and
”trackerPG : PulseGenerator” for the two Pulse Generator objects in the diagram.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1TrackerTool.html

32
C

hapter
3.

A
rchitecture

id: PulseGeneratorid: Trackerid: TrackerToolid: SpatialObjectid: ObjectRepresentationid: PulseGenerator id: View

ReceiveTransform

TransformEvent

PulseEvent

Redraw

TransformEvent

GetTransform
RequestGetTransformUpdateRepresentation

RefreshRender

SetTransform UpdateStatus

PulseEvent

UpdateActors

F
ig

u
re

3
.3

:T
im

ing
C

ollaboration
betw

een
the

m
ain

IG
S

T
K

com
ponents.

3.6. Timing 33

K2 The explanation in the next few paragraphs is pretty detailed and describes things using
concepts (events, observers) not presented yet. I wonder ifthis would work better as an example
in a later chapter

A UML sequence diagram of the timing interactions is presented in Figure3.3. The diagram
can be better understood by dividing it in two sections. The division line must be drawn in the
SpatialObject class. The section to the right of the SpatialObject class describes the flow of
information and events from the PulseGenerator class that is associated with a Tracker, up to
the actual SpatialObject class. The direction of information flow in this section of the diagram
is from right to left, starting with the PulseGenerator class at the right side of the diagram. The
Tracker internally has its own PulseGenerator whose rate for generating pulses is set by the
application developer. At every pulse, the Tracker class isgoing to query the actual hardware
tracker device and will get from it information about the position of the tracked instruments
in the operating room. Since most tracker devices can track multiple instruments, the Tracker
class uses the TrackerTool classes as the helpers that are associated to each one of the physical
tracked surgical instruments. When the Tracker class received the updated information from the
hardware, it stores the new Transforms, that describe the most recent position of the instruments,
into their corresponding TrackerTool objects.

Communication between the Tracker object and its associated PulseGenerator is performed
through Events and Observers. The PulseGenerator producesPulseEvents at the rate selected
by the application developer. The Tracker class has an internal Observer that is connected
to the PulseGenerator. When the Observer receives a PulseEvent, it invokes the method
UpdateStatus() in the Tracker. This method queries the hardware, recovers the most recent
transformations and then push them into the corresponding TrackerTool classes by invoking
their SetTransform() method. At that point, the TrackerTool is updated and the refreshing
cycle of the Tracker concludes.

DG: The second-to-last sentence should be rephrased: “Thismethod recovers the most re-
cent transformations sent by the tracking hardware and thenpushes them into the correspond-
ing TrackerTool objects by invoking theirSetTransform() methods.” The reason for this
rephrasing is that the actual querying of the hardware is done in the tracker’s extra thread (the
pushing of the transforms from the tracker buffer to the TrackerTools still occurs in the main
thread).

The Transforms that are passed from the Tracker class, all the way up to the TrackerTool are
marked with a TimeStamp that indicates at what time the Transform started to be valid, and at
what time the Transform will expire. Since the Tracker provides a periodic flow of Transforms,
the expiration mechanism allows other components downstream to know when a new Transform
should be available and when to stop using an old transform. Avery similar mechanism is
used in the TCP/IP protocol in order to drop packages once they have completed a number of
redirections on the network. In networking lingo this is known as the ”Time to Live” or TTL.

If a SpatialObjectRepresentation finds that the Transform of its associated object has expired
by the time it needs to render its appearance in the scene, then it can decide to not show that
particular instrument, or to flag it in blinking mode, or in a special color. The purpose of this
change in representation will be to warn the surgeon about the fact that the current position

34 Chapter 3. Architecture

of that object is not known at this point. Such an event may be the consequence of someone
blocking the line of sight of an optical tracker, or an accidental disconnect of a physical tracking
tool.

The section of the diagram at the right side of the TrackerTool represents another cycle of
information refreshing, this time in two stages. First, request for updating information are
moved from left to right, starting in the PulseGenerator associated to the View class, and moving
towards the TrackerTool class. Second, the information flows from right to left by carrying the
current Transform known by the TrackerTool up to the SpatialObjectRepresentation class.

If we follow these two flows we will encounter the following details. The View class has its
own PulseGenerator that is set to produce a particular rendering rate by the application de-
veloper. At every pulse of the PulseGenerator, a PulseEventis sent to an Observer inside
the View class. The callback of this Observer invokes the method RefreshRender() in the
View class. This method visits all the SpatialObjectRepresentation classes that have been regis-
tered with this View and invokes on each of them the methodsUpdateRepresentation() and
UpdatePosition() . Note that only the cycle of theUpdatePosition() method is presented
in this diagram for the sake of simplicity. When the UpdatePosition method is invoked in the
SpatialObjectRepresentation object, it triggers a call totheRequestGetTransform() method
on the SpatialObject. This in its turn triggers a call to theGetTransform() method of the
TrackerTool object that has been associated with this particular SpatialObject. In response to
this invocation, the TrackerTool object invokes a TransformModified event for which the Spa-
tialObject has already connected an internal Observer. Thereception of the TransformEvent in
the SpatialObject triggers theReceiveTransform() method, that then calls theUpdateActors
method. This last one is the method that decided how to modifythe graphical representation
of the objects as presented to the surgeon, in order to indicate whether the current position of
the object in the surgical scene is valid or not. Once the Viewclass has finished triggering
the refresh of each one of its registered SpatialObjectRepresentation objects, it will proceed to
actually redraw the scene by triggering a redraw of its internal FLTK window. This redraw
will trigger a Render action on the VTK pipelines that is maintained inside the View and the
SpatialObjectRepresentation classes.

The cycle of updates in the right side of the diagram happen inan independent thread that is
created for the Tracker class. In this way, the rate of the Tracker updates and the refreshing rate
of the View can be maintained in a decoupled fashion. This of course is only possible as long as
the refreshing rates for both components are far from the maximum possible refresh rate. If the
application developer selects refreshing rates that are too high, then aliasing effects will happen
in the temporal domain between the cycle driven by the PulseGenerator of the Tracker (right
side of the diagram) and the cycle driven by the PulseGenerator of the View class (left side of
the diagram).K2 Tracker above should be TackerTool ?

DG: The updates in the right side of the diagram do not occur ina different thread: they occur in
the same thread as all other IGSTK events. The part of the Tracker class that accepts pulses from
the PulseGenerator runs in the main IGSTK thread (in fact it has to, since the PulseGenerator
events are always sent from the main IGSTK thread). When a Pulse occurs, the Tracker will
extract data for a particular time point from its internal data buffer and push that data to the
tools, and the only role of the tracker’s extra thread is keepthe data in the buffer up-to-date by

3.7. State Machine Architecture 35

InitialState

StoppedState

ValidFrequencyInputInvalidLowFrequencyInput InvalidHighFrequencyInput

PulsingState

StartInput

InvalidLowFrequencyInput InvalidHighFrequencyInput

StopInput EventReturnInput

WaitingEventReturnState

PulseInput

InvalidHighFrequencyInput InvalidLowFrequencyInput

StopInput

EventReturnInput

Figure 3.4:State Machine Diagram of the PulseGenerator class.

listening on the communication link for new data from the tracking system and placing the new
data into the buffer. This extra thread does not utilize the PulseGenerator.

The Timing infrastructure is based on providing self-contained behavior to the individual com-
ponents of the toolkit. This prevents the need for a master class for controlling all the activities
at the top level of the application.

3.6.1 Pulse Generator Implementation

Figure3.4illustrates the State Machine of theigstk::PulseGenerator class.

K2 This figure appears before any reference to it. Also, no discussion is provided whatsoever

3.7 State Machine Architecture

K2 We have to be careful - we use the term formal validation at least twice in this chapter, yet
we do not do it nor do we have any intention of doing it.

I have not checked yet, but I hope this section dovetails withthe later detailed section on state
machines in a later chapter.

State Machines make it possible to introduce determinism and formal validation into the soft-
ware infrastructure of the toolkit.

3.7.1 Safe States

The approach following in IGSTK is the one for “walking in a mined field”. This means that be-
fore executing every operation, IGSTK verifies that the operation can be completed successfully.
In this way, no component is ever placed in an error state. When one component ”Requests”
another to do something, the second component goes into an ”Attempting” state and from there
it triggers all the functions that will verify that such request can be satisfied without going into
an error state. If any error condition is found, then an error-notifying event is sent from the

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PulseGenerator.html

36 Chapter 3. Architecture

IdleState

ImageDirectoryNameReadState

ImageDirectoryNameValidInput ResetReaderInput

AttemptingToReadImageState

ReadImageRequestInput

ResetReaderInput ImageReadingErrorInput

ImageReadState

ImageReadingSuccessInput

ResetReaderInput

Figure 3.5:Example of the State Machine Attempting Pattern in the DICOMImageReader component.

second component. If, on the other hand, the operation can becompleted successfully, then an
Event with a positive notification is sent from the second component.

Figure 3.5 illustrates the use of this pattern of interaction in the context of the
igstk::DICOMImageReader .

3.7.2 Public versus Private API

In order to enforce safety-by-design, the only methods thatare public are those that ”Request”
operations into the components. In that context, there is noway to force a component to do
anything. Every component is kindly asked to “try” to do something, with the understanding
that the request may be satisfied or denied according to the current state of the StateMachine
that drives such component.

3.7.3 Communication Protocols

Never return data whose value is to be checked for validity. The old FORTRAN style of invok-
ing a function and on its returned value check whether its operation was successful or not is a
poor scheme for safety-critical applications. In IGSTK a more secure protocol for notification
of success or failure of queries was implemented. In summarywhat this protocol defines is that
all information returned as the answer to a query is to be passed in the form of Events with
payloads. When the response to a query for data is that the data is not available or that the data
is not valid then the response to the query is sent in the form of a specific event that encodes that
error condition. When, on the other hand, the information isvalid, then the response is sent in
the form of an event with payload, where the payload is the object that carries the information
requested.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1DICOMImageReader.html

3.7. State Machine Architecture 37

Events, Inputs and Transduction

When information is being passed back from the components that provide services to the com-
ponents that requested such services, the data is encapsulated in the form of an event with
payload. The component that requested the information should have an internal Observer ex-
pecting such an event in order to translate it into an Input code for its internal State Machine.
The process of converting Events into StateMachine Inputs is called here “Transduction”. Since
the process of Event to Input transduction is almost the same, a set of helper Macros were de-
fined in the toolkit in order to facilitate development and toenforce uniformity on the source
code.

A typical TransductionMacro expects the toolkit developerto define the type of the Event to be
received and the type of the Input to be passed to the State Machine as a result.

3.7.4 Helper Macros

• igstkDeclareInputMacro

• igstkDeclareStateMacro

• igstkAddInputMacro

• igstkAddStateMacro

• igstkAddTransitionMacro

[6] [1] [2] [3]

CHAPTER

FOUR

Requirements

4.1 Introduction

The degree of expertise required to develop effective applications in the image-guided surgery
domain is significant. As a result, development processes require a close connection between
subject matter experts (SMEs) and the software engineers/developers. Waterfall and spiral de-
velopment approaches tend to incorporate “top-down” processes that assume that complete re-
quirements can be defined early in development. However, in this domain, we have discovered
that development processes must more tightly integrate theiterative involvement of medical pro-
fessionals and SMEs. As such, agile development approachesare more inline with this domain.
Approaches to requirements engineering and management arenot well-defined within stan-
dard agile development venues. In our work, we introduce a customized extension to standard
agile development techniques through the introduction of an agile requirements management
approach.

4.2 What is an IGSTK Requirement

Requirements typically define system constraints with an emphasis on the functionality that
affects the end users. Since IGSTK is a component-based toolkit, there are three types of
end users,medical software developerswho use the components to compose new applications,
radiologistswho will use applications derived from IGSTK, andsoftware developersthat will
contribute components to the IGSTK framework. In all cases,requirements must meet the rigor
necessary to assure the reliability of the target applications.

4.2.1 Types of Requirements

IGSTK requirements can be classified into three areas that represent the three different end
users of the system, although it is inevitable that some overlap will exist. These three types of
requirements, shown in Figure4.1, arearchitecture requirements, style guidelines requirements,

40 Chapter 4. Requirements

Tracker Tool 1

Tracker Tool 2

Tracker Tool 3

Spatial Object Representation C

Spatial Object Representation D

TrackerView2D A

View2D B

View2D C

View3D D

Spatial Object

Spatial Object Representation A

Spatial Object Representation B

Figure 4.1:Classification of Requirements in IGSTK.

andapplication requirements, respectively. Architecture requirements define how the new sys-
tems should be composed from IGSTK components. Style guidelines include the constraints on
the developers who develop new software for IGSTK. Application requirements are standard
requirements that define how the target system will execute with respect to its used in the med-
ical environment. These classifications were derived from earlier work which defines a product
line development process called Component-Based Product Line Analysis and Development
(C-PLAD) [REF????]. Interestingly, as applications are built from the underlying components,
the application requirements extend the component-level requirements. The classification of
requirements and their relationship to other types of requirements are illustrated in Figure4.1
Figure 1.

4.2.2 Requirements Hierarchy

Requirements are classified by several image-guide surgery-related areas. The hierarchy by
which requirements are classified is shown in Table4.1. All requirements sections are split into
two parts, functional requirements and nonfunctional requirementsBrian: hmmm may remove
the notion of functional/nonfunctional, I think we mixed this up a bit.

4.2.3 Snapshot of Requirements at Publication Time

Considering the fact that IGSTK is an open-source toolkit, requirements are ever-evolving.
Luis: being Open Source is not related to the fact the requirements are always evolving. The
changing nature of requirements is mostly related to the fact that IGSTK is a toolkit and there-
fore intended to be a service layer. The dynamic nature of a toolkit is the result that users may
apply the toolkit to different applications and every new application brings new requirements in
the form of desirable new features, or modification of existing features. A closed source toolkit
would have the same evolving pressure, the difference with Open Source is that the public will
notice the changes in the code, while in close source, users do not know what is changing in the
software and have no way of verifying its correctness. Table 2 shows the requirements defined
for IGSTK at the time of the publication of this book in outline format. The purpose of this
chapter is describe the notion of requirements and how to access them; therefore we do not
describe each requirement in detail.Brian: IF we keep this, then probably should place this in
an appendix

4.2. What is an IGSTK Requirement 41

Table 4.1:Requirements Hierarchy

1. Interface Requirements
2. User Requirements
3. Infrastructure Requirements
3.1 Performance
3.2 Testing and Evaluation
3.3 Implementation and Transition
3.4 Quality Assurance and Reliability
3.5 Configuration Management
3.6 Communication
3.7 Logging
3.8 Timing/Latency/Calibration
3.9 Error-handling Notification
4. Tracker Requirements
5. Viewer/ Image IO
6. Spatial Objects
7. Landmark Registration Component
8. State Machine

4.2.4 Lightweight Requirements Management Process

Defined Requirements Management Process

The process for requirements management is significantly integrated with code management.
Although IGSTK development has not been a pure agile process, as discussed above, our project
does see requirements for development as coming from the “bottom-up”. Developers introduce
new requirements for further capabilities as components are being developed. The IGSTK
project has employed a new collaborative process for reviewing, implementing, validating, and
archiving these requirements, and it is integrated with application development. This process is
illustrated as a UML state diagram in Figure 2.

In the initial requirements phase, general requirements for tracking devices (localizers) were
discovered. As the components for these initial requirements were developed, we discovered
that additional requirements existed (i.e. perhaps specific validation requirements). Once a de-
veloper identifies new potential requirements (Conceptualized box in Figure 1), the developer
will post a text description (Defined) on the shared web site (Wiki). At the same time, the
initial code that fulfills the requirements is entered into asandbox repository (i.e. a develop-
ment configuration management area). The requirement wouldthen undergo an iterative review
sub-process where the team members would review, discuss, and potentially modify the re-
quirement. Based on the teams decision, the requirements can be rejected/aborted or accepted.
Rejected requirements are archived on the Wiki (Logged) so that they can be reopened later, if
necessary. A unique approach in the IGSTK project is the use of an on-line open source bug

42 Chapter 4. Requirements

Table 4.2:Snapshot of IGSTK Requirements.

1. Interface Requirements
1.1.1 IGSTK components shall be limited to 8 exposed methods.
1.1.2 Interactions with IGSTK components that require morethan re-

quest/response protocol must be explicitly documented in the component
API specification.

2. High-Level User Requirements.
2.1 Development Environment-Specific.
2.1.1 IGSTK components shall execute a high-level task autonomously requiring

minimal interaction.
2.1.2 IGSTK components shall not expose underlying class structure in header

files.
2.2 Application-Specific
2.2.1 At a minimum, IGSTK shall support general components for tracker capa-

bilities, viewer capabilities, segmentation, and registration.
2.2.2 The IGSTK platform shall include a minimum of two application examples.
3. Infrastructure and Nonfunctional Requirements
3.1 Performance Requirements
3.1.1 IGSTK components that manage events shall include threading capability.
3.2 Test and Evaluation Requirements
3.2.1 A test case shall be included for each IGSTK component.
3.2.2 Each IGSTK components must have 100% testing coverage(explain this).
3.3 Implementation and Transition Requirements
3.3.1 IGSTK components shall enable compilation via CMake.
3.3.2 Each IGSTK components shall be documented with corresponding Doxygen

files
3.4 Quality Assurance and Reliability Requirements
3.4.1 Each IGSTK component must be controlled by the IGSTK internal state

machine code.
3.5 Configuration Management Requirements
3.5.1 Each configuration management action must be supported by a requirement

number.
3.6 Communication Requirements
3.6.1 The IGSTK platform shall contain a general communication component that

acts as a proxy to all communication ports to and from the application such
as the serial/parallel ports or wireless connections.

3.7 Logging Requirements
3.7.1 The IGSTK platform shall contain a general, centralized logging capability

that can be used for all IGSTK components.
3.7.2 The logging capability shall support timestamps for the audited information.
3.7.3 The logging capability shall enable logging for multiple components con-

currently and support auditing into multiple files.
3.8 Timing and Latency Requirements
3.8.1 Add synchronization requirements.
3.9 Error-Handling and Notification Requirements
3.9.1 Add error-handling and notification requirements.
4. Tracker Requirements
4.1 Functional Requirements
4.1.1 The tracker component shall have the ability to initialize the tracker hard-

ware.

4.2. What is an IGSTK Requirement 43

tracker (PHP BugTracker) to store requirements. This approach is particularly effective as de-
fect reports and resulting actions are also stored in the bugtracker. The accepted requirements
are entered into the bug tracker and marked as “open”. Once the supporting software is im-
plemented and its functionality is confirmed, the requirement is marked as “verified”. As the
nightly builds takes place, all verified requirements are automatically extracted into Latex and
PDF files, and are archived. Custom scripts were developed for this purpose.

Figure 2. The Requirements Management Process as a UML statediagram.

Conceptualizing Requirements through Activity Modeling

A barrier to conceptualizing requirements is the disparityof knowledge between software engi-
neers and medical professionals. These two groups tend to speak in totally different terms. In
IGSTK, the best way, that was determined for software engineers to collaborate with radiolo-
gists, was by considering scenarios that describe the application of the system. Table 1 shows a
sample sample scenario of the use of IGSTK applications for guidewire placement. A stepwise,
temporal review of this scenario is illustrated in Figure 3.

Table 1. Sample Scenario for Guideware Placement.

The activity diagram view is an effective collaboration medium for the radiologists and the
software engineers. Although the activity diagram explains one particular application, require-
ments were conceived for many components included in IGSTK (e.g. tracking, visualization,
and registration). In additions, requirements can be inferred from this activity diagram for all
three requirements classifications as defined in the earliersection.

Figure 3. Activity Diagram Illustrating Guidewire Tracking Scenario.

Integrating Requirements Management and Bug Tracking

The lightweight requirements management process follows two scenarios. One scenario follows
a formal approach for introducing new software whereas the second scenario is inline with quick
changes or modifications. Step-by-step details of the two processes are shown in Table 3 and
Table 4.Brian: Add more description

Accessing and Contributing to IGSTK Requirements

Developers wishing to enhance the core IGSTK framework may discover a new system con-
straint that is not previously defined. IGSTK encourages developers to follow the requirements
management process and identify the requirement for a new software change first. Secondly,
the new software should be associated to the newly discovered requirement. As a first step the
developer should be familiar with the current requirements, because perhaps the change will
help to modify the software to better represent that currentrequirement. In this case, the new
software should reference the existing requirement.

44 Chapter 4. Requirements

Table 4.3:Sample Scenario for Guideware Placement

1. Interventional radiologist (IVR) positions fiducials onpatient
2. IVR uses CT or MRI imaging to obtain a digital representation of the patient
3. IVR initializes image-guided surgery (IGS) software application.
4. IVR loads patients digital image (DICOM) into the IGS software applica-

tion.
5. IVR confirms that tracking hardware is recognized by IGS software applica-

tion.
6. IVR initiates tracking using IGS software application.
7. IVR performs initial configuration of the software display as pertinent to the

procedure.
8. IVR performs registration.
9. IVR enables image overlay.
10. IVR performs visual evaluation of the resulting registration.
11. IVR loads 3-D display.
12. IVR finalizes software display for the procedure.
13. IVR records visual display and saves as pre-operation view
14. IVR initializes needle tool for tracking.
15. IVR aligns needle tool (tracking-enabled) for target puncture.
16. IVR simultaneously inspects alignment and entry angle using IGS software.
17. IVR completes needle placement.
18. IVR records visual display and saves as post-operation view.
19. IVR documents the procedure using events captured by IGSsoftware appli-

cation and fuses pre- and post-operative images for analysis.

4.2. What is an IGSTK Requirement 45

Table 4.4:Formal Requirements Development Process.

1. Agile developer identifies the need for a new component or enhancement
that is extensive enough to justify a requirement.

2. The WIKI page should be separated into two sections. Open re-
quirements and Iteration-directed requirements. Each section should
be separated into the Requirements Taxonomy headers as shown in:
http://public.kitware.com/IGSTKWIKI/images/2/2b/REQ-Taxonomy.pdf

3. The developer should write the drafted requirement and place correctly (i.e.
pertinent section) on the WIKI.

4. The team will consider requirements both open and iteration-directed during
weekly telecons.

5. When a requirement is discussed and approved in a preliminary state, then
the requirements lead will move the requirement the PHP Bug tracker

A. The requirement should be classified (i.e. Severity Field) as either”Style
Guideline”, ”Design Guideline”, or ”Functional Requirement”

B. The requirement should be put in the assigned status
(”New”/”Unconfirmed”/”Assigned”)

C. The number should be picked based on REQ XX.XX.XX format (e.g. REQ
06.02.10) (This is consistent with the taxonomy)

D. The requirement number should be appended in bold to the requirement text
in the WIKI

6. If the requirement is tagged for an iteration, then the software code should
be developed that corresponds to the requirement.

7. Once the code is developed is should be moved to the Sandbox.
8. As the code is tested and reviewed, this may require changes to the require-

ments
A. Changes to the requirement text should be entered to the WIKI and discussed

during the telecon.
B. Once a change is agreed upon, again the Requirements Lead makes the cor-

rection to the bug tracker by adding a comment
C. The changed requirement should be stated as NEWREQ TEXT: ¡New re-

quirements text¿ (i.e. NEWREQ TEXT: The tracker component shall re-
port the maximum refresh rate and time latency on demand.)

9. Once the code is properly tested and ready for release, therequirement status
is moved to ”Verified” concurrently with iteration completion

46 Chapter 4. Requirements

Table 4.5:Fast-tracked Requirements Process.

1. Agile developer identifies the need for a new component or enhancement
that is extensive enough to justify a requirement.

2. The WIKI page should be separated into two sections. Open re-
quirements and Iteration-directed requirements. Each section should
be separated into the Requirements Taxonomy headers as shown in:
http://public.kitware.com/IGSTKWIKI/images/2/2b/REQ-Taxonomy.pdf

3. The developer should write the drafted requirement and place correctly as an
open requirement on the WIKI.

4. The team will consider requirement as an open requirementat the next
weekly telecons.

5. When a requirement is discussed and approved in a preliminary state, then
the requirements lead will move the requirement the PHP Bug tracker

A. The requirement should be classified (i.e. Severity Field) as either ”Style
Guideline”, ”Design Guideline”, or ”Functional Requirement”

B. The requirement should be put in the assigned status
(”New”/”Unconfirmed”/”Assigned”)

C. The number should be picked based on REQ XX.XX.XX format (e.g. REQ
06.02.10) (This is consistent with the taxonomy)

D. The requirement number should be appended in bold to the requirement text
in the WIKI

6. As an open requirement, the software code should be developed that corre-
sponds to the requirement.

7. Once the code is developed it should be moved to the Sandbox.
8. Since fast-tracked software changes tend to be somewhat smaller in scope

the code should be approved during a telecon
A. Any changes to the requirement text should be entered to the WIKI as dis-

cussed during the telecon.
9. Code should be moved to the main repository and requirements text updated

in the bug tracker.

4.2. What is an IGSTK Requirement 47

IGSTK requirements can be viewed, modified, and enhanced from your web browser. Require-
ments are captured in the IGSTK BugTracker located at http://www.itk.org/Bug/ . New users
can freely register using their current email address. Onceregistered, the user can access IGSTK
requirements by pressing the “Query Bugs” hyperlink in the top middle column. The new page
presents a query page for filtering information from the bug tracker. Requirements represent a
subset of all information contained in the bug tracker. To facilitate the query, the user should
use the advance query page by pressing the hyperlink at the bottom of the page, “Go to the
advanced query page”. The advanced query page can be populated as in Figure 4.

Figure 4. Query Configuration to Retrieve IGSTK Requirements.

Brian: Should add a short sniplet of requirements and perhaps final thoughts here.

CHAPTER

FIVE

Software Development Process

“If you can’t describe what you are doing as a process, you don’t know what you’re
doing.” W Edwards Deming.

IGSTK is intended for use in the operating room. This type of mission-critical software re-
quires a robust software development process that ensures the quality of the software produced.
A robust software development processfor IGSTK means well-defined, well-understood, and
well-executed. It does not necessarily mean a heavyweight process definition that imposes large
documentation products or rigid constraints that restrictthe manner in which developers may
innovate. However, the safety requirements of the mission critical domain do mandate that some
controls be put in place. IGSTK does this by defining and adhering to a set of best practices for
software development. This chapter presents these best practices and then describes the specific
tools and techniques that are used to realize these practices.

5.1 IGSTK Best Practices

IGTK developers adhere to the following set of best practices.

1. Recognize that people are the most important mechanism available for ensuring high-
quality software. The IGSTK team consists of developers with considerable expertise
in the application domain, supporting software, and tools.Their collective judgment
outweighs process mandates.

2. Facilitate constant communication. To prevent distributed team members who are work-
ing on decoupled components from becoming too isolated, IGSTK members participate
in a weekly teleconference and meet in person twice per year.IGSTK also employs a
mailing list , instant messaging, and a wiki for online collaboration.

3. Produce iterative releases. IGSTKs development cycle includes twice-yearly external re-
leases. We considered six months too long a horizon to managedevelopment, so internal

50 Chapter 5. Software Development Process

releases are broken down into approximately two-month iterations. At the end of an it-
eration, team members perform quality reviews and move codeconsidered stable to the
main repository.

4. Manage source code from a quality perspective. IGSTK defines different configuration
management policies to satisfy different quality criteria. Codelines with separate poli-
cies, for example a main repository and a sandbox, lets developers collaborate on code
that might not yet meet stringent requirements. Exploitingconfiguration management
approaches early in a project helps document and track quality progress.

5. Focus on 100 percent code and path coverage code coverage at the component level.
Unit tests ensure complete code coverage across all platforms. We are also developing
customized visualization and validation tool machines to guarantee that correctness prop-
erties within all IGSTK state machines are verified with every nightly build. In addition,
dynamic analysis tools prevent memory leaks and access violations.

6. Emphasize continuous builds and testing. IGSTK uses the open sourceDART
(http://public.kitware.com/Dart/HTML/Index.shtml) tool to produce a nightly dashboard
of build and unit test results across all supported platforms.

7. Support the development process with robust tools. In addition to Dart, IGSTK
employs theCMake (http://www.cmake.org) open source cross-platform buildsolu-
tion, KWStyle (http://public.kitware.com/KWStyle) for source code style checking,
Doxygen(http://www.stack.nl/ dimitri/doxygen) , an open source documentation system,
phpBugTracker(http://phpbt.sourceforge.net) a bug tracking system, and CVS a source
code version control system. Best practices for coding and documentation posted on the
wiki augment these tools.

8. Manage requirements iteratively in lockstep with code management. As requirements
evolve and the code matures, adopting flexible yet defined processes for managing re-
quirements becomes necessary.

9. Focus on meeting exactly the current set of requirements.Traceability is needed in safety-
critical domains, particularly in surgical applications that need to satisfy government reg-
ulations, and implies heavy process structures with large documents and invasive tools.
IGSTK addresses this problem with continuous requirementsreview, lightweight tools,
and codeline policies.

10. Evolve the development process. Through constant communication, IGSTK members
recognize when to approach the complexities they face within the current process frame-
work, when tweaks are required, or when to adopt entirely newpractices.

IGSTK is agile. The approach followed by the team and recommended for component and
application developers is to employlightweightmethods. Traditional approaches that introduce
rigid process steps with volumes of documentation may actually lead to a decrease in quality
and safety for projects such as IGSTK due to the distributed collaborative nature of open source
software development. It is not beneficial to create strict process controls that can not, nor will

http://public.kitware.com/Dart/HTML/Index.shtml
http://www.cmake.org
http://public.kitware.com/KWStyle
http://www.stack.nl/~dimitri/doxygen
http://phpbt.sourceforge.net

5.2. Developer Practices 51

not, be adhered to in such an environment. The resulting process would lead to inconsistent
documentation and poor execution of the defined process, leading to false hope that by having
such a strict process definition quality will be achieved.

IGSTK uses the best practices presented above as a means to achieve quality and safety by
executing these practices throughout the software development process. The emphasis is on
agile execution; if execution of a defined process is good, IGSTK executes these practices con-
stantly. Tools, reviews, communication, builds, testing,release management are all performed
in a highly iterative continuous manner to ensure the quality and safety of the software pro-
duced.

5.2 Developer Practices

5.2.1 Code Conventions

Understandability of source code is a critical aspect in themaintenance of a software system. Its
importance is magnified in open source projects such as IGSTKthat rely on a large distributed
development community to evolve the framework and construct applications. Defining enforce-
able coding standards and conventions is a powerful technique for ensuring the maintainability
of an open source codebase. IGSTK employs a combination of tools, practices, and conventions
to ensure understandability and maintainability of the source code.

IGSTK source code conventions are included in AppendixA. These include stylistic conven-
tions, file organization, and best practices for developers(use of exceptions, macros, STL, etc.).
All IGSTK component and application developers are strongly encouraged to review these con-
ventions and adhere to them to the greatest extent possible.In this section we highlight some of
the best practices and then discuss the use of the Doxygen andKWStyle tools.

The code conventions in AppendixA includes recommended best practices within the source
code that all IGSTK component and application developers should follow. IGSTK discourages
the use of generics (C++ templates), and encourages the use of the Standard Template Library
(STL) but not at the API level. IGSTK relies on strong type checking to ensure API contracts,
and the unnecessary use of templates may lead to type-related runtime errors.

IGSTK advocates the use “smart pointers” to manage object references for objects with a sig-
nificant memory footprint. Memory management can be an area where it is particularly hard
to detect and correct defects. The use of smart pointers, while adding some overhead to appli-
cation execution, reduces the opportunity for memory-related defects. IGSTK also advocates
const correctness. As stated in the Appendix, “A safe approach is to start considering everything
as const and making classes and methods non-const only when ajustification exists. Const ver-
ification is done by the compiler and prevents inappropriateand unsafe use of the classes and
methods.” IGSTK has created macros that assist with using smart pointers and for enforcing
setter/getter contracts.

The Doxygendocumentation tool generates external documentation fromcommented source
code. Doxygen automatically extracts comments delimited in a special way to generate the

http://www.stack.nl/~dimitri/doxygen

52 Chapter 5. Software Development Process

external documentation. The IGSTK style guide, AppendixA, section 10 defines Doxygen
documentation conventions for classes and methods. These comments are only extracted from
C++ header (.h) files. IGSTK developers are required to keep comments up to date with source
code changes.

Coding stylistic conventions can often be the hardest standards for developers to consistently
adhere to over a lengthy period of time. As code grows and evolves, enforcement of stylistic
conventions via developer diligence and code reviews is tedious to maintain. TheKWStyle tool
performs static code checks on over 20 stylistic propertiesof C++ source code. IGSTK has
codified stylistic rules in KWStyle and integrates KWStyle analysis into the nightly Dart dash-
board. The KWStyle tool removes the time-consuming tediousprocess of checking for stylistic
conformance and ensures code style does not degrade over time. KWStyle is open source freely
available for download. You may also demo the tool via the webusing theCheck my Fileoption
off the KWStyle homepage.

Source code is best understood and maintained when it looks as if it was written by a single
developer. This is especially true when considering open source. Readers of the source code
can more easily understand the intent of the code when they can apply a single mental model
when “internally parsing” it. Misinterpretation of sourcecode intent may decrease code quality
and application safety. Developers could add new features in the wrong place, or patch existing
code in an unsafe manner, or invoke services in an improper manner. Tools such as Doxy-
gen, KWStyle, and Dart can help developers adhere to conventions, but in the end developers
must accept responsibility for creating readable, understandable, and maintainable source code.
IGSTK core component source code reviews (see5.2.2below) always include detailed checks
that these conventions are followed.

5.2.2 Code Reviews

Source code reviews are well-known as one of the best, if not the best, method to ensure quality
software. An IGSTK code review is an informal review facilitated by the managed commu-
nication methods described below. IGSTK code reviews are integrated into the configuration
management policies governing the source code repository and the iterative development cy-
cle of IGSTK. Developers constructing applications using IGSTK are strongly encouraged to
employ a code review process, leveraging other team membersor the IGSTK community.

IGSTK code reviews do not have the formality of a software inspection (see [4, 14]),
Luis:Fagan76 and Wiegers02 are to be added to IGSTKDocuments/Latex/IGSTK.bibbut are not
so informal as to lack a record of defects found and fixed. IGSTK code reviews are performed
by at least two reviewers, at least one of which should have deep knowledge of the functional
domain of the introduced code. Reviewers use the IGSTK coding standards document, the re-
quirements repository, the Wiki, and tools such as KWStyle and DART to facilitate reviewing
the code. Defects found by the reviewer are first posted to theWiki to give an opportunity to
the original developer to make fixes. Applying the principleof collective code ownership, the
reviewer or other members of the development community may also perform fixes. Usually
this process is fluid in the sense that the reviewers and the original developer communicate (via
email, Wiki, or phone calls) to ensure a common understanding of the defect and the proper fix.

http://public.kitware.com/KWStyle

5.2. Developer Practices 53

Developers endeavor to fix defects as soon as possible in the current version of the source code,
to prevent lingering defects that may propagate to other branches and releases of the software.
In those cases where it is decided there is not an immediate solution, defects may be entered
into the defect tracking repository. In this way, all defects found by reviewers are addressed by
the team before the code is released.

As important as how the code review takes place iswhenthe review takes place. All source
code must complete a code review process before being included in an IGSTK release.

Code reviews are an important, arguably the most important,quality technique that can be ap-
plied to software development. Code reviews complement automated unit tests and code anal-
ysis tools by adding a dimension of expert evaluation to the source code. Further, code reviews
reinforce the principle of collective code ownership and common source code understanding.
IGSTK component developers are required to perform code reviews on every line of source
code included in a framework release; IGSTK application developers are strongly encouraged
to do the same.

5.2.3 Managed Communication

IGSTK was developed by a team of developers geographically distributed on a wide scale,
and is intended to support the global community of interest in image-guided software for
surgical applications. The IGSTK community makes use of websites, Wikis , and mailing
lists to support the community. Themain IGSTK website(http://www.igstk.org) has the lat-
est news and information about IGSTK releases and other developments. TheIGSTK Wiki
(http://public.kitware.com/IGSTKWIKI/index.php) provides an online interactive forum for
IGSTK developers. Modifications to the Wiki are restricted to authorized users.

The IGSTK community supports two mailing lists, one for developers and one for users.
Participants on the developers mailing list are core IGSTK developers. The users list sup-
ports developers who intend to build applications on top of IGSTK. If you choose to down-
load IGSTK and build an application, we strongly recommend joining the users’ mailing
list to interact with the IGSTK community. You may join and view mailing list archives at
http://public.kitware.com/mailman/listinfo/igstk-us ers .

One the foundational principles of open source developmentis community. Theopenin open
source refers not just to the code but to the community. IGSTKintends to promote and support
community involvement for the toolkit, and the principle vehicles for this are the communica-
tion tools described here. We encourage you to become a participant in the IGSTK community.

5.2.4 Configuration Management

Luis: the term “Configuration Management” maps better to what CMake does. We probably
should call this section “Source Code Control” or somethingalong those line.

It is not always obvious how to much software has pervasivelyinvaded our modern environment.
Most electric and electronic appliances contain microchips that require dedicated software at

http://www.igstk.org
http://public.kitware.com/IGSTKWIKI/index.php
http://public.kitware.com/mailman/listinfo/igstk-users

54 Chapter 5. Software Development Process

different levels. The complexity of the software correlates with the complexity of the device; in
particular with the number of different tasks that the device is supposed to perform as well as
the combination of such task whether simultaneously or in sequence.

As an illustration of how much software surround us, here aresome of the typical amounts of
lines of code in the software of modern devices.

• A Laundry appliance has a couple thousand lines of code.

• The Joint Strike Fighter F-35 has six million lines of code.1

• The Boeing 777 has 2.5 million lines ofnewly developedcode. Approximately six times
more than any previous Boeing commercial airplane. When including commercial off-
the-shelf and optional software, the total is more than 4 million lines of code.2

• A modern automobile has 35 million lines of code.

• The operating system, Windows XP has 40 million lines of code.

As a comparison, here are the amount of lines of code in IGSTK and the toolkits it depends on.
The units are thousands of lines of code “KLOC”.

• IGSTK: 30 KLOC, 11 of which are for testing

• ITK: 562 KLOC, 90 of which are for testing

• VTK: 868 KLOC, 70 of which are for testing

• FLTK: 107 KLOC, 9 of which are for testing

Tracking the modifications made on this large amount of code requires the systematic use of a
configuration management system.

Configuration Management (CM) is important for enforcing and maintaining the quality of
software products. Most developers are familiar with usingCM tools in projects large and
small, but this use is often restricted to versioning files (or collections of files associated with
a job) for the purposes of evolving and maintaining software. A common scenario is for a
developer, when addressing a defect entered in the defect tracking repository, tocheckoutthe
associated files, create a fix, locally test the fix, and check the files back in to the code repository.
If any changes were made to the same files by other developers,the CM system will typically
inform the developer and provide various pessimistic or optimistic strategies for resolving the
issue. Another common scenario is for a developer to be working on a new feature for the next
release, and to create new source files or modify existing ones. Again, if changes are required
to existing files, these new versions are checked in to the code repository under the purview of
the CM system.

1http://www.afa.org/magazine/april2003/0403F35.asp
2http://www.stsc.hill.af.mil/crosstalk/1996/01/Boein777.asp

5.2. Developer Practices 55

IGSTK uses the popular and well-known Concurrent Version System (CVS) tool for version
control of software products. The commands needed for obtaining IGSTK and supporting
software packages such as ITK from CVS are described in Chapter 2. IGS Application evel-
opers are encouraged to use anonymous CVS access to downloadIGSTK. You may use the
export cvs function to obtain a copy, or do a regularcvs checkoutif you wish to main-
tain local repository information for the purposes of tracking histories, differences, and new
versions of the software you have downloaded. Detailed online references for CVS may be
found at the CVS websites for theCVS book(http://cvsbook.red-bean.com) and theCVS wiki
(http://ximbiot.com/cvs/wiki/index.php?title=MainPage).

IGSTK recognizes CM as an important quality process, one that must be supported and inte-
grated throughout the entire software lifecycle. IGSTK uses CVS to support defect fixes and
the addition of new features as described by the above scenarios. However, IGSTK goes further
by supporting best practices in CM such as minimizing branchcreation to reduce product ver-
sion proliferation, and establishing multiplecodelinesand distinctcodeline policiesfor source
code at different stages in the development process. Abranch, in CM terms (and specifically
in CVS) is a named (ortagged) set of source code files that are then modified in a copy in-
dependent from the codeline from which the branch originated. Branches are a useful tool for
supporting development on a codebase that is undergoing multiple types of changes but is under
the same quality constraints. For example, the main codeline (or trunk is often reserved for new
feature evolution, while a branch is created from a stable release of the code for the purposes
of supporting defect fixes on the code while not disturbing new feature development. At a de-
fined point in the lifecycle of the new release, defect fixes may be mergedback into the main
codeline. This activity is usually controlled by a Change Control Board (CCB) comprised of
representative of all stakeholders of the codeline. Another reason to branch might be to support
custom features for a particular customer or project that are not targeted for the main product
line. When a branch is no longer needed (because the release or custom project is no longer
supported) it is deprecated. While branches are useful for these scenarios, branch proliferation
can be problematic to manage. A single change anywhere in thecodebase now has to be re-
viewed by more stakeholders to determine if that change applies to them. In effect, it creates
multiple release versions of the software, resulting in additional complexity for requirements
change management and testing processes. Therefore generally accepted axioms are to branch
as late as possible and as seldom as possible to avoid this complexity. IGSTK, during its de-
velopment, did not create branches, though it did employ separate codelines.Luis: We actually
branched IGSTK at the release of every Iteration. Branchingis standard practice for a release.
Bug fixes that go in to a release branch are manually applied also to the main trunk.

A codelineis a repository of source code distinct from other repositories. The main codebase,
or trunk, is a codeline. A codeline has an associated set of rules that govern where, when, and
what developers may commit changes to the codebase. Thewheredetermines what branch of a
codeline to commit a modification. Thewhendetermines at what point in the lifecycle of that
codebase the modification may be submitted. Thewhatdefines the criteria by which modifica-
tions are allowed, possibly includingwhomay submit such modifications. The when, what, and
who of codeline management is critical is applying different quality criteria to different source
code files. For example, the main codeline policy in IGSTK states that only developers on the
product development team may commit changes, and may only doso after a complete unit test

http://cvsbook.red-bean.com
http://ximbiot.com/cvs/wiki/index.php?title=Main_Page

56 Chapter 5. Software Development Process

and code review of the source code. An experimental codeline, where developers are work-
ing collaboratively in an evolutionary manner on a high-risk feature, may define lower quality
standards such as informal walkthroughs and lesser stylistic checks in order to facilitate rapid
development. However, note that if an experimental featurewere to be targeted for the main
product line, the code could not be moved to that line withoutupgrading the quality checks to
meet the quality policies defined for the main codeline. In this way, using separate codelines
better enforces quality standards than simple branch-and-merge.

Since IGSTK included the development of several innovativefeatures as well as an innovative
architecture, it used a multiple codeline approach known assandboxing. A sandbox is a separate
codeline with lesser quality policies where developers working collaboratively could prototype
high-risk code. For these mini-projects that were deemed successful, the code was then sub-
jected to more rigorous quality policies so it could be movedinto the main IGSTK codeline.
The quality policies on the IGSTK main codeline include adherence to IGSTK style guidelines,
unit tests present for all behaviors, complete code coverage (every source line executed), no dy-
namic analysis (memory management) defects, cross-platform verification, traceability of the
source code back to requirements, and a complete code reviewaccording to IGSTK’s defined
code review practices.

Going forward, IGSTK will support periodic releases, and support tagging and branching in
CVS as appropriate to support maintenance of those releases. These policies will be posted on
the IGSTK wiki. Future component developers for the toolkitwill be expected to adhere to
the quality criteria described for the main product line. Application developers are encouraged
to follow IGSTK’s CM patterns when developing and supporting applications that depend on
IGSTK. Only through the application of consistent quality policies can quality and safety of
software for surgical environments be achieved. For further reading on best practices for CM,
we recommend [15]. Luis: Perforce1998 must be added to the Insight.bib file

Finally, we emphasize one related practice in IGSTK that is often not considered as a CM-
type problem. Unlike many component-based systems being created today, IGSTK specifi-
cally avoids run-time configuration of framework behaviorsvia configuration files. While many
component-based systems, such as web-based applications or embedded systems, use external
configuration files to set run-time behavior and component “wiring”, IGSTK avoids this in favor
of compiling a single pre-configured binary version. In thisway, clinicians do not have to worry
about misconfigured software deployments in the operating environment. This is an example of
another configuration management best practice, as it ensures that the behaviors deployed in a
given environment have been enforced by the compiler and build process in general, including
the testing framework. In effect, instead of many possible runtime versions of the software in
an operating environment, there is exactly one version deployed, and it is the version targeted
for that environment. In the next section we elaborate on theIGSTK build process and how it
helps enforce safety.

5.2.5 Build and Release Management Processes

IGSTK has an internal release cycle of approximately every two to three months and an external
public release cycle planned for twice a year. Availabilityof new public releases will be driven

5.2. Developer Practices 57

by the energy of the community and the need for new features. As it is the expressed purpose of
IGSTK to remain a small and safe toolkit for a dedicated purpose, new enhancement requests
will be reviewed based on necessity, not desirability. Please check the IGSTK website for
continuing updates on upcoming planned releases of IGSTK.

Internal releases are available off the IGSTK wiki. Though not “official” public releases, these
versions are made available so that community developers have access to the latest internally
stable versions of the software. Although considered “internal” releases, these are still subject
to a rigorous internal process:

1. The sandbox repository is frozen and tagged.Luis:The main CVS is also tagged at this
stage

2. Code review is scheduled for new classes. Two reviewers are assigned to review each
class.

3. Reviewers review code according to established guidelines. A code review checklist is
available for this purpose.

4. Authors fix code.

5. Reviewed and fixed code will be moved from the sandbox to themain CVS repository.

6. Pending bugs and dynamic analysis (memory leak) issues are fixed and code coverage is
increased.

7. The main CVS and sandbox repository gets tagged.

8. Downloadable tarballs are generated and uploaded to the Wiki.

The main difference between internal and external releasesis that external releases represent
the completion of a collection of functionality targeted bythe IGSTK community to constitute
a major release.

Instructions for downloading and building IGSTK (and VTK/ITK upon which IGSTK relies)
are provided in Chapter2.

5.2.6 Continuous Testing using DART

Software Quality Statistics

Software bugs, or errors, are so prevalent and so detrimental that a study entitled
“The Economic Impacts of Inadequate Infrastructure for Software Testing”3 produced for the
U.S. Department of Commerce’sNational Institute of Standards and Technology (NIST)found
in 2002 that

3http://www.nist.gov/director/prog-ofc/report02-3.pdf

http://www.nist.gov/director/prog-ofc/report02-3.pdf
http://www.nist.gov

58 Chapter 5. Software Development Process

The national cost estimate of an inadequate infrastructurefor software testing is
estimated to range from$22.2 to$59.5 billion. This represents about 0.2 to 0.6
percent of the U.S.’s$10 trillion dollar gross domestic product (GDP). Over half
of these costs are borne by software users in the form of erroravoidance and miti-
gation activities. The remaining costs are borne by software developers and reflect
the additional testing resources that are consumed due to inadequate testing tools
and methods.

Although all errors cannot be removed, more than a third of these costs, or an
estimated$22.2 billion, could be eliminated by an improved testing infrastructure
that enables earlier and more effective identification and removal of software de-
fects. These are the savings associated with finding an increased percentage (but
not 100 percent) of errors closer to the development stages in which they are intro-
duced. Currently, over half of all errors are not found until“downstream” in the
development process or during post-sale software use.

Software is error-ridden in part because of its growing complexity. The size of soft-
ware products is no longer measured in thousands of lines of code, but in millions.
Software developers already spend approximately 80 percent of development costs
on identifying and correcting defects, and yet few productsof any type other than
software are shipped with such high levels of errors. Other factors contributing
to quality problems include marketing strategies, limitedliability by software ven-
dors, and decreasing returns on testing and debugging, according to the study. At
the core of these issues is difficulty in defining and measuring software quality.

It is important to note that this report is gathering statistics from application domains that are
not considered to be be mission-critical. That is, the cost referred in this study do not include
software error events such as the Mars Polar Lander crash in 1999 ($165 million), the Arian
V explosion in 1996 ($500 million), the breakdown of the radio system linking air traffic con-
trollers in southern California in 2004 leaving 800 planes in the air without airport guidance,
the crash of the Lufthansa Airbus A320 in Warsaw in 1993, the failure of the Cryosat Russian
rocket in 2005, the software fault in anti-lock brakes that forced the recall of 39,000 trucks and
tractors and 6,000 school buses in 2000 or the software bug that motivated the recall of 160,000
Toyota Prius hybrid cars in 2005.

Quantifying the impact of inadequate testing on mission critical software was be-
yond the scope of this report. Mission critical software refers to software where
there is extremely high cost to failure, such as loss of life.Including software fail-
ures associated with airbags or anti-lock brakes would increase the national impact
estimates.

Finally, the costs of software errors and bugs to residential households is not in-
cluded in the national cost estimates. As the use of computers in residential house-
holds to facilitate transactions and provide services and entertainment increases,
software bugs and errors will increasingly affect household production and leisure.
Whereas these software problems do not directly affect economic metrics such as

5.2. Developer Practices 59

GDP, they do affect social welfare and continue to limit the adoption of new com-
puter applications.

IGSTK relies on extensive automated unit testing to ensure all lines of code are verified along
some execution path. Automation is provided by CMake and DART integration. DART is a
regression testing system that supports web-based report generation for a variety of test types.
The web reports generated by DART creates an onlinedashboardthat the entire team uses on
a daily basis to understand exactly what the quality level ofthe source code is at that instant in
time. A sample IGSTK dashboard screenshot is shown in Figures5.1and5.2.

ITK and VTK developers and users should already be familiar with the DART dashboard con-
cept; the philosophy of complete continuous regression testing in IGSTK was adapted from
ITK. Readers familiar with Chapter 14 of the ITK Software Guide [9] will recognize the fol-
lowing descriptions of test types, slightly abridged from that chapter for IGSTK:

1. Compilation. All source and test code is compiled and linked. Any resulting errors and
warnings are reported on the dashboard.

2. Regression. Some IGSTK tests require comparing test output against a valid baseline
image. If the images match then the test passes. The comparison must be performed
carefully since many graphics systems (e.g., OpenGL) produce slightly different results
on different platforms. IGSTK also performs regression tests on Tracker-related opera-
tions.

3. Memory. Problems relating to memory such as leaks, uninitialized memory reads, and
reads/ writes beyond allocated space can cause unexpected results and program crashes.
IGSTK checks for run-time memory errors usingValgrind (http://valgrind.org), a freely
available open source debugging platform for Linux.

4. PrintSelf. IGSTK follows the ITK practice of having each class implement a PrintSelf
method to print out all instance variables. The CMake-configured unit test driver checks
to make sure that this is the case.

5. Unit. Each class in IGSTK must have a corresponding unit test where all class function-
alities are exercised and quantitatively compared againstexpected results. These tests are
typically written by the class developer and should endeavor to cover all lines of code
including Set/Get methods and error handling.

6. Coverage. IGSTK unit tests should ensure that each and every line of code is executed
at least once by the suite of available unit tests. This is commonly referred to asnode
coverage, and is the most important type of coverage for IGSTK as the state machine
architecture ensures that conditionals are kept to an absolute minimum, thereby reducing
the need for edge and full path coverage. For safety purposes, the goal is 100 percent cov-
erage for source code committed to the main codeline. In practice the IGSTK dashboard
has usually been at 90 percent coverage or greater.

7. Style checking. The KWStyle tool described earlier in this chapter also provides a table-
formatted display of stylistic violations.

http://valgrind.org

60 Chapter 5. Software Development Process

Figure 5.1:Dart Dashboard Screenshot: Nightly Builds.

5.2. Developer Practices 61

Figure 5.2:Dart Dashboard Screenshot: Continuous Builds, Code Coverage, Memory Testing.

62 Chapter 5. Software Development Process

These test types are augmented by a set of demo applications that exercise IGSTK functionality,
and a state machine validation tool to ensure proper construction and execution of component
state machines (see AppendixB).

Each weekly teleconference of IGSTK developers includes a review of Dashboard status and
action items to bring any quality parameters back inline if they are out of bounds. The focus is
on continually and aggressively maintaining safety and quality, and the combination of CTest
(from CMake) and DART dashboard provides the best way to do this. DART is freely available;
IGSTK application developers are encouraged to contributeCTest submissions to the IGSTK
DART dashboard, as well as to setup their own DART server and run cross-platform unit tests
of their own applications on a nightly basis. Application developers may want to keep their
dashboards private, this can easily be taken care of when they setup their own DART dashboard.
The IGSTK community is available to assist with this process.

Finally, IGSTK believes in defect tracking , and uses a customized implementation of the open
sourcePHP BugTracker(http://phpbt.sourceforge.net). The IGSTK team addresses defects as
soon as they are found, but any defects that remain unresolved for longer than a short window
of time are entered into the defect tracking repository. Thedefect is revisited at least on every
internal release boundary.

5.3 Software Development Process Summary

IGSTK employs an agile philosophy for the development of safety-critical software. While
the lightweight nature of agile methods might give some cause for concern, we believe that
vigilance in the application of the process is the most important aspect for creating quality. A
process is not a good process if it is not followed by the developers.

The best practices advocated at the beginning of this chapter emphasize people as the key aspect
of any process. However, this does not mean developers are free to simply discard the process
when they deem convenient. As an open source, community-oriented project, IGSTK welcomes
developer and user involvement, and asks that the communityadhere to these principles in
order to ensure the continued high-quality and safety goalsof IGSTK. The IGSTK development
community welcomes not only questions on the design aspectsembodied on the source code,
but also on the proper execution of agile and test-driven methods to attain these goals.

http://phpbt.sourceforge.net

Part II

Components

CHAPTER

SIX

StateMachine

6.1 General Background

State Machines are a fundamental concept in computer programming. They were introduced
by Alan Turing in 1936 as a formalism for supporting his work on determining whether the
execution of an algorithm will ever stop or not. This problemis also known as theEntschei-
dungsproblemproblem. A State Machine is defined by a set of states, a set of inputs and a set
of transitions from one state to another. A Finite State Machine (FSM) is a state machine where
the number of states is finite, and a Deterministic State Machine (DSM) is one where a given
input presented to a given state will always led to a unique state [3, 11].

In practice all computers are state machines, unfortunately their number of possible states is
so large that they can barely be considered to be FSMs. An alternative way of looking at this
large number of states is to assume that some of those states are not modeled in the FSM itself
and therefore they become elements of randomness on the behavior of the state machine. In
this interpretation, the state machine appears as a Non-Deterministic State Machine due to our
ignorance or lack of awareness of the non-modeled states. This apparently non-deterministic
scenario is probably the one that better describes a typicalmodern computer software, and it is
the kind that should be avoided in safety-critical applications.

6.2 Motivation

The fundamental motivation for introducing the use of StateMachines in IGSTK is to improve
the safety and robustness of the library, and by this mean, toprotect patients from harm.

Computer programs, in particular those that are modeled using Object Oriented programming
are naturally well-suited to be described in terms of state machines. Unfortunately, the lack of
formality in traditional programming techniques leads to programs that are equivalent to under-
defined state machines, where the states are poorly structured, and the transitions between states
are rarely stated explicitly. Such relaxed programming practices produce programs that behave
erratically and unpredictably. Those are exactly the kind of behaviors that are unacceptable in

66 Chapter 6. StateMachine

a safety-critical application such as image-guided surgery.

The sake of reliability and robustness in IGSTK lead the development team to opt for the use
of the State Machine model at the very early stages of the project. State Machines are an
excellent way of limiting the number of possible behaviors,ensuring that a program will always
be in a valid condition, and that all possible behaviors havebeen considered in advance by the
developer team in order to anticipate appropriate responses. A well defined architecture based
on state machines makes possible to guarantee repeatability and deterministic behavior [7, 2]

The introduction of state machines makes possible to improve the safety and robustness of the
source code by enforcing the following characteristics

• Deterministic Behavior

• Preclude wrong Use

• Robustness to misuse

• Managing Complexity

• Traceability

• Suitability for Testing

• Consistent Documentation

6.2.1 Deterministic Behavior

Deterministic behavior is the characteristic of a program for providing exactly the same re-
sponse when exposed to exactly the same type of input. The main reason why determinism is a
desirable feature is that it gives sense to the effort of testing intensively the software. In the ab-
sence deterministic behavior the process of software testing would becomes pointless because
non-deterministic programs could behave fine during the testing stages and still may fail during
the execution of a surgical intervention. The whole purposeof performing testing is to be able
to build confidence on the quality of the software and to reasonably expect that if the software
behave correctly during the testing sessions, it will do as well when it is used for guiding the
execution of a surgical procedure.

6.2.2 Preclude Wrong Use

The introduction of state machines in IGSTK made possible tohave a layer of logic that sepa-
rates the users of a class from the actual actions that the class can perform. In traditional object
oriented programming, a class provides a set of public methods that can be called from any other
piece of software, and a set of private methods that only the class can call internally. Usually
the private methods are those that can only be called when specific conditions are met inside the
class, and therefore only the class itself is qualified for deciding whether such private methods

6.2. Motivation 67

should be called or not. Unfortunately, it is commonly the case that many of the remaining pub-
lic methods still have a number of assumptions regarding theorder and the conditions in which
they should be invoked. Developers, being aware of such conditions, tend to test the classes by
following a set of non-explicit rules that make sure that theconditions are satisfied. User’s of
the software, however, are usually unaware of the implementation details and they will attempt
to use the software in ways that were not anticipated by developers. The fact when a user of the
software invoke any of the public methods, the class obligesblindly to the request, makes the
software fragile face to users that are interacting naivelywith the system.

Adding a state machine permits to separate the request from users of the class, from the actions
executed by the class. This means, that instead of blindly responding to every invocation of a
method, now a class simply accept function calls as a “request” from the user. This request is
translated into an input to the state machine of the class, and depending on the current state,
it results in the execution of different types of actions. Ifin the current state all the conditions
for satisfying the user’s request are met, then the state machine will trigger the execution of the
action requested by the user. If the current state does not satisfies the necessary conditions then
the state machine may reply with an error notification via an Event (see Chapter7) or simply
ignore the request.

Only the methods that correspond to “requests” are made public, while the methods that actually
execute actions are made private and can only be called by thestate machine. By preventing
direct access to the methods that trigger actions, the statemachine layer, prevent the users from
making wrong use of the class.

6.2.3 Robustness to misuse

Despite the fact that the state machine prevents access to the execution methods, it is still pos-
sible to misuse the class by sending incoherent requests. The protection against this potential
misuse is to carefully program the logic of the state machinein such a way that, the states in
which specific requests are acceptable, are well defined. Forexample, if a class offers a set of
five potential requests that can be called by users, but stillrequires those requests to be made
in a particular order, then the set of states and transitionsin the state machine must model the
appropriate order in which the requests are valid. In this way, when a request is received at
a moment when the state machine is not ready for it, then the transitions will result in simply
ignoring the request and sending an error notification back to the user. In no case, the state
machine will go into an erroneous state.

6.2.4 Managing Complexity

It is clear very early in the development cycle that simplicity of the classes API is a must for
supporting robustness and reliability. In the context of surgical guidance, we must consider
flexibility and abundance of features to be undesirable, because each one of them brings more
opportunities for thing to go wrong during the surgical intervention.

The introduction of state machines make possible to manage complexity by forcing the logic of

68 Chapter 6. StateMachine

the application to become explicit. Unfortunately, programmers accustomed to traditional tech-
niques might easily develop the wrong impression that statemachines introduce complexity in
an application. This happens because by making explicit thelogic of the application, program-
mers are made aware for the first time of all the intricacies ofthe code. Previously it was easy
for programmers to deny or to ignore the existance of these details because they were spread all
across the code in the form oflatent logicin hundreds of “if” statements here and there, as well
as in the conditionals of “for”, “while”, and “switch” statements.

Once the complexity is made explicit and it becomes visible in a single centralized location of
the class, then it is possible to have a realistic approach for managing it and keeping it under
control. Classes based on state machines typically offer a very small set of possible requests,
as well as a small set of possible actions to be performed. A look at the transition matrix of a
state machine gives a very direct and realistic evaluation of the level of complexity contained in
a particular class.

6.2.5 Traceability

When a class is exercised at run-time, the use of an internal state machine makes very easy to
trace and understand the logic path followed by the class during its execution. In traditional
programming techniques developers are forced to do the equivalent job by keeping track of the
values of any variables that indirectly maintain the state of the class.

The implementation of state machines in IGSTK classes facilitates to send to the
igstk::Logger information about the intputs, states and transitions taken at every step of
its execution. Such information facilitates the task of testing and debugging the class during
development, and also make easier to monitor the behavior ofa full IGS application after it has
been deployed.

6.2.6 Suitability for Testing

From the point of view of testing, State Machines make possible to exercise full coverage, not
only in the sense of number of lines executed during the testing cycle, but also in the sense of
all possible execution paths of the code, at least at a single-class level.

The goal of reaching 100% code coverage becomes realistic when state machines are used.
Otherwise, the logic of the program diffuses over many linesof code and it is very hard to
attempt to follow every possible combination of circumstances. When state machines are used,
performing a 100% code coverage becomes a matter of exercising all possible transition in the
transtion matrix.

The significance of the testing suite of an application is only as large as the code coverage
associated with it. For instance, it is of no use to claim thatan application passes “all” its tests,
if the tests exercise only 15% of the application’s code. In honest terms such testing suite should
be claiming that the applications passed only 15% of the tests, and the remaining test have not
even been performed.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Logger.html

6.3. Implementation 69

Test suites with low code coverage have the dangerous effectof providing a false sense of
security. Since developers get the impression that the software is in a good state, while in
reality they simply do not know the full state of the softwarethey are developing.

6.2.7 Consistent Documentation

State machines in IGSTK are capable of exporting its internal programming in formats that
are suitable for generating diagrams. In particular, they can export their list of possible states,
possible inputs, and the content of the transition matrix. This funcionality makes possible to
automatically generate “State Diagrams” [3] that correspond to what isactuallyencoded in the
state machine as opposed to what the developersintendedto encode. Thanks to this feature,
developers can look at this diagrams and use them as support documentation for understanding
the behavior of the code.

The state diagrams can be exported in the format of the “dot” application from Graphviz1, and
in LTSA format2.

6.3 Implementation

A generic State Machine class is available in the toolkit andprovides the abstraction of the set of
states, the set of inputs and the set of transitions. Each IGSTK component instantiate internally
its own state machine and at construction time programs the full behavior of the State Machine.
This organization makes possible to anticipate how the classes will work when their methods
are invoked in any order. It is rare to find object oriented classes that will behave correctly or at
least without run-time failures when their methods are invoked in random order.

6.3.1 C++ Features

A number of C++-Language features have been used in order to enforce the safety and integrity
of the State Machine. For example, the methods that actuallyperform actions are all declared
private and can only be invoked by the State Machine itself. Encapsulation and enforcement
of const-correctness are also used at great lengths in orderto reduce the risks of misusing the
code.

Transitions in a State Machine result in actions being taken. Some State Machine paradigms
execute the actions when leaving the old state, while some others do it when entering the new
state.

1http://www.graphviz.org
2 http://www.doc.ic.ac.uk/ltsa

70 Chapter 6. StateMachine

6.3.2 Integration inside a Class

State machines are hiddend inside IGSTK classes. Every major class in the toolkits has an
internal state machine that manages the logic of the class. The State Machine is templated over
the type of its owner class with the purpose of making its types and states to be unique for this
particular class. In this way, there is no possibility of erroneously sending to State Machine
of type “A” the inputs that were intended for state machine oftype “B”. The type checking
functionality of the C++ compiler will help to ensure that such errors will be detected during
compilation time and will never be possible at run time.

Once the state machine is instantiated as a type. It defines a number of traits, in particular, those
are types for representing States, Inputs and Transitions.

The class owning the state machine passes its “this” pointerto the StateMachine so that the state
machine can invoke methods of the owner class. Additionaly the instantiated state machine type
is declared asfriend of the owner class, so thatprivate methods of the owner class can be
called by the state machine.

With this integration, it is expected that the owner class will have methods such as

• public: RequestActionX()

• private: ActionXProcessing()

WhereActionXcan be replaced with the actual description of the action to be executed. All the
Requestmethods are available in the public section of the owner class, while all theProcessing
methods are sequestered in the private section of the owner class.

TheRequestmethods will analyze the user’s petition and will translateit into an input that will
be passed to the internal state machine. Depending on its state, the state machine will decide
which one, if any, of the owner’s classProcessingmethods to call as the action to be performed
during its state transition.

6.3.3 State Machine API

The state machine offers to its owner class a set of public methods intended for programming,
executing and querying the logic of the state machine.

The following method are used for programming the state machine

• AddState()

• AddInput()

• AddTransition()

• SetInitialState()

6.4. Usage 71

• SetReadyToRun()

These methods must be called in the constructor of the IGSTK class that owns the state machine.
In order to simplify the writing of the code and enforcing style consistecy, a set equivalent C++
macro were defined. They are:

• igstkAddStateMacro()

• igstkAddInputMacro()

• igstkAddTransitionMacro()

• igstkSetInitialStateMacro()

The following methods are used for passing an input to the state machine and for triggering the
execution of the transition.

• PushInput()

• PushInputBoolean()

• ProcessInputs()

Inputs passes to the state machine with the PushInput and PushInputBoolean methods are stored
internally in a queue and they are later processed, in the same order of insertion, by the Process-
Inputs methods. Pushing inputs in the queue does not triggerthe execution of the state machine.
Again, for enforcing the consistency of coding style, a macro was created for pushing inputs
into the state machine, this is theigstkPushInputMacro .

The following public methods are intended to export the description of the state machine to
Graphviz, LTSA and SCXML respectively.

• ExportDescription()

• ExportDescriptionToLTS()

• ExportDescriptionToSCXML()

6.4 Usage

State machines are not exposed to the users of the IGSTK toolkit. They have been hidden in the
private section of the classes. Users of the toolkit communicate with the state machines only
via “Requests” methods in the public section of the class API.

72 Chapter 6. StateMachine

In order to maintain the state machine as the only repositoryof logic in the code, it is funda-
mental to ensure its full encapsulation inside the class that uses it. For instance, the state of the
state machine is never exposed, not even to the class itself,in order to prevent developers from
adding code that will test the state of the state machine and use it in conditional statements (e.g.
“if”). Such attempts would have resulted in a leakage of the logic from the state machine into
the uncontrolled section of the class code.

CHAPTER

SEVEN

Events

“You only need to know things on a need-to-know basis.”
“Yes, Prime Minister”, movie, 1986.

7.1 General Background

In the context of Object Oriented Programming,“Encapsulation” is known as the property of
classes for not exposing the details of their implementation to other classes that interact with
them. Encapsulation of medium size components is one of the techniques used in IGSTK for
addressing the concern for improving safety and robustness. The effectiveness of Encapsulation
is further improved when combined with decoupling among thedifferent software components.

In practical terms, this means that one class should need to know as little as possible about any
other class. Of course the ideal case is when a class does not need to know anything about
the other classes that will interact with it. This seems to becontradictory with the need of
classes for passing information between them during their interactions. The use of the Event
and Observer pattern [6, 3] makes possible to solve this contradiction by establishing a bride
for passing information between two objects while still preserving their encapsulation and their
full decoupling.

The use of Events is largely widespread among software packages. They are ubiquitous in GUI
libraries, from the X11 Windows system to the more recent Microsoft Foundation Classes MFC
and Qt libraries. Events and observers have also been used successfully in the Visualization
Toolkit VTK and the Insight Toolkit ITK.

7.2 Motivation

There are multiple motivations for using Events in IGSTK. They are summarized in the follow-
ing list.

74 Chapter 7. Events

• Decoupling of collaborating classes.

• Containment of API modifications.

• Improvement of code reuse.

Decoupling classes that need to collaborate one with another is probably the strongest motiva-
tion in the context of safety-critical applications for which IGSTK was designed. The principle
of decoupling is that the less one class “A” knows about the internal implementation of another
class “ B”, the less this first class depends on assumptions about “B”, and therefore, the more
robust it will be to the eventual changes of “B”s implementation. Decoupling also makes easier
to perform unit testing of individual classes, by making possible to focus on the contractual
interface of the class, as opposed to consider specific features of the collaborating classes.

Containment of API modifications refers to the continuous maintenance of software. It is a
common mistake to assume that software is written once and that the task is completed. In
practice, software is continuously evolving, according tothe needs of the user community.
Software that is not designed to facilitate this evolution become easily degraded when changes
start to happen. One of the aspects that can commonly change in a object oriented programming
library is the public interface of specific classes. This means that the methods of classes may
be renamed, removed, or they may change the type of their arguments. When such changes
take place, all the other pieces of software that were calling these functions must be modified
accordingly. Failing to update all other calls to those methods is a very common source of
bugs, with the detrimental aggravation that it is cumulative over time. When method calls are
replaced with Events as the mechanism for passing information between classes, then the API
modifications become more localized and do not affect many other pieces of software.

Code reuse is also improved by introducing Events and Observers as the mechanism for passing
information between classes. In particular, it becomes easier to connect two classes to make
them work together, because they only need to know about the types of the data passed between
them, instead of having to know about each other.

7.3 Implementation

7.3.1 Relationship with ITK

Events are implemented in IGSTK following the model of the Insight Toolkit ITK. The Ob-
servers of such events are also closely related to the ITK Command class. Figure7.1illustrates
these relationships.

ITK Events are implemented as a class hierarchy. Theitk::AnyEvent class is at the base of
this hierarchy while theitk::UserEvent is defined as one of the branches. The purpose of
the itk::UserEvent is to provide ITK users with a place to attach their own eventshierarchy.
This ITK feature is exploited in IGSTK by defining theigstk::IGSTKEvent as the base class
for all events used in IGSTK, and making it to derive from theitk::UserEvent .

7.3. Implementation 75

itk::UserEvent

igstk::IGSTKEvent

itk::AnyEvent

igstk::PulseEvent

igstk::RefreshEvent

igstk::TransformModifiedEvent

itk::Command

IGSTK Observers

igstkEventTransductionMacro()

Figure 7.1:Events Class Hierarchy.

Figure 7.1 shows a small subset of the many events that derive from the IGSTKEvent.
In particular the igstk::PulseEvent used by the igstk::PulseGenerator
class, the igstk:RefreshEvent used by the igstk::View class, and the
igstk::TransformModifiedEvent used by theigstk::SpatialObject class.

7.3.2 Events with Payload

Two main categories of events have been defined in IGSTK. The first category is composed of
events that only carry information in their type. The secondcategory is composed of events
that carry information in their type and also carry instances of other objects as payload. In this
regard IGSTK Events behave similar to C++ exceptions.

Events that only have a type are used to notify other classes about the occurrence of a specific
incident, for example the expiration time of a timer, or a failure to open a file. Events that carry
payload have the additional capability of transmitting detailed data between two classes without
requiring these classes to know about the other. In order to facilitate the creation of events with
payload, a set of Macros and Templated classes are availablein the files.

• IGSTK/Source/igstkMacro.h

• IGSTK/Source/igstkEvents.h

The most important of these macros is theigstkEventMacro that creates a new event class
in a single line of code by just specifying the name of the new event and its superclass. The
igstkLoadedEventMacro creates a new event with payload by specifying the event name, the
superclass and the type of the payload. TheigstkLoadedObjectEventMacro is intended for
the case where the payload carried by the event derives from the igstk::Object and therefore

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PulseGenerator.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1View.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1SpatialObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Object.html

76 Chapter 7. Events

uses SmartPointers. These Macros simplify the code and enforce uniformity across the entire
toolkit.

Events with payload created by theigstkLoadedEventMacro have the following standard
methods

• PayloadType &Get() const

• void Set(const PayloadType &)

while the events created by theigstkLoadedObjectEventMacro have the following standard
methods

• PayloadType * Get() const

• void Set(PayloadType *)

and internally store a Smart Pointer to aPayloadType object.

Events with payload are particuarly important for the implementation of the Request/Observe
pattern described in Section7.4.2.

7.3.3 Events and State Machines

Events can also be integrated in the behavior of State Machines. This is facilitated by the
igstkEventTransductionMacro that when used inside an IGSTK class will create in it an
observer as a member variable and will also defined methods that will make possible for that
class to connect its internal observer to the class that is expected to generate the event.

When the event is received at run-time, the code in the transduction macro translates the incom-
ing event into an input to the State Machine in the class that owns the observer. In this way,
events can be managed as equivalent to State Machine inputs,so that their message-passing
capabilities are complemented with the decision-making capabilities of the State Machines.

Figure7.2 illustrates the mechanims of the transduction macro. Class“B” is intended to ob-
serve events “E” send from class “A”. Upon reception of any event “E”, class “B” is expected
to perform an action. When the code of the Transduction macrois put into class “B”, it will
instantiate an Observer and it will create theCallbackEventInput method using the name of
Event “E” and the name of the State Machine Input to which we want to translate the event; so
that the full method name is still unique. This new method is amember method of class “B”
and it will be called by the Observer whenever it receives an Event of type “E”. The Callback-
EventInput method passes a specific input to the internal State Machine of class “B” by calling
its PushInput method. The State Machine will use its current state and the current input in
order to decide on the next transition to perform. The selected transition may trigger the ex-
ecution of an action method that, in IGSTK by convention, is amethod named with the sufix
Processing. Such methods are private and are intended to be called only by the State Machine.
In this way, an Event “E” is seamlessly integrated as equivalent to an input to the State Machine
of class “B”.

7.4. Usage 77

B::SM::PushInput(Input)

State Machine

igstk::EventE

Observed Class A

Transduction Observer

Class B

B::ActionProcessing()B::CallbackEventInput()

Figure 7.2:Events/Input Transduction.

7.3.4 Observers

IGSTK does not have observersper se. Instead, it relies on deriving this functionality from
the ITK Command class. Given that IGSTK Events derive from ITK events, it is possible to
Observe IGSTK events by using classes that derive from the ITK Command class. IGSTK
classes use internally the following options for defining observers based on ITK classes

• Creating a new class that derives fromitk::Command

• Using theitk::SimpleMemberCommand<>

• Using theitk::ReceptorMemberCommand<>

The first option is used when a lot of flexibility is required bythe IGSTK class internal imple-
mentation. The second option is used in theigstk::Tracker and igstk::View classes in or-
der to observe the pulse events generated by their respective internal igstk::PulseGenerator
classes. The last option is used in the State Machine and in the transduction macros discussed
in Section7.3.3.

These details are only of interest for those developers thatwant to modify or maintain the source
code of IGSTK. Developers of IGS applications based on IGSTKonly need to be concerned
about defining Observers when they query information from particular IGSTK classes, mostly
for the purpose of monitoring the behavior of those classes.The communication between IGS
Application code and the toolkit classes is described more in detail in Section7.4.2where the
use of theRequest/Observepattern is explained.

7.4 Usage

7.4.1 Internal Usage

Most of the time, communications between IGSTK classes is done internally through events.
Developers of IGS applications do not need, in general, to deal with the events that are being
emitted from IGSTK classes. It is useful however to know how information is flowing between

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Tracker.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1View.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PulseGenerator.html

78 Chapter 7. Events

A−>AddObserver(EventE, Observer)

Class B

itk::Command

IGSTK Observer

H
as

 O
ne

itk::Object

igstk::Object

Observed Class A

igstk::IGSTKEvent

igstk::EventE

Figure 7.3:Events Usage.

the different IGSTK components. We present here some details about how the mechanism
works.

First of all, in order to pass an Event “E” from a class “A” to a class “B” the following require-
ments must be satisfied

• Class “A” must derive fromigstk::Object .

• The Event “E” must derive from theIGSTKEvent class.

• Class “B” must have defined an observer deriving from theitk::Command .

• Class “B” must add its observer to Class “A” using theAddObserver method of class “A”
and specifying that is interested in Event “E” or one of its super-classes.

Figure7.3 illustrates these requirements. The left side the Figure shows the hierarchy of the
class that is being observed, class “A”. This class must derive directly or indirectly from the
igstk::Object . It is from this class that the Event “E” will be send. The middle of the Figure
illustrates the hierarchy of the Event “E”, which must derive directly or indirectly from the
IGSTKEvent . The right side of the Figure illustrates the collaborationbetween class “B” that
wants to know about Event “E” and its helper class, the IGSTK Observer, that itself derives
from theitk::Command . Class “B” must have as a member variable an IGSTK Observer. This
observer is programmed to invoke a member method of “B” whenever an Event “E” is sent
form class “A”. Finally, the bottom of the figure shows the invocation to theAddObserver()
method from class “A”. This invocation informs class “A” that the Observer is interested on
being notified whenever the Event “E” occurs. Since the IGSTKObserver is a generic class,
class “A” does not need to know about the existence of class “B”, and class “B” does not need
to know about the existence of class “A”. In this way, decoupling between “A” and “B” is
completely achieved. Of course, the application developerwill be responsible for calling the
AddObserver method from the application’s code.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Object.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Object.html

7.4. Usage 79

7.4.2 External Usage: The Request/Observe Pattern

The motivation for using theRequest/Observemethod in IGSTK is to improve the robustness
and safety of the toolkit as well as the IGS applications thatare based on it.

The Request/Observe pattern is intended to deal with the scenario where an IGSTK class is
capable of returning a data object, for instance a Transform, but the value of this data object is
only valid in some of the states of the class and not in others.Typical solutions used for this
scenario in other software packages are to have a “Get()” method that returns the data object
and combine it with one of the two following options

• Define a specific value of the data object to indicate when the object is invalid

• Add a boolean “IsValid” method that indicates when the data object is valid

• Return the data object by reference simultaneously with a boolean verification

In the context of a safety-critical applications, the first option has the drawback that every time
that the “Get()” method is called by the customer of the class, they have to check whether the
data object is valid or not. This results in code plagued with“if” conditions that are difficult
to debug, hard to maintain and where it is very difficult to enforce testing with 100% code
coverage. Avoiding proliferation of “if” conditions was infact one of the main reasons for
introducing State Machines into the toolkit.

The second method is also known as apre-conditionand it is common incontract-based pro-
gramming. There are two drawbacks to this method. The first is that it relies on IGS applications
developers to actually call the “IsValid()” method before calling the “Get()” method. In C++
there is no way to enforce that the “IsValid()” method must becalled before the “Get()”. The
second drawback is that in a multi-threaded environment there is no way to ensure that if the
“IsValid()” method returned true at any given point, the value of the transform will not be-
come invalid before the “Get()” method is called. Thereforethis combination may result in the
“Get()” method returning an invalid data object that is now not checked by the recipient code.

In the third option a single function will simultaneously return a boolean and the data object
that may or may not be valid. The validity of the data object isindicated by the boolean that
is simulaneouly returned by the function. This is equivalent to combining the “IsValid()” and
“Get” functions into a single atomic operation. This optionstill have the drawback that the
customer’s code need to be plagued with “if” conditions thatare detrimental to the robustness
and safety of the code.

As an alternative to these three typical options, IGSTK intoduced a Request/Observe pattern in
which no “if” conditions are required when two pieces of codebased on State Machines are
used. The principle of the Request/Observe method is to split the transaction of information
into a set of state, inputs and transitions in the State Machines of the two classes involved in
the transaction of the data object. Figure7.4 shows the sequence diagram of the transaction
between two classes. On the left side of the figure, the “Customer” class is the one that need
to receive the data object. On the right side of the figure, the“Provider” class is the one that

80 Chapter 7. Events

produces the data object. The “Customer” in this case is a class that internally has already
defined an Observer, presumably by using theigstkEventTransductionMacro discussed in
Section7.3.3.

Time progresses from top to bottom of the diagram. The first step on the interaction is for the
“Customer” to connect its internal observers to the “Provider” class. Two types of events are
expected in this transaction, therefore two Observers mustbe connected to the “Provider”, one
for each event. One of the events to be Observed is a event withpayload that is capable of
carrying the specific data object. The other event is the one that may notify the the data object
is invalid. This connections of Observers are done only onceregardless of how many times in
the future the “Customer” may need to query the “Provider” for the data object.

The next step is for the “Customer” to call a method in the “Provider” in order to ask it for
sending the data object if it is available. This is done in theform of a “RequestDataObject()”
method. This action is presumably the result of an action triggered in the “Customer” by a tran-
sition of its internal State Machine. This is indicated in the diagram by the arc labeled as “State
Transition X”. The request is not answered immediately by the “Provider”. Instead, it results
in a specific input being passed to the internal State Machineof the “Provider”. Depending on
the current state of the “Provider”, that input may result indifferent transtions and associated
actions in the State Machine of the “Provider”. Two typical occurences are illustrated in the
diagram. The first is “State Transition A” where the “Provider” happens to be able to return a
valid data object at this moment. In this case, the data object is loaded into an Event and send
by using the InvokeEvent method. The second occurence is illustrated by “State Transition B”,
and corresponds to the case where the “Provider” does not have a valid data object at this point.
In this case, an Event that indicate the non-validity of the requested value is send using the
InvokeEvent method.

In the case of “State Transition A”, when the “Provider” is capable of sending a valid data object,
the invocation of the Event will trigger the Observer of the “Customer” who will translate this
event into an input to its state machine. Depending on the current state of the “Customer” its
State Machine may make a “State Trasition Y” with an associated action that is capable of
processing the data brought by the Event, in such case the “Customer” will extract the payload
by using the “Get” method of the event with payload that was discussed in Section7.3.2. If
by the time that the Event gets to the “Customer”, its State Machine is in a state the can not
process the data object, or is not interested in processing the data object anymore, then the data
is simply ignored.

In the case of “State Transition B”, when the “Provider” is unable of producing a valid data
object and invokes an ErrorEvent, the Error event is received by the Observer in the “Customer”
class and it is translated into an input to its State Machine.Depending on the current state of
the “Customer” the State Machine will perform a transition that is the appropriate response to
the lack of a valid data object.

As can be seen from this diagram, the Request/Observe pattern permits to have a very explicit
transaction in which the reactions to both valid and invaliddata objects are carefully analyzed.
Since this mechanism directly takes cares of routing the responses of both classes the the con-
dition in which the data object is invalid, it permits to ensure that none of the classes will be

7.5. Conclusion 81

State Transition A

Customer Provider

AddObserver(DataObjectEvent)

AddObserver(ErrorEvent)

State Transition X

InvokeEvent(DataObjectEvent)

RequestDataObject()

InvokeEvent(ErrorEvent)

State Transition Y

State Transition Z

State Transition B

Figure 7.4:Request/Observe Pattern.

put in an invalid state during the transaction. This is a great advantge compared with the typi-
cal fragile approach in which developers expect a valid object to be returned, and consider the
invalid case just as a rare event that will put the customer into an invalid condition. In IGSTK,
by anticipating explicitly the potential error situationsand wiring the appropriate responses in
the logic of State Machines, a solid step is taken towards improving robustness and safety.

7.5 Conclusion

Events are an extremely valuable programming technique that is used in many different places in
IGSTK. In order to take advantage of the strengths of Events and State Machines, IGS applica-
tion developers should strive for designing their own applications based on the same principles.
In that way the safety and robustness of IGSTK design will permeate the final complete IGS
application.

Of course, attempting to introduce IGSTK code into an application with more traditional design
will give the developers the false impression of IGSTK beingutterly complex. That perception
should be taken as an indication that the application developer is not building the software in a

82 Chapter 7. Events

way that is compatible with the structure of IGSTK.

CHAPTER

EIGHT

Tracker

“The trouble with measurement is its seeming simplicity.”
Unknown.

The goal of image-guided surgery is to provide the surgeon with the necessary tools to corre-
late features and locations in a medical image, with those same features and locations on (and
inside of) the patient’s body during surgery. This process can be purely visual, for example
when a surgeon uses x-ray fluoroscopy to look inside the patient during the surgery, but the
term “image-guided surgery” usually implies a process called stereotaxis, which involves three
actions: 1) assigning a coordinate system to the image, 2) registering the patient to this coordi-
nate system, so that each location in the image can be mapped to a location inside the patient,
and 3) providing the surgeon with the means of getting to a particular location inside the pa-
tient. In IGSTK and in most other modern image-guided surgery systems, the latter is achieved
by tracking the positions of the surgeon’s tools and displaying the tools superimposed on the
images of the patient, so that the surgeon can see the positions of the tools relative to the target
location.

Tracking of the surgical tools is done by devices known astracking systems(alsolocalizersor
position measurement systems). These devices measure the (x,y,z) coordinates of each tool as
well as three angles to describe the tool orientation, and they report this information several
times per second to make it possible to track the motion of thetools. Several models of tracking
systems are available on the market. The ones that are supported by the current version of
IGSTK are the NDI POLARIS family of optical tracking systems, the NDI AURORA magnetic
tracking system, and the Ascension Flock of Birds magnetic tracking system.

8.1 The Role of the Tracker Component in IGSTK

The IGSTK Tracker component communicates with a tracking system to get position measure-
ments, and it then makes these measurements available to other IGSTK components. Given
the tracker component’s straightforward role, you would expect its public interface to consist of
only a small number of methods, and that is in fact the case. There is a fair degree of complexity

84 Chapter 8. Tracker

Pulse Generator

Pulse Generator
drives the Update:
transforms and
tool status are
copied from the
buffer to the
TrackerTool objects

Tracking
Device

Communication runs
in a separate thread:
InternalThreadedUpdate
is called at the natural
rate of the tracking
system and the information
is stored in a buffer.

Spatial Object

Spatial Object

Spatial Object

Tracker Tool 0

Tracker Tool 1

Tracker Tool 2

Tracker Buffer

Communication

Tracker

Figure 8.1:The IGSTK Tracker Component.

in this component to handle accurate timing, data calibration, and recovery from hardware com-
munication errors, but these things are hidden beneath the public interface as far as is possible.

8.2 Structure of the Tracking Component

The igstk::Tracker object houses a number ofigstk::TrackerTool objects, one for each
of the surgical tools that will potentially be tracked. Eachof these TrackerTool objects store
position and status information about a particular tool, just as the Tracker object contains status
information for the tracking system as a whole.

It is important for the reader to understand the dichotomy that is present here: the Tracker and
TrackerTool objects are part of the software of IGSTK, but the tracking system is a physical
device located in the operating room, and the tracked tools are things that you can hold in
your hand. The updating of the tool position and status information in the software occurs
because there is a communication link such as a serial cable or network connection between the
computer and the tracking system. The Tracker is the only IGSTK component that has direct
access to the tracking system via this communication link.

The IGSTK software components run as a synchronous system, where each component exe-
cutes in turn. When a component sends an event to another component, the other component
controls the program execution until it passes control backto the originator. At the top level,
actions are driven byigstk::PulseGenerator events , which are timer events generated in
the application’s main event loop. The tracking device (thephysical device itself) has its own

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Tracker.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1TrackerTool.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PulseGenerator.html

8.2. Structure of the Tracking Component 85

internal update cycle which is completely independent of anything going on in our software,
therefore it was decided that the IGSTK tracker component should spawn a separate thread to
communicate with the tracking device. This internal threadis not driven by a PulseGenerator,
but instead listens constantly on the communication link for data records from the device, and
collects data records at whichever rate they are sent by the device.

These data records are not used immediately as they are received, instead they are buffered until
the application is ready for them, i.e. until the PulseGenerator generates a pulse to indicate
that it is time for the tool positions within the IGSTK application to be updated. This ensures
that the information only changes at times when other IGSTK components are expecting it to
change.

8.2.1 Communication

Collecting data from the tracking system is one of the two fundamental duties of the Tracker
(the other fundamental duty, of course, is relaying this data to the application). Early in the
development if IGSTK, it was decided that communication between the tracker component and
the tracking system should be handled by anigstk::Communication class that met specific
requirements:

1. each port that is used by the application to communicate with a device will have a com-
munication object that acts as a proxy for that port

2. the communication object must not freeze if the connection is broken; instead, it must
report a suitable error

3. the data stream that flows through the port will be logged tocreate a complete record of
of all communication that takes place

4. the data stream can be played back for testing purposes

The second requirement is important because most communication ports (including network
sockets and RS232 serial ports) operate inblockingmode by default, which means that if the
data stream is broken, then any attempt to read from the port will cause program execution to
freeze until the connection is restored. This situation is unacceptable in a surgical application.
The port is always switched tonon-blockingmode by the communication object before any data
is sent or received.

The third and forth requirements facilitate the testing of the tracker component and the tracking
system. During the development of an application, the data stream must be examined repeat-
edly during the debugging process. Furthermore, if the tracking system suffers any faults or
malfunctions, access to the data stream is very useful for diagnosis of the system.

Finally, the playback of a prerecorded data stream can be used to simulate the presence of a
tracking device during testing. This allows components that depend on the Tracker component
to be tested even in the absence of a tracking system or a humanbeing to move the tools around.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Communication.html

86 Chapter 8. Tracker

This is fundamental to one of the cornerstones of IGSTK: the automated nightly testing of all
components.

8.2.2 Threading

As stated in Section8.2, the communication with the tracking system occurs in a dedicated
thread. The purpose of the tracking thread is to maintain a constant link with the tracking
system: the thread can respond to information from the tracking system while the application
is busy with other things. The use of multi-threading is desirable for two reasons: safety and
performance.

Safety

Many tracking systems have some method of signaling to the surgeon that certain events have
occurred or that certain unsafe situations have arisen. These signals are usually verbal (the
device will beep or will talk) or visual (an indicator light on a tool will blink). Some devices
can even providehaptic(tactile) feedback, where the device will physically resist any the motion
of the surgeon’s hand which would lead to the cutting of sensitive tissues such as major nerves
or arteries.

Any such feedback must be instantaneous to be effective. If the Tracker component had to wait
until the next time its PulseGenerator fired before responding, there would be a delay of tens of
milliseconds before the surgeon learned of a potentially urgent situation. Through the use of a
tracking thread that is independent of the PulseGenerator,however, the Tracker component can
provide feedback to the surgeon immediately.

Performance

The performance argument for using a tracking thread is, of course, not as fundamental as the
safety argument. Nevertheless, preformance criteria suchas frame rate and lag, which are so
important to 3D video game enthusuasts, are of some consequence in image-guides surgery as
well.

A tracking device uses its own internal clock to make measurements at regular intervals. It
stands to reason that the Tracker component should collect these measurements at the rate at
which the device takes them, and furthermore should collecteach measurement as soon as
possible after that measurement is taken.

A poor implementation of the Tracker component might work asfollows: when the Tracker’s
PulseGenerator fires to indicate that a tool position measurement is to be forwarded to the other
IGSTK components, the Tracker component will send a commandto the tracking system to tell
it to make a measurement, and will then wait patiently for thetracking system to send a send a
measurement back.

In contrast, the way that the IGSTK Tracker has been implemented such that the tracking system

8.2. Structure of the Tracking Component 87

Spatial Object

Spatial Object

Spatial Object

Tracker Tool 0

Tracker Tool 1

Tracker Tool 2

Communication

Tracker

Thread−Safe
Buffer

Pulse Generator

Pulse Generator
drives the Update:
transforms and
tool status are
copied from the
buffer to the
TrackerTool objects

Tracking
Device

Communication runs
in a separate thread:
InternalThreadedUpdate
is called at the natural
rate of the tracking
system and the information
is stored in a buffer.

Figure 8.2:The TrackerBuffer object.

continuously streams position measurements to it, and it uses its extra thread to listen for each
of these measurements and store them in a buffer as they arrive. Then, when the PulseGenerator
sends a signal to forward a measurement to the other IGSTK components, the Tracker will
simply take the most recently made measurement from the buffer and forward it along. The
Tracker does not have to wait for the tracking system to make anew measurement.

8.2.3 Buffering

In the previous section, it was described how threading and buffering are used to improve the
performance of IGSTK. The buffer has an additional purpose:it is also used to store a history
of all position measurements that are made by the tracking system during the surgery.

When IGSTK displays a surgical scene with the positions of all of the surgical tools superim-
posed on the medical images, it is displaying where those tools were at a particular instant in
time. This time is indicated by a timestamp, and it may eitherbe the current time as given by
the computer’s real-time clock, or it may be some time in the past (for example, during a replay
of past tool motions).

To facilitate the delivery of tool position measurements for any particular timestamp, the
igstk::TrackerBuffer object (as displayed in Figure8.2) stores the position history for each
tool as a series of raw measurements. These measurements are”raw” in the sense that they are
uncalibrated and are not yet registered to the surgical coordinate system, and for each measure-
ment there is a timestamp to indicate when the measurement was made. When the Tracker’s

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1TrackerBuffer.html

88 Chapter 8. Tracker

PulseGenerator signals that the TrackerTool positions areto be updated and made available to
other IGSTK components, it searches the tool histories to find the measurements that are clos-
est to the desired instant, performs any necessary calibration and coordinate transformation, and
pushes the measurements to the TrackerTools.

Since the TrackerBuffer contains data that is shared between the tracking thread (within which
the Tracker places the data into the buffer) and the main IGSTK execution thread (within which
the Tracker extracts data from the buffer), the TrackerBuffer has a mutual-exclusion lock to
ensure that the main thread does not attempt to read a data record that the tracker thread has
only partially written.

8.2.4 Transforms and Timestamps

In the previous section is was mentioned that every positionmeasurement has a times-
tamp associated with it. Both the position measurement and the timestamp are stored in an
igstk::Transform object, which contains:

• a vector with three position coordinates

• a rotation versor that describes the orientation of the tool

• a timestamp that gives the time at which the measurements were made

• an expiration time after which the measurement will be considered invalid

Expiration of Transform objects is included as a safety precaution: if IGSTK is rendering a
video frame that corresponds to a particular instant in time, then that video frame should only
include tool position data that was measured before that instant in time, but not measured so far
before as to no longer be valid.

The time interval during which a Transform is valid will depend on how fast the tool is moving,
since the total distance the tool moves from its measured position during this time interval is
equal to the product of the time interval and the tool velocity. If we want to be able to guarantee
that the tool moves no more than 1 mm before the Transform expires, and if the tool velocity is
approximately 10 mm per second, then the Transform should beset to expire after 0.1 seconds.
It is crucial, however, not to set too short an expiry time, since the Transform must not expire
before the next Transform is generated by the Tracker.

A final but important point to consider regarding timestampsis that there is latency of a few tens
of milliseconds between the time when a position measurement is made by the tracking system,
and the time when that measurement is received by the computer on which IGSTK is running.
This latency will depend on the tracking system and on the conditions under which it is being
used (for instance, on its internal measurement rate, the number of tools that it is tracking, and
on the data transmission speed between the tracking system and the computer). The latency
is not subtracted from the timestamps in the current versionof IGSTK since performing this
subtraction will not actually make the latency go away, the laws of physics will not permit the

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Transform.html

8.2. Structure of the Tracking Component 89

tool coordinates shown on the computer screen to be updated instantaneously with the motion
of the tool held in the surgeon’s hand. Latency becomes critical, however, when measurements
are to be made simultaneously with different tracking systems (for instance with an optical
and magnetic system): only after subtracting the latency ofeach system from the Transform
timestamps for that system can you accurately compare the timestamps from the two systems.

8.2.5 Coordinate Transformations

So far, we have discussed position measurements as if they pass unmodified from the tracking
system to the IGSTK components such as the spatial objects. In actuality, the following formula
must be applied to the position data by the Tracker componentbefore it is forwarded to other
IGSTK components:

T = MregT
−1
ref TrawMcal (8.1)

Each M and T in this equation refers to a coordinate transformation, specifically to a rigid
body transformation consisting of a rotation followed by a translation. The transformations are
defined as follows:

T tool transform that will be used by other IGSTK components
Traw raw transform data from the tracking system
T−1

ref raw transform data from a tracked reference (if present)
Mreg patient registration transform
Mcal tool calibration transform

The referenceis stationary tool that provides a reference frame for the other tracked tools.
A reference is used when the tracking system itself (the camera of an optical system or the
transmitter of a magnetic system) is either some distance away from the patient or not fixed in
position relative to the patient. The reference is usually affixed rigidly to the patient’s anatomy,
e.g. to the skull in the case of neurosurgery or to a spinal vertebra in the case of spinal surgery,
to minimize any potential error.

The final two transformations, the registration and calibration transformations, are described in
detail in Chapters14 and15. Briefly, the registration transformation is used to place the tool
position measurements into the coordinate system of the image that is being used to guide the
surgery, and the calibration transformation is used as a correction for the tip location and shaft
orientation for a particular tool.

To see why Equation8.1 holds, consider Figure8.3. We know that the product of any closed
loop of transformations must be identity, where “closed loop” means a series of successive
transformations that eventually leads back to the initial frame of reference. Taking the direc-
tions of the arrows into account, and using the patient coordinate system as our initial frame of
reference, we see that

I = T−1MregT−1
ref TrawMcal (8.2)

90 Chapter 8. Tracker

T

M

TT

M reg

cal

rawref

Tracking Device

Tool RigidRigid Body Patient
Reference

Body

Figure 8.3:Tracker coordinate transformations.

The transformation that we want is T, which relates the position and orientation of the tool tip
to the patient frame of reference, and we can get an equation for T by multiplying both sides of
the above equation by T.

The best way to envision the set of transformations that are needed to obtain T is as follows:

1. start with an(x,y,z) location relative to the tool tip

2. apply Mcal to find (x,y,z) relative to the tracked markers that are mounted on the tool

3. apply Traw to find (x,y,z) relative to the tracking camera

4. apply T−1
ref to find (x,y,z) relative to the tracked reference markers

5. apply Mreg to find (x,y,z) relative to the registered patient coordinate system

Figure8.3 is drawn for an optical tracking system, which uses a camera that tracks sets of 3 or
4 markers that define a “rigid body” which is a local frame of reference with respect to which
the position of each marker is fixed at a known location. The same principles are also valid for
magnetic transformations, except that the local frame of reference is defined with respect to the
magnetic receiver coils.

8.3. State Machines 91

8.3 State Machines

Figure8.4illustrates the State Machine Diagram of theigstk::Tracker .

8.3.1 States

Main states:

Idle initial state

CommunicationEstablished communication port opened to tracking system

ToolsActive tracking tools have been identified, ready to track

Tracking tracking system is sending position data

Transitional states

AttemptingToEstablishCommunication

AttemptingToCloseCommunication

AttemptingToActivateTools

AttemptingToTrack

AttemptingToStopTracking

AttemptingToUpdate

[State Machine Diagram]

Figure8.5illustrates the State Machine Diagram of theigstk::TrackerTool .

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Tracker.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1TrackerTool.html

92
C

hapter
8.

Tracker

IdleState

AttemptingToEstablishCommunicationState

EstablishCommunicationInputFailureInput

CommunicationEstablishedState

SuccessInput

AttemptingToCloseCommunicationState

CloseCommunicationInput

AttemptingToActivateToolsState

ActivateToolsInput

SuccessInput

FailureInput

FailureInput

ToolsActiveState

SuccessInput

ResetInput

CloseCommunicationInput

AttemptingToTrackState

StartTrackingInputFailureInput

TrackingState

SuccessInput

ResetInput

CloseCommunicationInput

AttemptingToUpdateState

UpdateStatusInput

AttemptingToStopTrackingState

StopTrackingInputSuccessInput FailureInput

SuccessInput

FailureInput

F
ig

u
re

8
.4

:S
tate

M
achine

D
iagram

ofthe
Tracker

class.

8.4. Component Interface 93

InitialState InvalidState NotAvailableState AvailableState InitializedState TrackingState VisibleState

Figure 8.5:State Machine Diagram of the TrackerTool class.

8.4 Component Interface

8.4.1 Interface Methods

8.4.2 Events

8.5 Supporting New Devices

8.5.1 Internal Interface

8.5.2 Command Interpreters

8.6 Special Topics

8.6.1 Simulation and Testing

8.7 Hazardous Conditions

Before we delve into the software, we should take some time tolook at tracking systems and
what can go wrong with them. This helps us to determine how thesoftware might avoid, or at
least cope with, some troublesome conditions that might arise during surgery.

8.7.1 Tracking Device Failure

The following hazards relating to device failure exist in the operating room:

1. the communication cable can become unplugged, resultingin loss of communication with
the device

(a) the user should be told that the computer cannot communicate with the tracker, and
should be asked to check the cable

(b) when the cable is reconnected, the tracker should automatically re-establish com-
munication

2. a tool can become unplugged or damaged such that it no longer works

94 Chapter 8. Tracker

(a) for some tools, such as the passive POLARIS tools, the tracker has no way of de-
tecting that the tool is damaged

(b) for other tools, the tracker should inform the user that the tool is unplugged or
damaged

(c) where possible the tracker should automatically re-detect the tool when it is plugged
back in or replaced

3. the device can lose power when someone trips on the cord or mistakes its power cord for
that of another piece of equipment

(a) this will manifest itself similar to loss of communication, and has a similar remedy

4. the device can suffer hardware failure due to damage or age

(a) this will manifest itself as a recurrence of one or more ofthe above failures

(b) either the user or the device manufacturer will be responsible for addressing the
failure

8.7.2 Loss of Accuracy

The following hazards can lead to inacurrate reporting by the tracker:

1. calibration problems, including magnetic field distortion

(a) note that not all calibration problems can be detected

(b) if the tracking system can detect these problems, they should be reported to the user
in an unobtrusive manner

(c) the application should refuse to make critical measurements if there are calibration
problems

2. bent tools

(a) if a tool is easily bent, then the application should request that the user test the tool
before use

(b) for example, the user could touch the tip of the tool to a known reference point so
that the application can check whether it is bent

3. shifting of reference

(a) if the reference moves relative to the patient, the application cannot detect this shift
without assistance from the user

(b) before taking critical measurements, the user should beasked to touch known
anatomical landmarks to assess the accuracy

i. if the accuracy is unsuitable, the user should be asked to repeat the reference
registration if possible

ii. in many cases, repeating the registration is not possible and image guidance
may have to be abandoned if the reference shifts

CHAPTER

NINE

Spatial Objects

9.1 Introduction

SpatialObjects define a common data structure for objects inIGSTK.

The SpatialObject class hierarchy provides a consistent API for querying, manipulating, and
interconnecting objects in physical space. The base SpatialObject class encapsulates an ITK
spatial object; however, only functionalities that are essential for Image-Guided Surgey appli-
cations are exposed to the user.

A SpatialObject is a data structure describing the geometryof an object. Moreover, each Spa-
tialObject contains an internal transformation that defines is location and orientation in space.

In this chapter, we first describe how SpatialObjects can be grouped in a hierarchical manner
to form a tree of objects. Second, we detail the functionalities of each object. Finally we show
how to read SpatialObjects from disk.

9.2 SpatialObject Hierarchy

The source code for this section can be found in the file
Examples/SpatialObjects/SpatialObjectHierarchy.cxx .

This example describes how to group theigstk::SpatialObject s to form a hierarchy of
objects and also illustrates their creation and how to manipulate them.

The first part of the example makes use of theigstk::EllipsoidObject . The second part
uses theigstk::GroupObject . Let’s start by including the appropriate header files.

#include "igstkEllipsoidObject.h"
#include "igstkGroupObject.h"

First, we create two spheres using theigstk::EllipsoidObject class. They are created using
smart pointers.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1SpatialObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1EllipsoidObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1GroupObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1EllipsoidObject.html

96 Chapter 9. Spatial Objects

typedef igstk::EllipsoidObject SpatialObjectType;

SpatialObjectType::Pointer sphere1 = SpatialObjectType ::New();
SpatialObjectType::Pointer sphere2 = SpatialObjectType ::New();

We then add the second sphere to the first one by using theRequestAddObject() method. As
a resultsphere2 becomes a child ofsphere1 .

sphere1->RequestAddObject(sphere2);

A child object can be retreive from its parent by using theGetObject() function.

sphere1->GetObject(0)->Print(std::cout);

Next, we assign a transformation to the object. We first create a transformation and set the
translation vector to be 10mmin each direction, with an error value of 0.001mmand a validity
time of 10ms. Second We assign the transform to the object via theRequestSetTransform()
function.

igstk::Transform transform;
transform.SetTranslation(10,0.001,10);
sphere1->RequestSetTransform(transform);

Then, in order to retreive the transformation we setup an observer.

igstkObserverMacro(Transform,
::igstk::TransformModifiedEvent,::igstk::Transform)

We then add the observer to the object using theAddObserver() command.

TransformObserver::Pointer transformObserver
= TransformObserver::New();

sphere1->AddObserver(::igstk::TransformModifiedEven t(), transformObserver);

Then, we request the transform using theRequestGetTransform() .

sphere1->RequestGetTransform();
if(!transformObserver->GotTransform())

{
std::cerr << "Sphere1 did not returned a Transform event" << std::endl;
return EXIT_FAILURE;
}

igstk::Transform transform2 = transformObserver->GetTr ansform();

9.3. Common Objects 97

Next, we introduce the igstk::GroupObject . The GroupObject class derives from
igstk::SpatialObject and acts as an empty container used for grouping objects together.

First, we declare a new group using standard type definition and smart pointers.

typedef igstk::GroupObject GroupType;
GroupType::Pointer group = GroupType::New();

Since the igstk::GroupObject derives from SpatialObject,we can use theRequestAddObject()
function to add object into the group. For instance we groupsphere1 and the newly created
sphere3 together.

group->RequestAddObject(sphere1);
SpatialObjectType::Pointer sphere3 = SpatialObjectType ::New();
group->RequestAddObject(sphere3);

We can request the number of objects in the group using theGetNumberOfObjects() function.
Sincesphere1 has a child,sphere2 , there are actually three objects in the group.

std::cout << "Number of object in my group: "
<< group->GetNumberOfObjects() << std::endl;

9.3 Common Objects

In this section we detail the different SpatialObjects present in IGSTK.

9.3.1 AxesObject

The source code for this section can be found in the file
Examples/SpatialObjects/AxesObject.cxx .

This example describes how to use theigstk::AxesObject . This class defines a 3-
dimensional coordinate system in space. It is intended for providing a visual reference of the
orientation of space in the context of the scene.

First we include the appropriate header file.

#include "igstkAxesObject.h"

We then declare the object using smart pointers.

typedef igstk::AxesObject AxesObjectType;
AxesObjectType::Pointer axes = AxesObjectType ::New();

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1GroupObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1SpatialObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1AxesObject.html

98 Chapter 9. Spatial Objects

The size of each axis can be set using theSetSize() function.

double sizex = 10;
double sizey = 20;
double sizez = 30;
axes->SetSize(sizex,sizey,sizez);

In case we need to retreive the length of the axes we can use theGetSize() functions.

std::cout << "SizeX is: " << axes->GetSizeX() << std::endl;
std::cout << "SizeY is: " << axes->GetSizeY() << std::endl;
std::cout << "SizeZ is: " << axes->GetSizeZ() << std::endl;

9.3.2 BoxObject

The source code for this section can be found in the file
Examples/SpatialObjects/BoxObject.cxx .

The igstk::BoxObject represents an hexahedron in space.

We include the appropriate header.

#include "igstkBoxObject.h"

First we declare the box using standard smart pointers.

typedef igstk::BoxObject BoxObjectType;
BoxObjectType::Pointer box = BoxObjectType ::New();

Then we set the size of the box in each dimension by using theSetSize() function.

double sizex = 10;
double sizey = 20;
double sizez = 30;
box->SetSize(sizex,sizey,sizez);

If one needs to retreive the size of the box this can be done using theGetSize() function.

std::cout << "SizeX is: " << box->GetSizeX() << std::endl;
std::cout << "SizeY is: " << box->GetSizeY() << std::endl;
std::cout << "SizeZ is: " << box->GetSizeZ() << std::endl;

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1BoxObject.html

9.3. Common Objects 99

9.3.3 ConeObject

The source code for this section can be found in the file
Examples/SpatialObjects/ConeObject.cxx .

As the name of class indicates, theigstk::ConeObject represents a cone in space.

First we include the header file.

#include "igstkConeObject.h"

We then declare the cone using standard smart pointers.

typedef igstk::ConeObject ConeObjectType;
ConeObjectType::Pointer cone = ConeObjectType ::New();

The igstk::ConeObject has two internal parameters, its radius and its height expressed in
mm. The radius represents the radius of base of the cone. These two parameters can be set using
SetRadius() andSetHeight() respectively.

cone->SetRadius(10.0);
cone->SetHeight(20.0);

9.3.4 CylinderObject

The source code for this section can be found in the file
Examples/SpatialObjects/CylinderObject.cxx .

The igstk::CylinderObject represents a cylinder in space.

Let’s start by including the appropriate header.

#include "igstkCylinderObject.h"

First we declare the cylinder using standard smart pointers.

typedef igstk::CylinderObject CylinderObjectType;
CylinderObjectType::Pointer cylinder = CylinderObjectT ype ::New();

The igstk::CylinderObject has two parameters, its radius and its height expressed inmm.
These two parameters can be set usingSetRadius() andSetHeight() respectively.

cylinder->SetRadius(10.0);
cylinder->SetHeight(20.0);

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1ConeObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1ConeObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1CylinderObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1CylinderObject.html

100 Chapter 9. Spatial Objects

9.3.5 EllipsoidObject

The source code for this section can be found in the file
Examples/SpatialObjects/EllipsoidObject.cxx .

The igstk::EllipsoidObject represents an ellipsoid in space.

Let’s start by including the appropriate header.

#include "igstkEllipsoidObject.h"

First we declare the ellipsoid using standard smart pointers.

typedef igstk::EllipsoidObject EllipsoidObjectType;
EllipsoidObjectType::Pointer ellipsoid = EllipsoidObje ctType ::New();

The radius of the ellipse can be adjusted in each dimension using the twoSetRadius() func-
tions. The easiest way is to use theSetRadius(double,double,double) function.

ellipsoid->SetRadius(10,20,30);

However, in some cases, the uses of an array might be appropriate The array is defined using
standard type definition, then passed to the ellipsoid as follow.

typedef EllipsoidObjectType::ArrayType ArrayType;
ArrayType radii;
radii[0] = 10;
radii[1] = 20;
radii[2] = 30;
ellipsoid->SetRadius(radii);

9.3.6 ImageObjects

The source code for this section can be found in the file
Examples/SpatialObjects/ImageObjects.cxx .

In this example we show the main features of the ImageObject classes. IGSTK implements on
class per modality, CT, MR and US.

#include "igstkCTImageSpatialObject.h"
#include "igstkMRImageSpatialObject.h"
#include "igstkUSImageObject.h"

First we declare an empty CT image using smart pointers

typedef igstk::CTImageSpatialObject CTImageSpatialObj ect;
CTImageSpatialObject::Pointer ctImage = CTImageSpatial Object ::New();

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1EllipsoidObject.html

9.3. Common Objects 101

Then, for a given point in physical space, we can ask if this particular point is inside (or outside)
the image using theIsInside() function.

typedef CTImageSpatialObject::PointType PointType;
PointType pt;
pt[0] = 10;
pt[1] = 10;
pt[2] = 10;
if(ctImage->IsInside(pt))

{
std::cout << "The point " << pt

<< " is inside the image" << std::endl;
}

else
{
std::cout << "The point " << pt

<< " is outside the image" << std::endl;
}

If the point is inside the image, we can convert the physical point
into an index or a continuous index in the image reference frame.
This is achieve using the TransformPhysicalPointToIndex() and
TransformPhysicalPointToContinuousIndex() functions respectively.

if(ctImage->IsInside(pt))
{
typedef CTImageSpatialObject::IndexType IndexType;
IndexType index;
ctImage->TransformPhysicalPointToIndex (pt , index);

std::cout << "Index is = " << index << std::endl;

typedef CTImageSpatialObject::ContinuousIndexType Con tinuousIndexType;
ContinuousIndexType cindex;
ctImage->TransformPhysicalPointToContinuousIndex (pt , cindex);
std::cout << "Continuous index is = " << cindex << std::endl;
}

We can also check if the image is empty by using theIsEmpty() function.

if(ctImage->IsEmpty())
{
std::cout << "The image is empty" << std::endl;
}

else
{
std::cout << "The image has some non black pixel" << std::end l;
}

102 Chapter 9. Spatial Objects

9.3.7 MeshObject

The source code for this section can be found in the file
Examples/SpatialObjects/MeshObject.cxx .

This example describes how to use theigstk::MeshObject which implements a 3-
dimensional mesh structure. The mesh class provides an API to perform operations on points
and cell. Typically points and cells are created, with the cells referring to their defining points.

Let’s include the header file first.

#include "igstkMeshObject.h"

Then we declare the object using smart pointers.

typedef igstk::MeshObject MeshObjectType;
MeshObjectType::Pointer mesh = MeshObjectType ::New();

A mesh is defined as a collection of 3-dimensional points (x,y,z) in space referenced by an iden-
tification number. In order to add points to the mesh strucutre we use theAddPoint(unsigned
int id,float x, float y,float z) function. Let’s add 4 points in our mesh.

mesh->AddPoint(0,0,0,0);
mesh->AddPoint(1,0,10,0);
mesh->AddPoint(2,0,10,10);
mesh->AddPoint(3,10,0,10);

Then we can retreive the list of points using theGetPoints() function.

typedef MeshObjectType::PointsContainer PointsContain er;
typedef MeshObjectType::PointsContainerPointer Points ContainerPointer;
PointsContainerPointer points = mesh->GetPoints();

PointsContainer::const_iterator it = points->begin();
while(it != points->end())

{
typedef MeshObjectType::PointType PointType;
PointType pt = (*it).second;
std::cout << "Point id = " << (*it).first << " : "

<< pt[0] << "," << pt[1] << "," << pt[2] << std::endl;
it++;
}

The next step is to define cells for the mesh. IGSTK currently supports two type of cells:
tetrahedron and triangle cells. The functions to add a cell to the mesh are defined as follow:

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1MeshObject.html

9.3. Common Objects 103

bool AddTetrahedronCell(unsigned int id,
unsigned int vertex1,unsigned int vertex2,
unsigned int vertex3,unsigned int vertex4);

bool AddTriangleCell(unsigned int id,
unsigned int vertex1,
unsigned int vertex2,
unsigned int vertex3);

Let’s add on tetrahedral cell and one triangle cell to the mesh.

mesh->AddTetrahedronCell(0,0,1,2,3);

mesh->AddTriangleCell(1,0,1,2);

We can then retrieve the cells using theGetCells() . This function returns a list of cells as
described next.

typedef MeshObjectType::CellsContainer CellsContainer ;
typedef MeshObjectType::CellsContainerPointer CellsCo ntainerPointer;
CellsContainerPointer cells = mesh->GetCells();

CellsContainer::const_iterator itCell = cells->begin() ;
while(itCell != cells->end())

{
typedef MeshObjectType::CellType CellType;
unsigned int cellId = (*itCell).first;
std::cout << "Cell ID: " << cellId << std::endl;
itCell++;
}

9.3.8 TubeObject

The source code for this section can be found in the file
Examples/SpatialObjects/TubeObject.cxx .

This example describes how to use theigstk::TubeObject which implements a 3-
dimensional tubular structure in space. The tube is defined by a set of points representing
its centerline. Each point as a position and an associated radius value.

Let’s start by including the appropriate header file.

#include "igstkTubeObject.h"

First we declare the object using smart pointers.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1TubeObject.html

104 Chapter 9. Spatial Objects

typedef igstk::TubeObject TubeObjectType;
TubeObjectType::Pointer tube = TubeObjectType ::New();

Points can be added sequentially in the tube using theAddPoint() function. Let’s add two
points: one at position (0,1,2) with a radius of 10mm, and second one at (1,2,3) with a radius of
20mm.

typedef TubeObjectType::PointType PointType;
PointType pt;
pt.SetPosition(0,1,2);
pt.SetRadius(10);
tube->AddPoint(pt);

pt.SetPosition(1,2,3);
pt.SetRadius(20);
tube->AddPoint(pt);

Then we can use theGetNumberOfPoints() function to get the number of points composing
the tube.

std::cout << "Number of points in the tube = "
<< tube->GetNumberOfPoints() << std::endl;

There are two main functions to get points from the tube The first one isGetPoint(unsigned
int id) which returns a pointer to the corresponding point. Note that if the index does not
exist the function returns a null pointer.

const PointType* outPt = tube->GetPoint(0);
outPt->Print(std::cout);

Instead, the secondGetPoints() function should be used because it is safer by returning the
internal list of points.

typedef TubeObjectType::PointListType PointListType;
PointListType points = tube->GetPoints();
PointListType::const_iterator it = points.begin();
while(it != points.end())

{
(*it).Print(std::cout);
std::cout << std::endl;
it++;
}

TheClear() function can be used to remove all the points from the tube.

tube->Clear();
std::cout << "Number of points in the tube after Clear() = "

<< tube->GetNumberOfPoints() << std::endl;

9.3. Common Objects 105

9.3.9 VascularNetwork & Vessel Objects

The source code for this section can be found in the file
Examples/SpatialObjects/VascularNetworkObject.cxx .

This example describes how to use theigstk::VascularNetworkObject to group
igstk::VesselObject s together to represent a vascular tree.

We first include the header files.

#include "igstkVascularNetworkObject.h"
#include "igstkVesselObject.h"

Next we declare aigstk::VascularNetworkObject .

typedef igstk::VascularNetworkObject VascularNetworkT ype;
VascularNetworkType::Pointer vasculature = VascularNet workType::New();

Then we create aigstk::VesselObject .

typedef igstk::VesselObject VesselType;
VesselType::Pointer vessel = VesselType::New();

Like the TubeObject, a VesselObject is defined as a collection of centerline points with associ-
ated radius.

typedef VesselType::PointType PointType;
PointType pt;
pt.SetPosition(0,1,2);
pt.SetRadius(10);
vessel->AddPoint(pt);

pt.SetPosition(1,2,3);
pt.SetRadius(20);
vessel->AddPoint(pt);

We then add the newly created vessel to the vasculature. Since theVascularNetworkObject
derives fromGroupObject we use the superclassRequestAddObject() function.

vasculature->RequestAddObject(vessel);

In some cases, it is interesting to get a selected vessel froma VascularNetworkObject . To
retreive the vessel, we need to setup an observer first.

igstkObserverObjectMacro(Vessel,
::igstk::VascularNetworkObject::VesselObjectModifie dEvent,
::igstk::VesselObject)

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1VascularNetworkObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1VesselObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1VascularNetworkObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1VesselObject.html

106 Chapter 9. Spatial Objects

Note that the declaration of the observer should be done outside of the class. This macro will
create two functions depending on the name of the first argument:

- GotVessel() which returns true if the vessel exists.

- GetVessel() which returns the actual pointer to the vessel. Once the observer is declared we
add it to the VascularNetworkProject using theAddObserver() function.

typedef VesselObserver VesselObserver;
VesselObserver::Pointer vesselObserver = VesselObserve r::New();

vasculature->AddObserver(
VascularNetworkType::VesselObjectModifiedEvent(),
vesselObserver);

We then request for a vessel given its position in the list using the
RequestGetVessel(unsigned long position) function. We also check if the observer got
the vessel.

vasculature->RequestGetVessel(0);
if(!vesselObserver->GotVessel())

{
std::cout << "No Vessel!" << std::endl;
return EXIT_FAILURE;
}

The vessel is retreived using theGetVessel() function from the observer.

VesselType::Pointer outputVessel = vesselObserver->Get Vessel();

outputVessel->Print(std::cout);
std::cout << "Number of points in the vessel = "

<< outputVessel->GetNumberOfPoints() << std::endl;

9.4 Reading SpatialObjects

IGSTK has the ability to read objects from files. In this section we show an example on how to
read a vascular network from a file. One can notice that reading other objects is very similar.

The source code for this section can be found in the file
Examples/SpatialObjects/ReadVascularNetworkObject.c xx .

This example describes how to use theigstk::VascularNetwork to read a SpatialObject
vascular tree from a file. Let’s start by including the appropriate header files.

#include "igstkVascularNetworkReader.h"
#include "itkStdStreamLogOutput.h"

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1VascularNetwork.html

9.4. Reading SpatialObjects 107

The SpatialObject readers return the output object via events, therefore, we declare an observer
using the igstkObserverObjectMacro. This macro expect three arguments: a) the name of the
observer -to be determined by the user-, b) the type of event to observe, c) the type of the object
to be returned.

igstkObserverObjectMacro(VascularNetwork,
::igstk::VascularNetworkReader::VascularNetworkModi fiedEvent,
::igstk::VascularNetworkObject)

First we declare the VascularNetwork using standard type definition and smart pointers.

typedef igstk::VascularNetworkReader ReaderType;
ReaderType::Pointer reader = ReaderType::New();

We then plug a logger to the reader to get information about the reading process (see the logging
chapter for more information).

typedef itk::Logger LoggerType;
typedef itk::StdStreamLogOutput LogOutputType;

LoggerType::Pointer logger = LoggerType::New();
LogOutputType::Pointer logOutput = LogOutputType::New();
logOutput->SetStream(std::cout);
logger->AddLogOutput(logOutput);
logger->SetPriorityLevel(itk::Logger::DEBUG);

reader->SetLogger(logger);

Then we set the filename using theRequestSetFileName() function.

std::string filename = argv[1];
reader->RequestSetFileName(filename);

Finally we ask the reader to read the object.

reader->RequestReadObject();

In order to get the output object we first plug the observer into the reader.

VascularNetworkObserver::Pointer vascularNetworkObse rver
= VascularNetworkObserver::New();

reader->AddObserver(ReaderType::VascularNetworkModi fiedEvent(),
vascularNetworkObserver);

108 Chapter 9. Spatial Objects

Then we request the output vascular network.

reader->RequestGetVascularNetwork();

If everything went well, the observer should receive the vascular network. We can check that
this is the case using theGotVascularNetwork() function of the observer.

if(!vascularNetworkObserver->GotVascularNetwork())
{
std::cout << "No VascularNetwork!" << std::endl;
return EXIT_FAILURE;
}

Finally we get the output using theGetVascularNetwork() function.

typedef ReaderType::VascularNetworkType VascularNetwo rkType;
typedef VascularNetworkType::VesselObjectType VesselO bjectType;

VascularNetworkType::Pointer network =
vascularNetworkObserver->GetVascularNetwork();

and we display the information to make sure everything is right.

network->Print(std::cout);

9.5 Conclusion

We have shown that IGSTK SpatialObject defines a base class for object geometry. By deriving
from the base SpatialObject class, users can extend the current set of objects present in the
toolkit. More complex objects can then be defined like theigstk::UltrasoundProbeObject .

In the next chapter we present the SpatialObjectRepresentation class which enables rendering
of the SpatialObjects.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1UltrasoundProbeObject.html

CHAPTER

TEN

SpatialObject Representation

10.1 Introduction

The SpatialObjectRepresentation classes characterize the rendering aspect of each SpatialOb-
ject. While SpatialObject defines the geometry of a given object, the SpatialObjectRepresenta-
tion describes how the object should be displayed on screen.

A SpatialObjectRepresentation can be shared between viewsif the rendering parameters are
common between the views. However, in most of the cases, a user would want to create one
SpatialObjectRepresentation per SpatialObject. This allows to tune the rendering parameters
-the color of the object for instance-, while keeping the same common geometry.

This chapter is divided as follow. First, we present an example on how to display a cube in a
window. Second, we show different object representations available in the toolkit.

10.2 Displaying my first object

The source code for this section can be found in the file
Examples/SpatialObjects/ObjectRepresentation.cxx .

This example describes how to use theigstk::BoxObjectRepresentation to display a
igstk::BoxObject in a igstk::View3D .

This example also uses FLTK to create a window, therfore we include the appropriate header
files.

#include "igstkBoxObjectRepresentation.h"
#include <FL/Fl_Window.h>
#include <igstkView3D.h>

Like any applications in IGSTK we first initialize the RealTimeClock.

igstk::RealTimeClock::Initialize();

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1BoxObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1BoxObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1View3D.html

110 Chapter 10. SpatialObject Representation

Then we create a cube of size 10mmusing the igstk::BoxObject class.

typedef igstk::BoxObject ObjectType;
typedef igstk::BoxObjectRepresentation ObjectRepresen tationType;
ObjectType::Pointer cube = ObjectType::New();

The appropriate object representation for the BoxObject iscreated using standard typedef and
smart pointers.

ObjectRepresentationType::Pointer
cubeRepresentation = ObjectRepresentationType::New();

Every ObjectRepresentation have an RGB color and an opacityas rendering parameters. These
two parameters can be tuned using theSetColor(R,G,B) andSetOpacity() functions respec-
tively.

cubeRepresentation->SetColor(0.0, 0.0, 1.0);
cubeRepresentation->SetOpacity(1.0);

Then we tell the ObjectRepresentation to get the geometry from the BoxSpatialObject. Inter-
nally the ObjectRepresentation creates VTK actors from theactual geometry of the SpatialOb-
ject.

cubeRepresentation->RequestSetBoxObject(cube);

We then define the GUI window and the view.

Fl_Window * form = new Fl_Window(512,512,"Displaying my fi rst object");

typedef igstk::View3D View3DType;
View3DType * view3D = new View3DType(6,6,500,500,"View 3D ");

form->end();
form->show();

We set the current representation of the object to the view using the RequestAddObject()
function.

view3D->RequestAddObject(cubeRepresentation);

We set the refresh rate of the view and we enable interactions.

view3D->RequestSetRefreshRate(0.1);
view3D->RequestEnableInteractions();

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1BoxObject.html

10.3. Standard Object Representations 111

Figure 10.1:Object Representation Example.

Finally we request the view to start rendering the scene.

view3D->RequestStart();

We then refresh the display until the window is closed.

while(form->visible())
{
Fl::wait(0.05);
igstk::PulseGenerator::CheckTimeouts();
view3D->RequestResetCamera();
}

At the end, we delete the view3D and form since they are not using smart pointers.

delete view3D;
delete form;

The output of this example is shown in figure10.1

10.3 Standard Object Representations

In this section we present the different ObjectRepresentations available in the toolkit and we
describe how they work internally.

112 Chapter 10. SpatialObject Representation

Figure 10.2:Axes and Box Object Representation.

10.3.1 Axes Object

The igstk::AxesObjectRepresentation uses a vtkAxesActor internally to display three
orthogonal arrows representing the X, Y and Z direction. By default the X direction is repre-
sented in red, the Y direction in green and the Z direction in blue. Note that for the moment the
color and the opacity of each axis cannot be changed. Also thelabel of the axis is turned off by
default.

10.3.2 Box Object

The igstk::BoxObjectRepresentation uses a vtkCubeSource object internally to display a
3-dimensional hexahedron. The color and opacity of the box can be set.

10.3.3 Cone Object

The igstk::ConeObjectRepresentation uses a vtkConeSource object internally to display
a 3-dimensional cone in space. The color and opacity of the cone can be set.

10.3.4 Cylinder Object

The igstk::CylinderObjectRepresentation uses a vtkCylinderSource object internally to
display a 3-dimensional cylinder.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1AxesObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1BoxObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1ConeObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1CylinderObjectRepresentation.html

10.3. Standard Object Representations 113

Figure 10.3:Cone and Cylinder Object Representation.

Figure 10.4:Ellipsoid and Mesh Object Representation.

10.3.5 Ellipsoid Object

The igstk::EllipsoidObjectRepresentation uses a vtkSuperquadricSource object inter-
nally to display a 3-dimensional ellipsoid.

10.3.6 Mesh Object

The igstk::MeshObjectRepresentation uses a vtkUnstructuredGrid object internally to
display a 3-dimensional polydata in space. The appropriatecells are created using VTK based
on their geometry.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1EllipsoidObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1MeshObjectRepresentation.html

114 Chapter 10. SpatialObject Representation

Figure 10.5:Vascular Network Object Representation.

10.3.7 Vascular Network Object

The igstk::VascularNetworkObjectRepresentation uses a complete VTK pipeline in
order to display a 3-dimensional tube in space. First we use avtkPolyLine to describe the
centerline of the tube then we convert it to a vtkCellArray and plug it in a vtkPolyData. Here
we perform a cleaning stage using the vtkCleanPolyData to make sure the tube is free from
duplicate points. Finally we create the tube object using a vtkTubeFilter.

In order to look better, we also add spheres using vtkSphereSource at the extermities of each
tube.

10.4 Ultrasound Probe Representation

We have seen that basic shapes can be easily represented by mapping geometrical objects into
rendered objects using VTK. In this section we show that morecomplex shapes can be repre-
sented in IGSTK. For instance, the UltrasoundProbeObjectRepresentation class.

One can notice that the UltrasoundProbeObject class is fairly simple and only exposes the pa-
rameters the user is able to change. However its representation class involve a complex VTK
pipeline. Among the VTK classes within the pipeline, the vtkCylinder, vtkPlane, vtkImplicit-
Boolean and the vtkMarchingContourFilter are the primary classes used.

10.5 Sharing & Duplicating Object Representations

In this section we show how to share object representations between views.

The source code for this section can be found in the file

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1VascularNetworkObjectRepresentation.html

10.5. Sharing & Duplicating Object Representations 115

Figure 10.6:Ultrasound Probe Object Representation.

Examples/SpatialObjects/SharedObjectRepresentation. cxx .

This example describes how to share object representationsbetween views. We extend the pre-
vious example and focus only on the object representation sharing. Please refer to the previous
example.

We now add a second View to our window. We haveView3D1 and View3D2 as two
igstk::View3D s.

Fl_Window * form = new Fl_Window(512,262,"Sharing Object R epresentations");

typedef igstk::View3D View3DType;
View3DType * view3D1 = new View3DType(6,6,250,260,"View 3 D 1");
View3DType * view3D2 = new View3DType(260,6,250,260,"Vie w 3D 2");

form->end();
form->show();

We set the current representation of the object to the first view using theRequestAddObject()
function.

view3D1->RequestAddObject(cubeRepresentation);

For this example, we create a second object representation and we set the color to be red and
the opacity to 0.5. We set the same BoxSpatialObject to the geometry.

ObjectRepresentationType::Pointer
cubeRepresentation2 = ObjectRepresentationType::New() ;

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1View3D.html

116 Chapter 10. SpatialObject Representation

cubeRepresentation2->SetColor(1.0, 0.0, 0.0);
cubeRepresentation2->SetOpacity(0.5);

cubeRepresentation2->RequestSetBoxObject(cube);

We then add the newly created representation to the second view.

view3D2->RequestAddObject(cubeRepresentation2);

We then remove the current object representation from the second view using the
RequestRemoveObject function.

view3D2->RequestRemoveObject(cubeRepresentation2);

An important function of the ObjectRepresentation is theCopy() function which creates a deep
copy of the current representation as shown below.

view3D2->RequestAddObject(cubeRepresentation->Copy());

CHAPTER

ELEVEN

View

View component present renderings of surgical scenes to theclinician. The view classes are
built using VTK classes encapsulated into a restrictive APIsubjected to control of a state ma-
chine. Viewers aggregate spatial object representations which are graphical descriptions of
spatial objects. Synchronization between scene generation and rendering frequency is achieved
using igstk::PulseGenerator . When FLTK is used for GUI purpose, the View classs take
FL events and translate them into VTK events to enable user interaction within the render win-
dow.

IGSTK provide 2D and 3D viewing capability. For this purpose, igstk::View2D and
igstk::View3D are provided.

11.1 State Machine

Figure11.1illustrates the State Machine of theigstk::View2D class.

This class has the following states

IdleState

RefreshingState

StartRefreshingInput StopRefreshingInput

Figure 11.1:State Diagram of the View2D class.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PulseGenerator.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1View2D.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1View3D.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1View2D.html

118 Chapter 11. View

1. Idle : Idle state

2. Refreshing: Refreshing state

11.2 Component Interface

The following methods are available in the public interface.

1. RequestSetRefreshRate (double): Set the desired frequency for refreshing the view.

2. RequestAddObject (ObjectRepresentation *): Add an object representation to the list.

3. RequestAddAnnotation2D (Annotation2D *): Add corner annotation

4. RequestRemoveObject (ObjectRepresentatio *): Remove an object representation from
the list

5. RequestSaveScreenShot (std::string): Save a screen shot into a file in PNG format

6. RequestDisableInteractions(): Disable user interactions with the render window

7. RequestEnableInteractions(): Enable user interactions withe render window

8. RequestResetCamera(): Reset the camera to a known postion and orientation

9. RequestStart(): Start the periodic refreshing of the view

10. RequestStop(): Stop the peroidic refreshing of the view

11.3 Example

The source code for this section can be found in the file
Examples/View/View1.cxx .

This example illustrates how to use theigstk::View3D class to display spatial objects.

First, a 3D view and other useful data types are defined

typedef igstk::View3D View3DType;
typedef itk::Logger LoggerType;
typedef itk::StdStreamLogOutput LogOutputType;

For debugging purpose, vtk window output can be redirected to a logger, using
igstk::VTKLoggerOutput as follows.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1View3D.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1VTKLoggerOutput.html

11.3. Example 119

igstk::VTKLoggerOutput::Pointer vtkLoggerOutput =
igstk::VTKLoggerOutput::New();

vtkLoggerOutput->OverrideVTKWindow();
vtkLoggerOutput->SetLogger(logger);

In this example, we would like to display an ellipsoid object. To carry out this, an ellipsoid
spatial object is first instantiated.

igstk::EllipsoidObject::Pointer ellipsoid = igstk::Ell ipsoidObject::New();
ellipsoid->SetRadius(0.1,0.1,0.1);

Next, a representation object is created usingigstk::EllipsoidObjectRepresentation
class. The representation class provides the mechanism to generate graphical description of the
spatial object for visualization in a VTK scene.

igstk::EllipsoidObjectRepresentation::Pointer ellips oidRepresentation =
igstk::EllipsoidObjectRepresentation::New();

ellipsoidRepresentation->RequestSetEllipsoidObject(ellipsoid);
ellipsoidRepresentation->SetColor(0.0,1.0,0.0);
ellipsoidRepresentation->SetOpacity(1.0);

Geometrical transformation can be applied to the ellipsoidspatial object as follows.

const double validityTimeInMilliseconds = 1e300; // 100 se conds
igstk::Transform transform;
igstk::Transform::VectorType translation;
translation[0] = 0;
translation[1] = 10;
translation[2] = 10;
igstk::Transform::VersorType rotation;
rotation.Set(0.0, 0.0, 0.0, 1.0);
igstk::Transform::ErrorType errorValue = 10; // 10 millim eters

transform.SetTranslationAndRotation(
translation, rotation, errorValue, validityTimeInMilli seconds);

ellipsoid->RequestSetTransform(transform);

Next, FLTK window and a view object is instantiated.

Fl_Window * form = new Fl_Window(601,301,"View Test");
View3DType * view3D = new View3DType(310,10,280,280,"3D V iew");
form->end();
form->show();

The ellispoid is added to the scene usingRequestAddObject method.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1EllipsoidObjectRepresentation .html

120 Chapter 11. View

view3D->RequestAddObject(ellipsoidRepresentation);

The View components are designed for refreshing their representation at regular intervals. The
application developer must set the desired refresh rate in Hertz and should trigger the start of
the process of internal generation of pulses that makes possible for the View class to refresh
itself.

view3D->RequestSetRefreshRate(30);
view3D->RequestStart();

At this point it is now possible to start the event loop that will drive the user interaction of
the application. Inside the loop it is of fundamental importance to invoke the call to the
igstk::PulseGenerator methodCheckTimeouts() . This methods ensures that the timers
of pulse generators in all the autonomous IGSTK classes are checked to see if they should trig-
ger timer events. The same for loop should have some form of wait or sleep instruction in order
to prevent the loop from taking over the CPU time.

for(unsigned int i=0; i<10; i++)
{
Fl::wait(0.01);
igstk::PulseGenerator::CheckTimeouts();
Fl::check(); // trigger FLTK redraws
}

Once the event loop finishes, we should stop the refresh process of the view class, by calling
the methodRequestStop() .

view3D->RequestStop();

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PulseGenerator.html

CHAPTER

TWELVE

Logging

For most of critical software systems, logging component enables the post-analysis of the oper-
ational process and recovery from failure. In1 ITK and IGSTK, logging component is provided
to help record messages to output streams so that analysis, verification and debugging of sys-
tems and operational processes are efficiently done.

This chapter will cover the logging component in ITK 2.8.1 and the current version of IGSTK
at the time of this writing.

12.1 Role of Logging in DBMS

Database management systems use logs to recover from various failures, to backup data, and to
analyze the reason of failure. The integrity of databases isguaranteed using logs by logging be-
fore writing on disks (which is called Write-Ahead Logging Protocol, WAL), databases can be
restored using logs even when the DBMS or computer system crashed down. Restart recovery
is initiated while restarting the DBMS after system failure. The first pass of the restart recovery
is to analyze logs from the last check point and initialize in-memory data structures such as a
transantion table. In the second pass, DBMS redoes all previous transaction operations accord-
ing to logs because the state of in-memory data structures and buffers were lost and some of
data in buffers were not reflected on disks after the sudden failure. In this pass, the data that
were modified only in buffers and logs from the last transaction are restored. The last pass is to
undo all the loser transactions by rolling back transactions stopped before the completion. [12]

12.2 Role of Logging in IGSTK

In image-guided surgery systems, logs will be used for enhancing the robustness of the system
during development, analysing the causes and points of failures, and verifying that the system

1As ITK needed the logging component and IGSTK is based on ITK,base logging classes are included in ITK.
IGSTK extends the base classes to support FLTK, VTK, the real-time clock with the unified time unit and so on.

122 Chapter 12. Logging

works in an expected way. Action-Ahead Logging or Operation-Ahead Logging protocol is
to ensure that logging on a disk, not in a buffer should be donebefore any action or operation.
These terms are derived from WAL because image-guided surgery systems do not only include
writing but also human involvement and hardware operations. By sticking to OAL, logs can-
not miss the last operation to be done before the system failure. A variety of hardware can be
involved in the image-guided surgery procedure and it makesthe automatic recovery from the
sudden failure unfeasible because most of hardware requires human involvement especially at
the setup and initialization stages in thesedays. To guarantee the integrity of data written during
the procedure, DBMS is recommended to be used instead of writing logs and transaction pro-
cessing codes in the image-guided surgery software itself.Therefore, the purposes of logging
in IGSTK generally are confined to the analysis, verification, and debugging of systems and
procedures. Recovery using logs might be done in certain situations but is not expected to be
common in the image-guided surgery field.

12.3 Structure of the Logging Component

The level of seriousness is assigned to each log message. A logger prints only messages with
the level above the logger’s designated level. With this feature, developers can filter out unin-
teresting messages. For example, messages for debugging can be printed only on debugging
phase of development. Each logger can print messages to multiple destinations (files, consoles,
GUI windows). Loggers can be run in a separate thread, printing each messages one by one
without mixing up multiple messages. Multiple loggers can be created and used through Log-
gerManager. Messages toward ITK and VTK message windows canbe redirected to Loggers
so that every message generated by the software using Logging components of ITK and IGSTK
is concentrated in the unified logging service.

12.3.1 LogOutput

itk::LogOutput class represents the destination of the logging and serves as a base class for
other LogOutput classes. Derived classes from the LogOutput class encapsulate the certain
location on certain media. Currently, StdStreamLogOutputand MultipleLogOutput classes are
available.

StdStreamLogOutput

itk::StdStreamLogOutput encapsulates the standard output stream, which can basically be a
console output stream, an error output stream, or a file output stream.

12.3. Structure of the Logging Component 123

MultipleOutput

igstk::MultipleOutput contains multiple standard outputstreams and can be used as standard
output streams. It forwards strings to streams that it contains. This class is not a LogOutput
class and cannot be used with the logging component.

MultipleLogOutput

itk::MultipleLogOutput aggregates multiple LogOutput objects in it. However, it’s already used
in LoggerBase class so that Logger classes can contain multiple LogOutput objects.

FLTKTextBufferLogOutput

igstk::FLTKTextBufferLogOutput forwards messages to a FL TK text buffer
which is in Fl_Text_Buffer type. This buffer can be used for o ther
FLTK widgets.

FLTKTextLogOutput

igstk::FLTKTextLogOutput displays messages in FLTK text w indow which
is in Fl_Text_Display type. This is meant to diplay log messa ges on
a GUI window.

Extending LogOutput

Custom LogOutputs derived from LogOutput class can encapsulate other output streams such
as TCP/IP connection, OS-dependent system log records, thering of files, database table, and
so on. Developers only need to provide methods for writing, flushing a buffer, and setting up
the output stream(s).

12.3.2 Logger

LoggerBase

LoggerBase class is the base implementation of other Loggerclasses. A Logger object can con-
tain multiple LogOutputs and messages for that Logger object are written to every LogOutput
of the Logger at the same time.

PriorityLevel

Each Logger object has a designated priority level, which can be one of following items:

124 Chapter 12. Logging

MUSTFLUSH In this level, messages with any other level are filtered out.

FATAL Logger only posts messages with FATAL or MUSTFLUSH level to LogOutputs.

CRITICAL only posts CRITICAL, FATAL, MUSTFLUSH level messages.

WARNING only posts WARNING, ..., MUSTFLUSH level messages.

INFO only posts INFO, ..., MUSTFLUSH level messages.

DEBUG only posts DEBUG, ..., MUSTFLUSH level messages.

NOTSET Logger posts every message to LogOutputs.

For each message, its priority level means:

MUSTFLUSH Messages with this level must be flushed in any case.

FATAL Messages with this level contain information about fatal error or exception. Applica-
tion must abort.

CRITICAL Messages with this level contain information about critical error or exception.
Operation was terminated.

WARNING Messages with this level give a warning about potential danger.

INFO Messages with this level contain information without potential or expected danger.

DEBUG Messages with this level contain information or data for debugging.

NOTSET Messages with this level have no serious information.

The Logger object only posts messages if the priority level of a message is equal to or more
serious than the priority level of the Logger.

Flushing

Posting data to output media generally does buffering to reduce the number of output operations.
Buffering is especially effective when the minimal cost of each output operation is expensive.
Hard disks only allow block I/O and each message through telecommunication requires travel
time from the source location to the target location, and many other output devices need buffer-
ing. Buffered data/messages should be flushed out of the buffer to the real destination at some
point. At least, flushing must be done when the buffer is full and this situation is automatically
handled by the operating system or system software. Urgent messages should be flushed out
even sacrificing the efficiency of the output operation and this is a common case when logging
for serious reasons. Logger objects provide two options to handle the latter case.

• To use Flush() method manually

• To set a minimal LevelForFlushing and let Logger automatically flush whenever mes-
sages with an equal or more serious level than the specified LevelForFlushing are met.

12.3. Structure of the Logging Component 125

Formatting

Loggers derived from LoggerBase can override BuildFormattedEntry() method to do custom
formatting. The overridden method can format the message bycreating and returning a string
in any format. The default format is as following:

[timestamp in seconds] : [logger name] [priority] [message]

Timestamp

Timestamp for logging is provided by RealtimeClock object.Each message contains its times-
tamp in seconds.

Logger

The Logger class is derived from LoggerBase but Logger doesn’t add any other functionality
from LoggerBase. Logger has the simplest form as a derived class of LoggerBase.

LoggerManager

For managing multiple loggers, multiple logger objects canbe contained in a LoggerManager
object. A name is given to each logger so that loggers can be accessed by that name. Using
LoggerManager’s interface, logging operations to every logger in a LoggerManager is done via
one method call instead of calling one method call per one logger.

12.3.3 Multi-threaded Logging

LoggerThreadWrapper

itk::LoggerThreadWrapper is a template class that wraps a logger class and enables logging in
a separate thread. LoggerThreadWrapper inherits the Logger class given as a template argu-
ment. Logging method calls through the LoggerThreadWrapper object make logging operation
queued and performed whenever the thread takes the available computational resource and the
queue is not empty. Although LoggerThreadWrapperprovidesmore flexibility than ThreadLog-
ger by allowing various types of Loggers to be used but LoggerThreadWrapper has a problem
when used with compilers weak at the C++ template feature.

ThreadLogger

itk::ThreadLogger provides the same functionality with LoggerThreadWrapper except that
ThreadLogger is derived from the Logger class. If differenttypes of Logger is necessary in-

126 Chapter 12. Logging

stead of the simple Logger class, Loggers classes should be further derived from ThreadLogger
class by creating a new class or using LoggerThreadWrapper.

12.3.4 Redirecting ITK, VTK log messages to Logger

Overriding itk::OutputWindow

itk::LoggerOutput class can override itk::OutputWindow and redirect log messages from ITK to
a Logger object. ITK applications can still use conventional ITK log codes and those messages
can be sent to a Logger in any type by using LoggerOutput class.

Overriding vtkOutputWindow

igstk::VTKLoggerOutput redirects log messages from VTK toa Logger object. This class plays
a similar role as itk::LoggerOutput but is included in IGSTK.

12.4 Example

The source code for this section can be found in the file
Examples/Logging/Logging1.cxx .

This example shows how to extend Logger for printing log messages in a custom format.

XMLLogger class is defined to construct log messages in XML format. Indentation is automat-
ically done here. Most of XML viewers show the hierarchical structure of log messages and
provide UIs to collapse and expand subelements. XMLLogger opens a new element when the
first character of the log message is

’<’

and closes a element when the first character is

’>’

Otherwise, a self-closing element is created when no angular bracket is used for the first char-
acter. BuildFormattedEntry() method is redefined in XMLLogger class for overriding default
formatting. It creates a string containing a timestamp, a logger name, the priority level of a
message, and a message content. Some of these components canbe omitted if unnecessary.
The logger name was omitted here to shorten the length of messages.

namespace igstk
{

12.4. Example 127

class XMLLogger: public itk::Logger
{
public:

typedef XMLLogger Self;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::Logger Superclass;

igstkNewMacro(Self);

/** Provides a XML-formatted log entry */
virtual std::string BuildFormattedEntry(PriorityLevel Type level,

std::string const & content)
{
static std::string m_LevelString[] = { "MUSTFLUSH", "FATA L",

"ERROR", "WARNING", "INFO", "DEBUG", "NOTSET" };
itk::OStringStream s;
s.precision(30);
if(content.at(0) == ’<’)

{
for(int i = 0; i < m_Depth; ++i)

{
s << " ";
}

s << "<Log timestamp=’" << m_Clock->GetTimeStamp()
<< "’ level=’" << m_LevelString[level]
<< "’ message=’" << content.substr(1, content.size()-1) < < "’>"
<< std::endl;

++m_Depth;
}

else if(content.at(0) == ’>’)
{
--m_Depth;
for(int i = 0; i < m_Depth; ++i)

{
s << " ";
}

s << "</Log>" << std::endl;
}

else
{
for(int i = 0; i < m_Depth; ++i)

{
s << " ";
}

s << "<Log timestamp=’" << m_Clock->GetTimeStamp()

128 Chapter 12. Logging

<< "’ level=’" << m_LevelString[level]
<< "’ message=’" << content << "’/>"
<< std::endl;

}
return s.str();
}

protected:
/** Constructor */
XMLLogger() {m_Depth = 0;}

/** Destructor */
virtual ˜XMLLogger() {};

private:

int m_Depth;

};

} // namespace igstk

The following code fragment creates an XMLLogger instance,StdStreamLogOutput instances
connected to a log file and the console, and then sets parameters for the logger.

typedef igstk::XMLLogger LoggerType;
typedef itk::StdStreamLogOutput LogOutputType;
LoggerType::Pointer logger = LoggerType::New();
LogOutputType::Pointer logOutput = LogOutputType::New();
LogOutputType::Pointer logOutput2 = LogOutputType::New ();
ofstream fout("log.xml");
logOutput->SetStream(fout);
logOutput2->SetStream(std::cout);
logger->AddLogOutput(logOutput);
logger->AddLogOutput(logOutput2);
logger->SetPriorityLevel(itk::Logger::DEBUG);

The XMLLogger prints log messages in XML format so that the log messages are structured hi-
erarchically. After running this example, open the generated log.xml file using an XML viewer.

logger->Debug("<main()");

logger->Debug("Hello world1");

logger->Critical("<nested 1");
logger->Debug("Hello world2");

12.4. Example 129

logger->Info("<nested 2");
logger->Debug("Hello world3");
logger->Error("Hello world4");
logger->Info(">nested 2");

logger->Debug("Hello world5");
logger->Critical(">nested 1");

logger->Debug(">main()");

log.xml file is generated as the following:

<Log timestamp=’24444134232.34433’ level=’DEBUG’ messa ge=’main()’>
<Log timestamp=’24444134232.3451’ level=’DEBUG’ messag e=’Hello world1’/>
<Log timestamp=’24444134232.345699’ level=’ERROR’ mess age=’nested 1’>

<Log timestamp=’24444134232.346279’ level=’DEBUG’ mess age=’Hello world2’/>
<Log timestamp=’24444134232.346897’ level=’INFO’ messa ge=’nested 2’>

<Log timestamp=’24444134232.347507’ level=’DEBUG’ mess age=’Hello world3’/>
<Log timestamp=’24444134232.348164’ level=’ERROR’ mess age=’Hello world4’/>

</Log>
<Log timestamp=’24444134232.348892’ level=’DEBUG’ mess age=’Hello world5’/>

</Log>
</Log>

CHAPTER

THIRTEEN

ImageIO

One of the essential components of an image guided surgery application is image input/output
module. Preoperative/Intraoperative images are read in for surgical planning and guidance.
Only DICOM image format is handled in IGSTK. This was a designdecision made to make
sure image formats not suitable for medical application arenot processed by IGSTK algo-
rithms. IGSTK provides classes to read DICOM data from CT, MRI and Ultrasound modali-
ties. These classes are derived fromigstk::ImageReader base class which is templated over
igstk::ImageSpatialObject

13.1 DICOM Reader

DICOM image reader class serves as a base class for MRI, US andCT image reader subclasses.
These derived classes are templated over image spatial object type. For example, the MRI
image reader class is templated over MRI image spatial object. DICOM image reader class
uses GDCM library for DICOM image reading. INSERT a block diagram depicting the class
hierachy of the dicom image reader classes.

13.1.1 State Machine Design

Figure13.1illustrates the State Machine of theigstk::DICOMImageReader class.

This class has the following states

1. Idle: Idle state

2. ImageDirectoryNameRead: The name of the directory containing the DICOM data is
read

3. ImageSeriesFileNamesGenerated: The dicom series filenames are generated

4. AttemptingToReadImage: The state machine is in a transition state reading the DICOM
image data

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1ImageReader.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1ImageSpatialObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1DICOMImageReader.html

132 Chapter 13. ImageIO

IdleState

ImageDirectoryNameReadState

ImageDirectoryNameValidInput ResetReaderInput

AttemptingToReadImageState

ReadImageRequestInput

ResetReaderInput ImageReadingErrorInput

ImageReadState

ImageReadingSuccessInput

ResetReaderInput

Figure 13.1:State Diagram of the DICOMImageReader class.

5. ImageRead:DICOM image is read

13.1.2 Component Interface

The following methods are available in the public interface.

1. RequestSetDirectory: Set the directory name containing the DICOM data

2. RequestReadImage: Request image reading

3. RequestGetPatientNameInformation: Request the reader to throw patient name informa-
tion loaded event

4. RequestGetModalityInformation: Request the reader to throw a modaltiy information
loaded event

13.1.3 Special features

The dicom image readers check the validity of the input dicomdata to avoid incorrect reading
and reconstruction of 3D volume . One of the issues is gantry tilt. The itk::OrientedImage class
that is used internally byigstk::DICOMImageReader handles only dicom data acquired in 3D
orthogonal space. In the preprocessing stage, the DICOM image reader checks on the value of
the gantry tilt. If the gantry tilt is greater than a threshold value, the reader throws image invalid
error event.

Similarly the modaltiy type of the input DICOM image data is checked to make sure the correct
dicom image reader is used to read the input dicom data. For example, if the one attempts to
read a CT image data using MRI image reader, then invalid image reading error event will be
thrown.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1DICOMImageReader.html

13.1. DICOM Reader 133

13.1.4 Example

The source code for this section can be found in the file
Examples/DICOMImageReader/DICOMImageReader1.cxx .

This example illustrates how to use the DICOM image reader.

To use this class, appropriate callback subclasses need to be first defined. This procedure is im-
portant because information is passed from the reader classto the application using information
loaded events. The events could be error events or events loaded with dicom information such
as modality and patient ID.

For example, callback class to observe Modality information is defined as follows.

class DICOMImageModalityInformationCallback: public it k::Command
{
public:

typedef DICOMImageModalityInformationCallback Self;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::Command Superclass;
itkNewMacro(Self);

typedef igstk::ImageSpatialObject<
short,
3 > ImageSpatialObjectType;

typedef igstk::DICOMModalityEvent DICOMModalityEventT ype;

void Execute(const itk::Object *caller, const itk::Event Object & event)
{

}
void Execute(itk::Object *caller, const itk::EventObjec t & event)

{
if(DICOMModalityEventType().CheckEvent(&event))

{
const DICOMModalityEventType * modalityEvent =

dynamic_cast< const DICOMModalityEventType *>(&event);
std::cout << "Modality= " << modalityEvent->Get() << std:: endl;
}

}
protected:

DICOMImageModalityInformationCallback() { };

private:
};

134 Chapter 13. ImageIO

Simialar callback classes need to be defined to observe patient name and image reading error.

In this example, we would like to read a CT image. Therefore, first a CT image reader object is
insantiated as follows.

typedef igstk::CTImageReader ReaderType;
ReaderType::Pointer reader = ReaderType::New();

A logger can be linked to the reader.

reader->SetLogger(logger);

First, dicom image directory is set

reader->RequestSetDirectory(directoryName);

Next, the user makes a request to read the image.

reader->RequestReadImage();

To access DICOM information about this image, callback objects need to be instantiated and
added to the observer list of the reader object.

typedef DICOMImageModalityInformationCallback Modalit yCallbackType;

ModalityCallbackType::Pointer dimcb = ModalityCallback Type::New();
reader->AddObserver(igstk::DICOMModalityEvent(), dim cb);
reader->RequestGetModalityInformation();

Similar operation can be performed to access the patient name

/* Add observer to listen to patient name info */
typedef DICOMImagePatientNameInformationCallback Pati entCallbackType;

PatientCallbackType::Pointer dipncb = PatientCallbackT ype::New();
reader->AddObserver(igstk::DICOMPatientNameEvent(), dipncb);
reader->RequestGetPatientNameInformation();

13.2 Screenshot generation

IGSTK provides the capability to save screen shots. For thispurpose,
VTK::WindowToImageFilter is used. This filter basically takes a screenshot of the
render window and saves it as an image file. The image file format of choice is PNG.

CHAPTER

FOURTEEN

Registration

One of the critical steps in image-guided surgery is registering pre-operative images to the
patient coordinate system. Various registration techniques have been developed for this purpose,
and they fall into two broad categories: frame-based and frameless . In frame-based registration
technique, stereotactic frames are attached to the organ ofinterest to provide a rigid reference.
This method of registration is common in neurosurgery.

In frameless registration, fiducial marks (landmarks) in both the pre-operative image and
the patient are used to compute the transform parameters that relate the pre-operative image
and the patient. The fiducials can be point or surface patches. In IGSTK, a point-based
3D rigid body landmark registration class(igstk::Landmark3DRegistration) is imple-
mented. Using a tracking device or pointer. the operator identifies the landmark points in
the preoperative image and the patient body and transform parameters are computed based
on these points. IGSTK also provides a tool to predict landmark registration error. (
igstk::igstkLandmarkRegistrationErrorPredictor)

14.1 Landmark-based registration

IGSTK contains a landmark-based registration class which is a wrapper class around (
igstk::itk::LandmarkBasedTransformInitializer). This registration class implements
an absolute orientation solution using unit quaternions derived by Berthold K.P. Horn ([8].
He developed a closed-form solution to the least-squares problem of computing transformation
parameters between two coordinate systems.

14.1.1 State Machine Design

Figure14.1illustrates the state diagram forigstk::Landmark3DRegistration .

This class has the following states.

1. Idle : No landmark points added

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Landmark3DRegistration.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1igstkLandmarkRegistrationErrorPredictor.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1itk::LandmarkBasedTransformInitializer.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Landmark3DRegistration.html

136 Chapter 14. Registration

IdleState

ImageLandmark1AddedState

ImageLandmarkInput ResetRegistrationInput

TrackerLandmark1AddedState

TrackerLandmarkInput

ResetRegistrationInput

ImageLandmark2AddedState

ImageLandmarkInput

ResetRegistrationInput

TrackerLandmark2AddedState

TrackerLandmarkInput

ResetRegistrationInput

ImageLandmark3AddedState

ImageLandmarkInput

ResetRegistrationInput

TrackerLandmark3AddedState

TrackerLandmarkInput

ResetRegistrationInput

ImageLandmarkInput

AttemptingToComputeTransformState

ComputeTransformInput

ResetRegistrationInput

TransformComputationFailureInput

TransformComputedState

TransformComputationSuccessInput

ResetRegistrationInput

Figure 14.1:Landmark registration component state diagram.

2. ImageLandmark1Added: Landmark 1 image coordinate added

3. TrackerLandmark1Added: Landmark 1 tracker coordinate added

4. ImageLandmark2Added: Landmark 2 image coordinate added

5. TrackerLandmark2Added: Landmark 2 tracker coordinate added

6. ImageLandmark3Added: Landmark 3 and more image coordinate added

7. TrackerLandmark3Added: Landmark 3 and more tracker coordinate added

8. AttemptingToComputeTransform: transition state after a request is made for transform
computation

7. TransformComputed: transform parameters computed state

More than three landmark points can be used to compute the transform parameters. In these
situations, the state machine recurses between theImageLandmark3Addedand TrackeLand-
mark3Addedstates as shown in the state diagram. To avoid human error in establishing the co-
ordinates, the state machine is designed so that corresponding landmark coordinates are added
to the point containers successively (image coordinate followed by the tracker coordinate of
the landmark).

14.1.2 Component Interface

The following methods are available in the public interface.

14.1. Landmark-based registration 137

1. RequestAddImageLandmarkPoint(LandmarkPointType): Method to add image landmark
point.

2. RequestAddTrackerLandmarkPoint(LandmarkPointType): Method to add tracker land-
mark point

3. RequestResetRegistration(): Method to reset the state machine to idle state

4. RequestComputeTransform (): Method to request transform computation

5. RequestGetTransform (): Method to request transform parameters. The trans-
form parameters are returned to the requesting applicationas String loaded event (
igstk::TransformModifiedEvent) . The user needs to set up a callback to observe
this transform event

6. ComputeRMSError(): Method to compute root mean square of landmark registration

14.1.3 Example

The source code for this section can be found in the file
Examples/LandmarkRegistration/LandmarkRegistration1 .cxx .

This example illustrates how to use igstk’s landmark registration component to determine rigid
body transformation parameters between an image and the patient coordinate system.

To use the registration component, the header file forigstk::Landmark3DRegistration is
added.

#include "igstkLandmark3DRegistration.h"

Transform parameters are returned to the application usingloaded events. To handle these
events, the followingigstk::Events and igstk::Transform header files are needed.

#include "igstkEvents.h"
#include "igstkTransform.h"

To fully utilize the registration component, callbacks need to be set up to observer events that
could be thrown by the registration component. For this purpose, the ITK command class
is used to derive a callback class . The ITK command class implements a subject/observer
(command design) pattern. A subject notifies an observer by running theExecute method
of the derived callback class . For example a callback class meant to observe an error in the
transform computation is defined as follows.

class Landmark3DRegistrationErrorCallback : public itk: :Command
{
public:

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1TransformModifiedEvent.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Landmark3DRegistration.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Events.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Transform.html

138 Chapter 14. Registration

typedef Landmark3DRegistrationErrorCallback Self;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::Command Superclass;
itkNewMacro(Self);
void Execute(const itk::Object *caller, const itk::Event Object & event)

{

}
void Execute(itk::Object *caller, const itk::EventObjec t & event)

{
std::cerr<<"Error in transform computation"<<std::endl ;
}

protected:
Landmark3DRegistrationErrorCallback() {};

private:
};

Similarly, a callback class needs to be defined to observe theigstk::TransformModified
event. This event is loaded with transform parameters that are computed by the registration
component.

class Landmark3DRegistrationGetTransformCallback: pub lic itk::Command
{
public:

typedef Landmark3DRegistrationGetTransformCallback Se lf;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::Command Superclass;
itkNewMacro(Self);

typedef igstk::TransformModifiedEvent TransformModifi edEventType;

void Execute(const itk::Object *caller, const itk::Event Object & event)
{
}

void Execute(itk::Object *caller, const itk::EventObjec t & event)
{
std::cout<< " TransformEvent is thrown" << std::endl;
const TransformModifiedEventType * transformEvent =

dynamic_cast < const TransformModifiedEventType* > (&eve nt);
m_Transform = transformEvent->Get();
m_EventReceived = true;
}

bool GetEventReceived()
{
return m_EventReceived;
}

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1TransformModified.html

14.1. Landmark-based registration 139

igstk::Transform GetTransform()
{
return m_Transform;
}

protected:

Landmark3DRegistrationGetTransformCallback()
{
m_EventReceived = true;
}

private:
bool m_EventReceived;
igstk::Transform m_Transform;

};

After the helper classes are defined, the main function implementation is started.

int main(int argv, char * argc[])
{

All the necessary data types are defined.

typedef itk::Logger LoggerType;
typedef itk::StdStreamLogOutput LogOutputType;

typedef igstk::Landmark3DRegistration
Landmark3DRegistrationType;

typedef igstk::Landmark3DRegistration::LandmarkPoint ContainerType
LandmarkPointContainerType;

typedef igstk::Landmark3DRegistration::LandmarkImage PointType
LandmarkImagePointType;

typedef igstk::Landmark3DRegistration::LandmarkTrack erPointType
LandmarkTrackerPointType;

typedef Landmark3DRegistrationType::TransformType::O utputVectorType
OutputVectorType;

typedef igstk::Transform TransformType;

The registration component is instantiated as follows

Landmark3DRegistrationType::Pointer landmarkRegister =
Landmark3DRegistrationType::New();

The landmark containers that hold the landmark image and tracker coordinates are instantiated.

LandmarkPointContainerType imagePointContainer;
LandmarkPointContainerType trackerPointContainer;

140 Chapter 14. Registration

Error event callback objects are instantiated and added to the observer list of the registration
component as follows:

Landmark3DRegistrationInvalidRequestCallback::Point er
lrcb = Landmark3DRegistrationInvalidRequestCallback:: New();

typedef igstk::Landmark3DRegistration::InvalidReques tErrorEvent
InvalidRequestEvent;

landmarkRegister->AddObserver(InvalidRequestEvent() , lrcb);

Landmark3DRegistrationErrorCallback::Pointer ecb =
Landmark3DRegistrationErrorCallback::New();

typedef igstk::Landmark3DRegistration::TransformComp utationFailureEvent
ComputationFailureEvent;

landmarkRegister->AddObserver(ComputationFailureEve nt(), ecb);

A logger can be connected to the registration component for debugging purpose as follows

LoggerType::Pointer logger = LoggerType::New();
LogOutputType::Pointer logOutput = LogOutputType::New();
logOutput->SetStream(std::cout);
logger->AddLogOutput(logOutput);
logger->SetPriorityLevel(itk::Logger::DEBUG);
landmarkRegister->SetLogger(logger);

Next, landmark points are added to the image and tracker containers. The state machine of this
registration component is designed so that the image and tracker coordinates that correspond to
each landmark are added consecutively. This scheme prevents the mismatch in landmark cor-
respondence that could occur when all landmarks image coordinates are recorded first and then
the tracker coordinates. This design choice is consistent with the ”safety by design” philosophy
of igstk.

// Add 1st landmark
imagePoint[0] = 25.0;
imagePoint[1] = 1.0;
imagePoint[2] = 15.0;
imagePointContainer.push_back(imagePoint);
landmarkRegister->RequestAddImageLandmarkPoint(imag ePoint);

trackerPoint[0] = 29.8;
trackerPoint[1] = -5.3;
trackerPoint[2] = 25.0;
trackerPointContainer.push_back(trackerPoint);
landmarkRegister->RequestAddTrackerLandmarkPoint(tr ackerPoint);

// Add 2nd landmark

14.1. Landmark-based registration 141

imagePoint[0] = 15.0;
imagePoint[1] = 21.0;
imagePoint[2] = 17.0;
imagePointContainer.push_back(imagePoint);
landmarkRegister->RequestAddImageLandmarkPoint(imag ePoint);

trackerPoint[0] = 35.0;
trackerPoint[1] = 16.5;
trackerPoint[2] = 27.0;
trackerPointContainer.push_back(trackerPoint);
landmarkRegister->RequestAddTrackerLandmarkPoint(tr ackerPoint);

// Add 3d landmark
imagePoint[0] = 14.0;
imagePoint[1] = 25.0;
imagePoint[2] = 11.0;
imagePointContainer.push_back(imagePoint);
landmarkRegister->RequestAddImageLandmarkPoint(imag ePoint);

trackerPoint[0] = 36.8;
trackerPoint[1] = 20.0;
trackerPoint[2] = 21.0;
trackerPointContainer.push_back(trackerPoint);
landmarkRegister->RequestAddTrackerLandmarkPoint(tr ackerPoint);

More landmarks can be added for the transform computation.

After all the landmark coordinates are added, the transformcomputation is requested as follows

landmarkRegister->RequestComputeTransform();

To access the tranform parameters, a GetTransform callbackis instantiated to observe the trans-
form event as follows.

Landmark3DRegistrationGetTransformCallback::Pointer lrtcb =
Landmark3DRegistrationGetTransformCallback::New();

landmarkRegister->AddObserver(igstk::TransformModif iedEvent(), lrtcb);

To request the registration component throw an event loadedwith transform parameters, a
RequestGetTransform function is invoked as follows.

landmarkRegister->RequestGetTransform();
std::cout << "Transform " << transform << std::cout;

142 Chapter 14. Registration

14.2 Registration error prediction

Determining the accuracy of registration is critical for image guided surgery systems. The con-
ventional way of evaluating such accuracy is to compute the root means square error between
the corresponding fiducials after registration. However, it was shown that the fiducial regis-
tration error is independent of fiducial configuration and itis a poor predictor of registration
accuracy [13]. Consequently, West et al [13] have derived a more robust error predictor that
takes fiducial configuration into account as shown in Equation 14.1. IGSTK has implementa-
tion of this error prediction algorithm (igstk::Landmark3DRegistrationErrorEstimator
)

TRE2(t) =
FRE2

N−2
(1+

1
3

3

∑
k=1

d2
k

f 2
k

) (14.1)

WhereTRE is the target point registration error,FRE is the landmark registration error,N is
the number of landmarks,dk is the distance of the target point from principal axisk, and fk is
the RMS distance of the landmarks.

14.2.1 State Machine Design

Figure14.2illustrates the state diagram of theigstk::Landmark3DRegistrationErrorEstimator

This class has the following states

1. Idle : idle state

2. LandmarkContainerSet: landmark point container added

3. LandmarkRegistrationErrorSet: Landmark registration error value set

4. AttemptingToComputeErrorParameters: Transition state to compute error parameters
required to estimate the target point registration error

5. ErrorParametersComputed: Error parameters computed

6. TargetPointSet: Target point set

7. AttemptingToEstimateTargetRegstirationError: Transition state to estimate target point
registration error

8. TargetRegistrationErrorEstimated: Target point registration error estimated

14.2.2 Component Interface

The following methods are available in the public interface.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Landmark3DRegistrationErrorEstimator.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Landmark3DRegistrationErrorEstimator.html

14.2. Registration error prediction 143

IdleState

LandmarkContainerSetState

LandmarkContainerInput

LandmarkRegistrationErrorSetState

LandmarkRegistrationErrorInput

AttemptingToComputeErrorParametersState

ComputeErrorParametersInput ErrorParametersComputationFailureInput

ErrorParametersComputedState

ErrorParametersComputationSuccessInput

TargetPointSetState

TargetPointInput

AttemptingToEstimateTargetRegstirationErrorState

EstimateTargetPointRegistrationErrorInput TargetPointRegistrationErrorEstimationFailureInput

TargetRegistrationErrorEstimatedState

TargetPointRegistrationErrorEstimationSuccessInput

Figure 14.2:Landmark Registration Error Estimator State Diagram.

144 Chapter 14. Registration

1. RequestSetLandmarkContainer(LandmarkContainerType): Method to set the landmark
container.

2. RequestSetTargetPoint(TargetPointType): Method to set the target point

3. RequestSetLandmarkRegistrationError(ErrorType): Method to set the landmark regis-
tration error

4. RequestComputeErrorParameters (): Method to request computation of error parameters
needed to compute the target point registration error

5. RequestEstimateTargetPointRegistrationError (): Method to request estimation of target
point registration.

6. RequestGetTargetPointRegistrationErrorEstimate(): Method to get target point registra-
tion error. This method throws an event loaded with the target point registration error.

14.2.3 Example

The source code for this section can be found in the file
Examples/LandmarkRegistrationErrorEstimation/ErrorE stimation1.cxx .

This example illustrates how to estimate the registration error of a target point that has been reg-
istered using transformation parameters that were computed using landmark-based registration.

The error estimation is based on the closed-form equation developed by West et al. The target
point registration error is dependent on the location of thetarget point, the registration error of
the landmark points (root mean square error) and the configuration of the landmark points.

To use the IGSTK component for computing the registration error, the following
igstk::Landmark3DRegistrationErrorEstimator header file must be added.

#include "igstkLandmark3DRegistrationErrorEstimator. h"

The registration error estimator type is defined and an object is instantiated.

typedef igstk::Landmark3DRegistrationErrorEstimator E rrorEstimatorType;

ErrorEstimatorType::Pointer errorEstimator = ErrorEsti matorType::New();

The landmark point container is set as follows

errorEstimator->RequestSetLandmarkContainer(fpointc ontainer);

Next, the landmark registration error is set. The landmark registration component is used to
compute this parameter. This error parameter basically theroot mean square error of the land-
mark registration.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Landmark3DRegistrationErrorEstimator.html

14.3. Conclusion 145

landmarkRegistrationError = landmarkRegister->Compute RMSError();
errorEstimator->RequestSetLandmarkRegistrationError (

landmarkRegistrationError);

Then, the other error parameters necessary for error estimation are computed by invoking the
ComputeErrorParameter() method as shown below.

errorEstimator->RequestComputeErrorParameters();

Next, the target point that we will be estimating the registration error is set

TargetPointType targetPoint;
targetPoint[0] = 10.0;
targetPoint[1] = 20.0;
targetPoint[2] = 8.0;
errorEstimator->RequestSetTargetPoint(targetPoint);

Finally, the registration error for the target point is estimated.

ErrorType targetRegistrationError;
errorEstimator->RequestEstimateTargetPointRegistrat ionError();

To receive the error value, an observer is set up to listen to an event loaded with error value as
follows

ErrorEstimationGetErrorCallback::Pointer lrtcb =
ErrorEstimationGetErrorCallback::New();

errorEstimator->AddObserver(igstk::LandmarkRegistra tionErrorEvent(), lrtcb);
errorEstimator->RequestGetTargetPointRegistrationEr rorEstimate();

if(!lrtcb->GetEventReceived())
{
std::cerr << "LandmarkRegsistrationErrorEstimator clas s failed to "

<< "throw a landmark registration error event" << std::endl ;
return EXIT_FAILURE;
}

targetRegistrationError = lrtcb->GetError();

14.3 Conclusion

Registration is an essential component in image guided surgery applications. IGSTK provides
3D point-based registration tool for this purpose. This tool is based on a closed-form solution

146 Chapter 14. Registration

to the least-squares problem of computing transformation parameters between two coordinate
systems. The accuracy of the computed transformation parameters needs to be verified before
using them in actual application. For this purpose, IGSTK provides a robust error prediction
tool that takes also into account landmark configuration.

CHAPTER

FIFTEEN

Calibration

In image guided surgery, a surgeon uses tracked tools for navigation or intervention. A general
transform procedure called calibration is required to align the output of the tracking device to
the specific operation points on the tool, such as the tip of a surgical needle or the end of its
handle. For surgeons, these specific operation points are more important and intuitive than the
positions of the trackers which are often embedded in the middle or at the hind of the tool.

DG: The paragraph above should be reorganized so that it doesa better job of getting the main
idea across. Starting from the second sentence:

These tools have elements embedded in them that the trackingsystem can measure the positions
of: for magnetic tracking, the elements are small coils of wire, and for optical tracking small
reflective markers or light-emitting diodes are used. The positions of these elements are usually
not important to the surgeon, who would instead rather know the position of the tip of the tool
or of the end of the tool’s handle. The purpose of tool calibration is to measure the position
of these important points on the tool, relative to the positions of the tracked elements (coils or
markers) on the tools.

Generally speaking, calibration refers to the process of setting the magnitude of the output (or
response) of a measuring instrument to the magnitude of the input property or attribute within
a specified range of accuracy and precision1. When calibrating the tracker, those inputs are the
positions and the orientation reported from the tracking device, and the outputs are the positions
of the specific operation points. When calibrating both the tracker and an imaging device, such
as an ultrasound probe, the inputs are the positions of the probe tracker and the image coordinate
in the ultrasound imaging, and the outputs are the 3D coordinates of those image pixels in the
global world coordinate system. Hence, in most cases, the calibration procedure produces the
transform between the trackers and specific positions.

DG: Don’t give the general definition of calibration, just describe what it means in the context
of image-guided surgery.

In the IGSTK calibration package, several calibration classes are currently provided in the
main repository and sandbox, including igstkPivotCalibration, igstkPrincipalAxisCalibration

1 http://en.wikipedia.org/wiki/Calibration

148 Chapter 15. Calibration

and igstkLandmarkUltrasoundCalibration. Those calibration classes work closely with the
tracker component to provide a safe and accurate environment for the image-guided surgi-
cal procedures. Some specialized features, such as the essential distortion calibration for the
electro-magnetically tracking device, will also be provided following the requirement process
of IGSTK framework.

DG: You should make a section called “Calibration in IGSTK” and move this paragraph to that
section.

This chapter will firstly describe the rationale and design patterns for the existing calibration
components. Next it will introduce the calibration data format used and its I/O classes in the
sample application. Finally, it will discuss the future extension of the calibration package.

DG: You should have a section here called “Calibration in IGSTK” where you describe how
calibration fits into the architecture of IGSTK. For example, you should give the names of the
calibration classes, a short description of what each classis for, and you should describe how
the calibration transform is used by the tracker.

15.1 Pivot Calibration

15.1.1 Introduction

The reported positions from both optical and electro-magnetic trackers are generally at fixed
points on their sensors. For example, in the AURORA trackingsystem, the reported position
for a single sensor is at the center of the sensor coil that is embedded in the surgical tool. When
multiple sensors are used, the reported position is determined by the configuration SROM file
that is stored in the tools. Generally, this position is a specific point that is rigidly related to the
tracked tool.

For a tracked needle, its tip and the end of its handle are important for the surgeon. Those points
provide an intuitive means to visualize and locate the tool’s body. In an image-guided surgery
application, a point at the tip of the tool is always used to locate the spatial position of landmark
points, such as skin fiducials or the internal bifurcation positions of the vessels. Additionally,
for the navigation and validation, the tip of the tracked needle or the guide-wire indicates the
surgeon’s point of focus. Thus, a tracked tool can also serveas a ’locator’ or a ’pointer’. The
transform between the internal sensor or marker’s positions to those specific operation points is
accomplished by a procedure called pivot calibration.

DG: When you use quotation marks in Latex, the first quotationmark must be a back-quote.
For example: ‘Quotation’.

Most tracking device manufacturers provide specific software to handle this pivot calibration;
for example, Northern Digital Inc. provides ’6D Architecture Aurora’ and ’Toolviewer’ for
this purpose. This kind of software establishes communication, tracks the tools, visualizes
the positions, and calculates the pivot calibration transform. The pivot calibration result is
calculated before the experiment or the procedure, then used by the application for each specific

15.1. Pivot Calibration 149

Figure 15.1:Pivot Calibration Routine.

tool. However, for the on-site pivot calibration, a generalpurpose class gives the developer more
flexibility.

In a typical pivot procedure like the one shown in Figure15.1 2, the tip of the instrument is
placed in a divot (a series of small holes) and the instrumentis rotated back and forth (it pivots)
while tracking data is collected with enough sample input, the transformation from the tracked
sensor’s point to the pivot point is calculated, along with the calibration error represented as a
root mean square error.

15.1.2 Principle

DG: Add a short explanation to help the reader understand whythis method works. For exam-
ple, the following description is from Calvin R. Maurer, Jr., J. Michael Fitzpatrick, Matthew Y.
Wang, Robert L. Galloway, Jr., Robert J. Maciunas, and George S. Allen, ”Registration of Head
Volume Images Using Implantable Fiducial Markers,” IEEE Transactions on Medical Imaging
16(4):447-462, 1997.

”Each probe is calibrated by placing the probe tip in a fixed location and pivoting the probe
about this fixed point. The position of he probe tip relative to the coordinate system of the probe
attachment is determined by finding the most invariant point(in a least-squares sense) in these
pivot motions.”

The information from the tracker consists of the position and the orientation. Some systems
also provide the measurement error at that position. Related with the original point, the position
is located by a translation vector and a quaternion that represents the rotation from the default
principal axis (mostly along the z-axis from the manufacturer settings). Depending on the sensor
or sensors, the reported tracker information may have three, five, or six degrees of freedom
(DOF). The first three degrees are represented by the translation, and the others are determined
by the quaternion. The transformation from the original point to the tool tip in the tracking
coordinate system is represented by:

2 NDI 6D Architecture Aurora

150 Chapter 15. Calibration

[

R T
0 1

]

·









offsetx
offsety
offsetz

1









=









r00 r01 r02 tx
r10 r11 r12 ty
r20 r21 r22 tz
0 0 0 1









·









offsetx
offsety
offsetz

1









=









x0

y0

z0

1









(15.1)

In this equation,R is the rotation matrix,T is the translation vector and(x0,y0,z0) is the pivot
position. In most pivoting cases, the pivot position is the tip of the tool. Typically, we record
several hundred samples while pivoting the tools. Equation15.1can be re-written as follows
where the constraints of offset and(x0,y0,z0) are arranged as:

r00 ·offsetx + r01 ·offsety + r02 ·offsetz−1 ·x0+0 ·y0+0 ·z0 = −tx
r10 ·offsetx + r11 ·offsety + r12 ·offsetz+0 ·x0−1 ·y0+0 ·z0 = −ty
r20 ·offsetx + r21 ·offsety + r22 ·offsetz+0 ·x0+0 ·y0−1 ·z0 = −tz

(15.2)

With several input samples, those equations can then be accumulated as:

M ·

















offsetx
offsety
offsetz

x0

y0

z0

















= N (15.3)

SinceM is not a square matrix, the unknowns are solved using the singular value decomposition
(SVD) or Moore-Penrose inverse:

















offsetx
offsety
offsetz

x0

y0

z0

















= (MT ·M)−1 ·MT ·N (15.4)

Additionally, the root mean square error is computed as:

RMS=
√

|M · [offsetx offsety offsetz x0 y0 z0]T −N|2/num (15.5)

wherenum is the number of samples. Note that in the pivot calibration procedure, the final
transform only contains only a translation factor and no rotation factor.

When calculating the calibration only along the Z-axis onlyfor a cylinder-like track tools, some-
times users may only want to get the calibration offset alongthe Z-axis. In this condition, the
offsetx, offsety variables are restricted to 0 and the computation formulas are slightly changed.

15.1. Pivot Calibration 151

IdleState

SampleAddState

SampleInput ResetCalibrationInput

CalibrationCalculatedState

CalculateCalibrationInput CalibrationZCalculatedState

CalculateCalibrationZInput ResetCalibrationInput

SampleInput

CalculateCalibrationZInput

ResetCalibrationInput

SampleInput

CalculateCalibrationInput

Figure 15.2:State Diagram of the igstkPivotCalibration class.

15.1.3 State Machine Diagram

Figure15.2 is a state machine diagram of theigstk::PivotCalibration class. There are
four states inside this class: initial ’Idle’ state, ’SampleAdd’ state, ’CalibrationCalculated’ state
and ’CalibrationZCalculated’ state. The ’Idle’ state is the initial state for all IGSTK classes.
When the position samples from pivoting the tracker are input into the class, the internal state
will be invoked to the ’SampleAdd’ state. As described in theprevious section, there are two
ways to calculate the calibration matrix, either in the fulltranslation mode or in the Z-axis
only mode. The final stages are the ’CalibrationCalculated’and CalibrationZCalculated’ states
respectively. Only in these two states can the PivotCalibration class return a valid calibration
transform.

15.1.4 Component Interface

The core functions of the igstkPivotCalibration class include:

1. Input the samples (translation and quaternion) from the pivoting trackers;

- igstkPivotCalibration::RequestAddSample();

2. Calculate the calibration transform;

- igstkPivotCalibration::RequestCalculateCalibration();

- igstkPivotCalibration::RequestCalculateCalibrationZ();

3. Return the final calibration transform and pivot position;

- igstkPivotCalibration::GetValidCalibration();

- igstkPivotCalibration::GetCalibrationTransform();

- igstkPivotCalibration::GetPivotPosition();

4. Calculate the root mean square error to evaluate whether afeasible calibration transform
has been computed;

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PivotCalibration.html

152 Chapter 15. Calibration

- igstkPivotCalibration::GetRootMeanSquareError();

5. Provide the convenient function to retrieve the input sample;

- igstkPivotCalibration::GetNumberOfSamples();

- igstkPivotCalibration::RequestGetInputSample();

6. Provide the convenient function to simulate the pivot position for any input translation
and quaternion from the calculated calibration transform;

- igstkPivotCalibration::RequestSimulatePivotPosition();

15.1.5 Example

The source code for this section can be found in the file
Examples/PivotCalibration/PivotCalibration1.cxx .

This example illustrates how to use IGSTK’s pivot calibration class to determine a calibration
matrix for the tracker tools.

To use the pivot calibration component, the header file forigstk::PivotCalibration should
be added.

#include "igstkPivotCalibration.h"

After defining the headers, the main function implementation is started.

int main(int argc, char * argv[])
{

All the necessary data types in the pivot calibration are defined. VersorType and VectorType
are used to represent the quaternion and translation inputsfrom the tracker; PointType is used
to represent the position coordinate of the specific point; and ErrorType is used to represent the
root mean square error.

typedef igstk::PivotCalibration PivotCalibrationType;
typedef PivotCalibrationType::VersorType VersorType;
typedef PivotCalibrationType::VectorType VectorType;
typedef PivotCalibrationType::PointType PointType;
typedef PivotCalibrationType::ErrorType ErrorType;
typedef itk::Logger LoggerType;
typedef itk::StdStreamLogOutput LogOutputType;

At the beginning, a pivot calibration class is initialized as follows:

PivotCalibrationType::Pointer pivot = PivotCalibration Type::New();

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PivotCalibration.html

15.1. Pivot Calibration 153

A logger is then created for logging the process of calibration computation, and then attached
to the pivot calibration class

LoggerType::Pointer logger = LoggerType::New();
LogOutputType::Pointer logOutput = LogOutputType::New();

logOutput->SetStream(std::cout);
logger->AddLogOutput(logOutput);
logger->SetPriorityLevel(itk::Logger::DEBUG);

pivot->SetLogger(logger);

To use the pivot calibration class, some input samples from the tracker should be provide. Those
samples come directly from tracker tools. In our example, those samples are read from the
record data file in the IGSTK data directory.

input.open(argv[1]);

if (input.is_open() == 1)
{
std::cout << "PivotCalibration data open sucessully!" << s td::endl;
}

else
{
std::cout << "PivotCalibration data open error!" << std::e ndl;

return EXIT_FAILURE;
}

Before the computation, it is better to reset the calibration class to to remove all necessary
information which may come from the previous codes.

pivot->RequestReset();

Then, the sample frame is read from the data file and input to calibration class

while (!input.eof())
{
double vx;
double vy;
double vz;
double vw;

input >> frame >> temp >> time;
input >> pos[0] >> pos[1] >> pos[2];
input >> vw >> vx >> vy >> vz;

154 Chapter 15. Calibration

versor.Set(vx, vy, vz, vw);
pivot->RequestAddSample(versor, pos);
}

After this, a simple request will invole the class to computethe calibration transform.

pivot->RequestCalculateCalibration();

Before the final calibration transform is retrieved, the user should check the tag to see whether
a valid calibration has been computed. The final calibrationresult is stored in the translation
factor in the transform matrix. The pivot position is also retrievable. The sample code is as
follows:

if (!pivot->GetValidPivotCalibration())
{
std::cout << "No valid calibration!" << std::endl;

return EXIT_FAILURE;
}

else
{

// Get the calibration transformation
VectorType translation = pivot->GetCalibrationTransfor m().GetTranslation();

// Get the pivot focus position
PointType position = pivot->GetPivotPosition();

// Get the calibration RMS error
ErrorType error = pivot->GetRootMeanSquareError();

// Dump the calibration class information
std::cout << "PivotCalibration: " << std::endl;
std::cout << "NumberOfSamples: " << pivot->GetNumberOfSa mples()

<< std::endl;
std::cout << "Translation: " << translation << std::endl;
std::cout << "Pivot Position: " << position << std::endl;
std::cout << "Calibration RMS: " << error << std::endl;

}

For only computing the calibration along Z-axis, another function is used instead:

pivot->RequestCalculateCalibrationZ();

15.2. Principal Axis Calibration 155

15.2 Principal Axis Calibration

15.2.1 Introduction

The pivot calibration provides only the translation information of the tracked tool and thus is
based on the assumption that the geometry coordinate and thedefault tracking coordinate are the
same. In most cases, the principal axis is along the Z-axis. If the principal axis of the tracked
tool is not well aligned with the geometry representation, arotation transform is required to
work together with the pivot calibration routine to construct the full transform matrix. Since
IGSTK works closely with ITK, and the transform is based on the itk::Vector and itk::Versor
classes, the itk::Versor can be used to represent the rotation directly. For example, if the tracked
tool’s principal axis is along the Z-axis, but the spatial geometry object is along the Y-axis, an
itk::Versor::SetRotationAroundX() function solves the problem. This approach works for these
specific rotations, but for an arbitrary rotation between two unspecific directions it is hard to
use a combination of rotations around the X, Y or Z-axes to produce the exact result. In this
case, a general purpose igstkPrincipalAxisCalibration class provides an intuitive means to set
the initial and desired orientations (tracker tool’s principal axis and spatial object’s principal
axis) and to return the rotation between them.

For cylindrical tracker tools, the spatial principal axis runs mostly along the cylinder geometry
axis. In some different configurations, this alignment may change. For example, the ITK spatial
object’s default axis is along the Y-axis, but the IGSTK spatial object’s default axis is along the
Z-axis. For the 5DOF and 6DOF trackers, the default principal axis in the tracking coordinate
system, as defined by most hardware manufacturers, is along the Z-axis. Note that this default
principal axis in the tracking coordinate system often is not along the tracker tool’s geometry
principal axis. A combination tracker tool is shown in Figures 15.3and 15.43. For the tracker
handle, the optical markers are arranged along the handle and the tracking coordinate system’s
principal axis is well aligned with the spatial geometry shape. But for the tracker probe tip, the
specially designed curves make them different. In an image-guided surgery application, these
probe tips are of greater concern to the surgeon, for they arereal operational parts and will touch
the patient. When the tracker probe tip and the handle are attached together, the principal axis in
the tracking coordinate system is different than the operational part’s principal axis. For those
tracker tools, an igstkPrincipalAxisCalibration class provides an intuitive means to calculate the
rotation matrix.

Figure 15.3: Tracker Handle Figure 15.4: Tracker Probe Tip

3 Traxtal Inc.

156 Chapter 15. Calibration

15.2.2 Principle

The purpose of computing the principal axis calibration is to find the rotation between two
defined orientations. Our method is based on the rotation matrix multiplication. In IGSTK, the
rotation factor is stored in the quaternion format, and the convert between the quaternion and
the rotation matrix is unified. When a point is rotated, in themathematically representation, the
vector is multiplied by a rotation matrix. So, the difference between two orientations can be
calculated by the divide operation of the two matrices, as follows:

M = Mori1 ·M
−1
ori2 (15.6)

Mori1 is the rotation matrix from the desired orientation, andMori2 is the rotation matrix from
the initial orientation.

The igstkPrincipalAxisCalibration class provides an intuitive means to set the orientation, which
is defined by the principal axis and the normal axis of the tool. The principal axis is generally the
major axis along the cylindrical tools that are very popularin clinical procedures. The normal
vector defines the view-up direction of the system coordinate. Those two parameters are easy
to measure by the geometry shape design profile of the tools. The rotation matrix can be built
from the principal axis and normal vector using the following equation:

Mori =





px py pz

nx ny nz

lx ly lz



 (15.7)

where(px, py, pz) is the normalized principal axis vector,(nx,ny,nz) is the normalized orthog-
onal view-up vector, and(lx, ly, lz) is the vector along the third direction which is made by the
cross production of the first two vectors.

15.2.3 State Machine Diagram

Figure15.5illustrates the State Machine of theigstk::PrincipalAxisCalibration class.
There are five states inside this class: ’Idle,’ ’InitialOrientationSet,’ ’DesiredOrientationSet,’
’OrientationAllSet,’ and ’RotationCalculated.’ ’Idle’ is the initial state for all IGSTK classes.
Subsequently, a class’s state will be ’InitialOrientationSet,’ ’DesiredOrientationSet,’ or ’Orien-
tationAllSet,’ depending on whether the initial or desiredorientations of the tracker are put into
the class. Only when a class has reached the ’OrientationAllSet’ state will a request to calculate
the calibration function bring the class into the final ’RotationCalculated’ state.

15.2.4 Component Interface

From the description, the core functions of the igstkPrincipalAxisCalibration class include:

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PrincipalAxisCalibration.html

15.2. Principal Axis Calibration 157

IdleState

InitialOrientationSetState

InitialOrientationInput

DesiredOrientationSetState

DesiredOrientationInputResetCalibrationInput

OrientationAllSetState

DesiredOrientationInput

ResetCalibrationInput

InitialOrientationInput

ResetCalibrationInput

RotationCalculatedState

CalculateRotationInput

ResetCalibrationInput

Figure 15.5:State Diagram of the PrincipalAxisCalibration class.

1. Set the initial principal axis and view-up normal;

- igstkPrincipalAxisCalibration::RequestSetInitialOrientation();

2. Set the desired principal axis and view-up normal;

- igstkPrincipalAxisCalibration::RequestSetDesiredOrientation();

3. Automatically adjust the plane normal to make it perpendicular with the principal axis;

4. Calculate the rotation matrix from those two orientations;

- igstkPrincipalAxisCalibration::RequestCalculateRotation();

15.2.5 Example

The source code for this section can be found in the file
Examples/PrincipalAxisCalibration/PrincipalAxisCali bration1.cxx .

This example illustrates how to use IGSTK’s princiapl axis calibration class to determine the
rotation matrix for the tracker tools.

To use the principal axis calibration component, the headerfile for
igstk::PrincipalAxisCalibration should be added.

#include "igstkPrincipalAxisCalibration.h"

After defining the headers, the main function implementation is started.

int main(int argc, char * argv[])
{

All the necessary data types in the principal axis calibration are defined. VectorType and Covari-
antVectorType are used to represent the vectors along the principal axis and the plane normal.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PrincipalAxisCalibration.html

158 Chapter 15. Calibration

typedef igstk::PrincipalAxisCalibration PrincipalAxis CalibrationType;

typedef PrincipalAxisCalibrationType::VectorType Vect orType;
typedef PrincipalAxisCalibrationType::CovariantVecto rType CovariantVectorType;
typedef itk::Logger LoggerType;
typedef itk::StdStreamLogOutput LogOutputType;

At the beginning, a principal axis calibration class is initialized as follows:

PrincipalAxisCalibrationType::Pointer principal
= PrincipalAxisCalibrationType::New();

A logger is then created for logging the process of calibration computation, and then attached
to the principal axis calibration class

LoggerType::Pointer logger = LoggerType::New();
LogOutputType::Pointer logOutput = LogOutputType::New();

logOutput->SetStream(std::cout);
logger->AddLogOutput(logOutput);
logger->SetPriorityLevel(itk::Logger::DEBUG);

principal->SetLogger(logger);

Before the computation, it is better to reset the calibration class to to remove all necessary
information which may come from the previous codes.

principal->RequestReset();

Some parameters, such as axis and normal, are defined to storethe input information to deter-
mine the initial and desired orientations

VectorType axis;
CovariantVectorType normal;

An initial orientation is given as the default one for the tracker tools

axis[0] = 0.0;
axis[1] = 1.0;
axis[2] = 0.0;
normal[0] = 0.0;
normal[1] = 0.0;
normal[2] = 1.0;
principal->RequestSetInitialOrientation(axis, normal);

15.3. Calibration Data I/O 159

A desired orientation of the tracker tools are also specified

axis[0] = 0.0;
axis[1] = 0.0;
axis[2] = 1.0;
normal[0] = 0.0;
normal[1] = 1.0;
normal[2] = 0.3;
principal->RequestSetDesiredOrientation(axis, normal);

Then a RequestCalculateRotation function is invoked to compute the final results

principal->RequestCalculateRotation();

Before the final calibration transform is retrieved, the user should check the tag to see whether
a valid calibration has been computed. The sample code is as follows:

if (!principal->GetValidRotation())
{
std::cout << "No valid calibration!" << std::endl;

return EXIT_FAILURE;
}

else
{
std::cout << "Initial Principal Axis:"

<< principal->GetInitialPrincipalAxis() << std::endl;
std::cout << "Initial Plane Normal:"

<< principal->GetInitialPlaneNormal() << std::endl;
std::cout << "Desired Principal Axis:"

<< principal->GetDesiredPrincipalAxis() << std::endl;
std::cout << "Desired Plane Normal:"

<< principal->GetDesiredPlaneNormal() << std::endl;
std::cout << "Calibration Transform:"

<< principal->GetCalibrationTransform() << std::endl;

principal->Print(std::cout);

}

15.3 Calibration Data I/O

15.3.1 Data Format

IGSTK needs a common file format for storing tool calibrationtransformations. Because the
tools must be calibrated before the surgery, it is necessaryto verify that the correct calibration

160 Chapter 15. Calibration

file is applied to the correct tool.

The tool calibration file must contain the following information:

1. The date and time that the calibration was performed (in DICOM date/time format:
YYYYMMDD HHMMSS.SSSS);

2. Information about the method and the equipment used to calibrate the tool;

3. Identification information for the tool, including the manufacturer, part number, and serial
number for the tool;

4. The transform type (which will be limited to rigid quaternion transforms for now);

5. The transform parameters;

6. A description of the error associated with the calibratedtransform.

A sample pre-computed calibration file is like:

DG: The description of the file format might be better as an appendix, at the end of the book.

<?xml version=”1.0”?>

<IGSTKFile type=”ToolCalibration” version=”0.1”>

<Creation date=”20050824” time=”070907.0705” method=”PivotCalibration”
/>

<Tool type=”Pointer” manufacturer=”Traxtal” partNumber=”023-X” serialNum-
ber=”200501268” />

<Transform type=”Rigid3D”>

<ParameterNames>

translation x translation y translation z

quaternion x quaternion y quaternion z quaternionw

</ParameterNames>

<ParameterValues>

5.0 2.0 3.0

9.7467943448089631 -0.20519567041703082 0.9233805168766388
0.30779350562554625

</ParameterValues>

<ErrorParameterNames>

rms

</ErrorParameterNames>

<ErrorParameterValues>

15.3. Calibration Data I/O 161

0.187876234

</ErrorParameterValues>

</Transform>

<IGSTKFileCRC32>

4f6a3b2d

</IGSTKFileCRC32>

</IGSTKFile>

TheCRC32 is a 32-bitCRCthat can be checked to validate the integrity of the data. TheCRC
is calculated from the start of the<IGSTKFile> tag to the end of the</IGSTKFile> tag, not
for the whole file. A properDTD is specified for the above XML file. The following error
parameters could be defined:

1. rms: the root-mean-square error for the translation (Fiducical Registration Error for land-
mark registration)

2. centroid x, y, z: the landmark centroid (or the center of rotation that was used for
image registration)

3. Additional parameters to express rotational error

As the calibration data format is to handle all calibration information and is still improving, it
is better to check the online update of the current calibration file format4.

15.3.2 Data Reader

For the convenience of reading/writing the calibration data, IGSTK also provides some utility
classes to handle the input and output of calibration data. Figure 15.6 illustrates the State
Machine of the igstk::PivotCalibrationReader class. This class provides the function to
input the calibration from the pivoting routine.

15.3.3 Example

The source code for this section can be found in the file
Examples/PivotCalibrationReader/PivotCalibrationRea der1.cxx .

This example illustrates how to use IGSTK’s pivot calibration reader class to read the calibration
matrix from an offline calibration file.

To use the pivot calibration reader component, the header file for
igstk::PivotCalibrationReader should be added.

4 http://public.kitware.com/IGSTKWIKI/index.php/Calibration Data

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PivotCalibrationReader.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PivotCalibrationReader.html

162 Chapter 15. Calibration

IdleState

ObjectFileNameReadState

ObjectFileNameValidInput

ObjectAttemptingReadState

ReadObjectRequestInput

ObjectReadingErrorInput

ObjectReadState

ObjectReadingSuccessInput

ObjectFileNameIsEmptyInput ObjectFileNameIsDirectoryInput ObjectFileNameDoesNotExistInput

ObjectFileNameValidInput

Figure 15.6:State Diagram of the PivotCalibrationReader class.

#include "igstkPivotCalibrationReader.h"

At the very beginning of the program, two kinds of event and observers are defined to track
the information from the reader. The first event is igstk::CalibrationModifiedEvent, which is to
retrieve the calibration class from the reader. The second one is igstk::StringEvent, which is to
retrieve some string-like information from the general calibration class.

namespace ToolCalibrationTest
{
igstkObserverMacro(Calibration,::igstk::Calibration ModifiedEvent,

::igstk::PivotCalibration::Pointer)
igstkObserverMacro(String,::igstk::StringEvent,std: :string)
}

After defining the headers, the main function implementation is started.

int main(int argc, char * argv[])
{

A pivot calibration reader is created and then a logger is attached.

LoggerType::Pointer logger = LoggerType::New();
LogOutputType::Pointer logOutput = LogOutputType::New();

logOutput->SetStream(std::cout);
logger->AddLogOutput(logOutput);
logger->SetPriorityLevel(itk::Logger::DEBUG);

// Create the pivot calibration reader and attach the logger
igstk::PivotCalibrationReader::Pointer reader =

igstk::PivotCalibrationReader::New();

reader->SetLogger(logger);

15.3. Calibration Data I/O 163

The pivot calibration file’s name is passed through the argument. After the filename is desig-
nated, a RequestReadObject function is invoked to parse thedata file. The information in the
reader can be easily dumped by default Print function.

reader->RequestSetFileName(argv[1]);
reader->RequestReadObject();

reader->Print(std::cout);

To retrieve the whole calibration data information, the previous defined observer is attached
to the reader class. After the RequestGetCalibration function is called, the calibration info is
passed by observer’s GetCalibration function. The sample code is as follows.

typedef ToolCalibrationTest::CalibrationObserver Cali brationObserverType;
CalibrationObserverType::Pointer calibrationObserver

= CalibrationObserverType::New();

reader->AddObserver(::igstk::CalibrationModifiedEve nt(),calibrationObserver);
reader->RequestGetCalibration();

igstk::PivotCalibration::Pointer calibration = NULL;

std::cout << "Testing Calibration: ";
if(calibrationObserver->GotCalibration())

{
calibration = calibrationObserver->GetCalibration();
}

else
{
std::cout << "No calibration!" << std::endl;
return EXIT_FAILURE;
}

std::cout << "[PASSED]" << std::endl;

To retrieve some specific information, like serial number and manufacturer, from the trackers,
another string even and observer is attached to the calibration class we just get. For each request,
the information content will be passed by observer’s GetString function. Some sample codes
are shown as below:

typedef ToolCalibrationTest::StringObserver StringObs erverType;
StringObserverType::Pointer stringObserver = StringObs erverType::New();
calibration->AddObserver(::igstk::StringEvent(), str ingObserver);

std::cout << "Testing Date: ";
calibration->RequestGetDate();
if(stringObserver->GotString())

164 Chapter 15. Calibration

{
std::cout << stringObserver->GetString().c_str() << std ::endl;
std::cout << "[PASSED]" << std::endl;
}

else
{
std::cout << "No date!" << std::endl;
return EXIT_FAILURE;
}

std::cout << "Testing Manufacturer: ";
calibration->RequestGetToolManufacturer();
if(stringObserver->GotString())

{
std::cout << stringObserver->GetString().c_str() << std ::endl;
std::cout << "[PASSED]" << std::endl;
}

else
{
std::cout << "No tool manufacturer!" << std::endl;
return EXIT_FAILURE;
}

std::cout << "Testing Serial Number: ";
calibration->RequestGetToolSerialNumber();
if(stringObserver->GotString())

{
std::cout << stringObserver->GetString().c_str() << std ::endl;
std::cout << "[PASSED]" << std::endl;
}

else
{
std::cout << "No tool serial number!" << std::endl;
return EXIT_FAILURE;
}

15.4 Future Extension

Calibration, as well as registration, play an important role in the IGSTK toolkit. It serves like a
broker between the tracker device and the physical and imagespace, and its role is to precisely
guide the surgical tools and display them in the correct positions.

Currently igstkPivotCalibration, igstkPrincipalAxisCalibration and igstkLandmarkUltrasound-
Calibration are implemented in IGSTK’s main and sandbox repositories. These classes works
with surgical tracker tools and a tracked ultrasound probe.The calibration data I/O classes,
which provide the off-line processing of those calibrationtransforms, are another important

15.4. Future Extension 165

part for calibration components. Definitely it covers only asmall part of the calibration field.
Following IGSTK’s requirement-driven implementation style, some other features, such as dis-
tortion calibration for the specific electro-magneticallytracking, can be provided when it is
required by the user.

Part III

User Guide

CHAPTER

SIXTEEN

HelloWorld

This example illustrates the minimal applications that canbe written using IGSTK. The appli-
cation uses three main components. They are the View, the SpatialObjects and the Tracker. The
View is the visualization window that is presented to the user in the graphical user interface
(GUI) of the application. The SpatialObjects are used for representing geometrical shapes in
the scene of the surgical room. In this simplified example, a cylinder and a sphere SpatialOb-
jects are used. The Tracker is the device that provides position and orientation information
about some of the objects in the scene. A Tracker can track multiple objects, and each one of
them is referred as a TrackerTool. In this minimal example weuse a MouseTracker that is a
class intended mainly for demonstration and debugging purposes. This tracker get the values
of positions from the position of the mouse on the screen. Theposition values are then passed
to the sphere object in the scene. The MouseTracker is not intended to be used in a real image
guided surgery application.

The source code for this section can be found in the file
Examples/HelloWorld/HelloWorld.cxx .

To add a graphical user interface to the application, we use FLTK. FLTK is a a light weight
cross-platform GUI toolkit. FLTK stores a description of aninterface in files with extension .fl.
The FLTK toolfluid takes this file and uses it for generating C++ code in two files.One header
file with extension .h, and an implementation file with extension .cxx. In order to use that GUI
from the main program of our application we must include the header file generated by fluid.
This is done in the following line.

#include "HelloWorldGUI.h"

The geometrical description of the Cylinder and the Sphere in the scene are managed by
SpatialObjects. For this purpose we need the two classesigstk::EllipsoidObject and
igstk::CylinderObject . Their two header files are included below.

#include "igstkEllipsoidObject.h"
#include "igstkCylinderObject.h"

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1EllipsoidObject.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1CylinderObject.html

170 Chapter 16. HelloWorld

The visual representation of SpatialObjects in the visualization window is cre-
ated using SpatialObject Representation classes. Every SpatialObject has
one or several representation objects associated with it. We include now
the header files of the igstk::EllipsoidObjectRepresentation and
igstk::CylinderObjectRepresentation .

#include "igstkEllipsoidObjectRepresentation.h"
#include "igstkCylinderObjectRepresentation.h"

As stated above, the tracker in this minimal application is represented by a
igstk::MouseTracker . This class provides the same interface of a real tracking device
but with the convenience of running based on the movement of the mouse in the screen. The
header file of this class is included below.

#include "igstkMouseTracker.h"

Since image guided surgery applications are used in a critical environment, it is quite important
to be able to trace the behavior of the application during theintervention. For this purpose
IGSTK uses a igstk::Logger class and some helpers. The logger is a class that receives
messages from IGSTK classes and forward those messages to LoggerOutput classes. Typical
logger output classes are the standard output, a file and a popup window. The Logger classes
and their helpers are taken from the Insight Toolkit (ITK).

#include "itkLogger.h"
#include "itkStdStreamLogOutput.h"

We are now ready for writing the code of the actual application. Of couse we start with the
classicalmain() function.

int main(int , char**)
{

The first IGSTK command to be invoked in an application is the one that initialize the param-
eters of the clock. Timing is critical for all the operationsperformed in an IGS application.
Timing signals make possible to synchronize the operation of different components and to en-
sure that the scene that is rendered on the screen actually displays a consistent state of the
environment on the operating room.

igstk::RealTimeClock::Initialize();

First, we instantiate the GUI application.

HelloWorldGUI * m_GUI = new HelloWorldGUI();

Next, we instantiate the ellipsoidal spatial object that wewill be attaching to the tracker.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1EllipsoidObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1CylinderObjectRepresentation.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1MouseTracker.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1Logger.html

171

igstk::EllipsoidObject::Pointer ellipsoid = igstk::Ell ipsoidObject::New();

The ellipsoid radius can be set to one in all dimensions (X,Y and Z) using the SetRadius
member function as follows.

ellipsoid->SetRadius(1,1,1);

To visualize the ellipsoid spatial object, an object representation class is created and the ellipsoid
spatial object is added to it.

igstk::EllipsoidObjectRepresentation::Pointer
ellipsoidRepresentation = igstk::EllipsoidObjectRepre sentation::New();

ellipsoidRepresentation->RequestSetEllipsoidObject(ellipsoid);
ellipsoidRepresentation->SetColor(0.0,1.0,0.0);
ellipsoidRepresentation->SetOpacity(1.0);

Similarly, a cylinder spatial object and cylinder spatial object representation object are instanti-
ated as follows.

igstk::CylinderObject::Pointer cylinder = igstk::Cylin derObject::New();
cylinder->SetRadius(0.1);
cylinder->SetHeight(3);

igstk::CylinderObjectRepresentation::Pointer
cylinderRepresentation = igstk::CylinderObjectReprese ntation::New();

cylinderRepresentation->RequestSetCylinderObject(cy linder);
cylinderRepresentation->SetColor(1.0,0.0,0.0);
cylinderRepresentation->SetOpacity(1.0);

Next, the spatial objects are added to the view, and the camera position of is reset to observe all
objects in the scene.

m_GUI->Display->RequestAddObject(ellipsoidRepresent ation);
m_GUI->Display->RequestAddObject(cylinderRepresenta tion);
m_GUI->Display->RequestResetCamera();
m_GUI->Display->Update();

FunctionRequestEnableInteractions() allows the user to interactively manipulate (rotate,
pan, zoomm etc.) the camera. Forigstk::View2D class,vtkInteractorStyleImage is used;
For igstk::View3D class,vtkInteractorStyleTrackballCamera is used. In IGSTK, the
keyboard events are disabled, so it doesn’t support the original VTK key-mouse-combined in-
teractions. In summary the mouse events are as follows: Leftbutton click triggers pick event;
Left button hold rotates the camera, inigstk::View2D , camera direction is always perpendic-
ular to image plane, so there is no rotational movement available for igstk::View2D ; Middle
mouse button pans the camera; Right mouse button dollys the camera.

m_GUI->Display->RequestEnableInteractions();

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1View2D.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1View3D.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1View2D.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1View2D.html

172 Chapter 16. HelloWorld

The following code instantiate a new mouse tracker and initialize it. The scale factor is just a
number to scale down the movement of the tracked object in thescene.

igstk::MouseTracker::Pointer tracker = igstk::MouseTra cker::New();
tracker->Open();
tracker->Initialize();
tracker->SetScaleFactor(100.0);

Now we attach previously created spatial object to the tracker and set the tracker to monitor the
mouse events from the user interface. The tool port and tool number is naming convention from
NDI trackers.Reference to tracker chapterobject in the scene.

const unsigned int toolPort = 0;
const unsigned int toolNumber = 0;
tracker->AttachObjectToTrackerTool(toolPort, toolNum ber, ellipsoid);
m_GUI->SetTracker(tracker);

Now we setup a logger. We will direct the log output to both thestandard output (std::cout) and
a file (log.txt).need reference to logger chapter about priority level

itk::Logger::Pointer logger = itk::Logger::New();
itk::StdStreamLogOutput::Pointer logOutput = itk::StdS treamLogOutput::New();
itk::StdStreamLogOutput::Pointer fileOutput = itk::Std StreamLogOutput::New();

logOutput->SetStream(std::cout);
logger->AddLogOutput(logOutput);
logger->SetPriorityLevel(itk::Logger::DEBUG);

std::ofstream ofs("log.txt");
fileOutput->SetStream(ofs);
logger->AddLogOutput(fileOutput);

By connecting the logger to the Display and the Tracker, messages from the these components
will be redirected to the logger.

m_GUI->Display->SetLogger(logger);
tracker->SetLogger(logger);

Next, we set the refresh frequency of the display window. After we call theRequestStart()
function, the pulse generator inside the display window will start ticking, and call the display to
update itself 60 times per second.

m_GUI->Display->RequestSetRefreshRate(60);
m_GUI->Display->RequestStart();

All application should includes the following code. This isthe main event loop of the
application. First it checks if the application is aborted by user, if not, it calls for the
igstk::PulseGenerator to check its time out.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PulseGenerator.html

173

while(!m_GUI->HasQuitted())
{
Fl::wait(0.001);
igstk::PulseGenerator::CheckTimeouts();
}

Finally, before exiting the application, the tracker is properly closed and other clean up proce-
dures are executed.

tracker->StopTracking();
tracker->Close();
delete m_GUI;
ofs.close();
return EXIT_SUCCESS;

When one build IGSTK with CMake option “IGSTKBUILD EXAMPLES” on, the
“HelloWorld” application will be built automatically withthe toolkit. You will see a user inter-
face like Figure16.1when you run the application. If you press the “Tracking” button on the
lower left, the sphere will start following the mouse cursor.

A logging file “log.txt“ will also be created. The file contains logging output statments similar
to the following :

...
24445310681.509983 : (DEBUG) draw() called ...
24445310681.511478 : (DEBUG) UpdateSize() called ...
24445310681.526333 : (DEBUG) Tracker::StartTracking cal led ...
24445310681.528706 : (DEBUG) State transition is being mad e : (...omited...)
24445310681.534176 : (DEBUG) Tracker::AttemptToStartTr ackingProcessing called ...
24445310681.537331 : (DEBUG) State transition is being mad e : (...omited...)
24445310681.54253 : (DEBUG) Tracker::StartTrackingSucc essProcessing called ...
24445310681.545425 : (DEBUG) Tracker::EnterTrackingSta teProcessing called ...
...

These are the log messages from different IGSTK classes. It gives you information on time
stamp, priority level, function calls, state machine transitions. This log file can be used for
debugging purposes and clinical procedure reviews.

174 Chapter 16. HelloWorld

Figure 16.1:Screen shot of ”Hello World” example.

CHAPTER

SEVENTEEN

TwoViews

CHAPTER

EIGHTEEN

FourViews

CHAPTER

NINETEEN

FourViewsAndTracking

CHAPTER

TWENTY

FourViewsTrackingWithCT

Part IV

Example Applications

CHAPTER

TWENTYONE

Needle Biopsy

In this part of the book, we will show three example applications developed using IGSTK.
These applications come from our observation of clinical procedures, such as needle biopsy,
ultra-sound guided radio frequency ablation, and robot assisted needle placement. You will be
able to learn the concepts and work flows of these common image-guided procedures as well as
how to implement these applications under the IGSTK framework.

The first application is image guided needle biopsy. The definition for needle biopsy procedure
on Society of Interventional Radiology website is:

Needle biopsy is a medical test performed by interventionalradiologists to iden-
tify the cause of a lump or mass, or other abnormal condition in the body. Dur-
ing the procedure, the doctor inserts a small needle, guidedby X-ray or other
imaging techniques, into the abnormal area. A sample of tissue is removed and
given to a pathologist who looks at it under a microscope to determine what
the abnormality is – for example, cancer, a noncancerous tumor, infection, or
scar.(http://www.sirweb.org/patPub/needleBiopsy.shtml)

Needle biopsy is a widely used procedure for lung, breast, liver, and prostate cancer diagnosis.
A typical image-guided needle biopsy procedure involves first acquiring a pre-operative CT
image and then registering the CT image to the patient coordinate system. For this purpose,
fiducial-based rigid body registration techniques are commonly used. During the biopsy phase,
the needle is tracked by an optical tracking device with real-time visualization of its location
overlaid on top of the CT image. This overlay image provides guidance to the surgeon for better
targeting of the needle to its desired location.

Figure21.1shows the setup of the application. You will need the NDI Vicra tracker to run the
program. You can also modify the program to use other supported trackers.

http://www.sirweb.org/patPub/needleBiopsy.shtml

186 Chapter 21. Needle Biopsy

Figure 21.1:System setup for needle biopsy application.

21.1 Running the Application

This application can be found in the Examples/NeedleBiopsy. In order to build this application
you will need the cross-platform FLTK GUI toolkit availablefrom www.fltk.org. Then you
need to make sure that IGSTKUSE FLTK is turned ON when running CMake.

The following steps outline the work flow or operating sequences of this application.

1. Obtain the patient demographic information (name, etc.).

2. Load in the pre-operative CT image using the DICOM file format. Fiducials (small mark-
ers) are usually placed on the anatomy prior to the scan for landmark based registration
in Steps 4-7.

3. Verify the patient information against the information in the image. Prompt the surgeon
if there is a discrepancy. This step is typical of the error checking that should be done and
one should assume that if anything can go wrong it will go wrong and safeguards should
be provided.

4. Identify the image landmarks by going through the CT imageslices and selecting the
fiducials using the mouse. For paired-point based registration, at least three points are
required although at least four are preferred.

5. Initialize the tracking device.

21.2. Implementation 187

6. Add patient landmarks by touching the physical fiducials attached to patient using the
tracked pointer device.

7. Perform the image to patient landmark registration.

8. Path planning. The surgeon will select a target point and an entry point to plan the path
for the needle puncture.

9. Provide a real-time display of the overlay of the needle probe and pre-operative images
in the quadrant viewer window during the biopsy procedure.

21.2 Implementation

State machine is very important and distinct feature in IGSTK. Although it seems to be very
complicated to many people, we are trying to provide some guidance here to help users to
familiarize this concept and design pattern.

21.2.1 State Machine in Application

Given that IGSTK is intended for developing applications that will be used to treat patients,
robustness and quality are the highest priorities in the design of the toolkit. To minimize the risk
of harm to the patient resulting from misuse of the classes, IGSTK incorporates state machine
design pattern into its components. All IGSTK components are governed by a state machine.
A state machine is contained within the class to control the access to the class. Components are
always in a valid state to ensure they will perform in a predictable manner. The use of a state
machine also helps enforce high quality standards for code coverage and run-time validation.

In this example, state machine is being implemented at the application level(Figure21.2shows
the partial state machine diagram of this application). While this is not mandatory, it is strongly
recommended when using IGSTK. A state machine architecturegives the application developer
an easier way to prototype the application and to control thework flow of the surgical procedure,
and also adds an extra layer of security to the application tomake it more robust. The following
sections demonstrate how to write an application using the IGSTK framework.

21.2.2 Mapping clinical work flow to state machine

The first step to develop an application is to analyze the surgical procedure and develop a mini-
mal specification. By analyzing a typical needle biopsy procedure, we identify a serial of tasks
or work flow. Then it becomes relatively easy to translate clinical work flow into state machine
logic. If we think the application as a state machine, the completion of each task will cause
the application to enter a new state, and there will be a set ofstates to indicate the status of the
application. The user interaction with the GUI can be translated into inputs to the state machine.

188 Chapter 21. Needle Biopsy

Figure 21.2:State machine diagram (partial) for the needle biopsy application(Circle for state and arrow

for transition and corresponding input).

21.2. Implementation 189

For instance, when we click on the register patient button, this will generate a “RequestSetPa-
tientNameInput” to the state machine. The state machine will take this input and change its
current state from “InitialState” to “WaitingForPatientNameState”, and the action is to pop up
a window asking for input of the patient name. If the user inputs a valid name, then there will
be a “PatientNameInput” which brings the state machine into“PatientNameReadyState”, oth-
erwise there will be a “PatientNameEmptyInput”, which willreturn the state machine to the
“InitialState”. Thus, we can map the application into series of states and inputs and this higher
level abstraction will help the developer design a clear work flow for the application. Figure
21.2shows the state machine diagram for the needle biopsy application which was generated
automatically when the state machine is constructed using the ‘dot’ tool from Graphviz.

21.2.3 Coding the state machine

This section shows how to code the state machine into the needle biopsy application. IGSTK
has a number of convenient macros to facilitate the programming of the state machine. The
details of these macros can be found inSource/igstkMacro.h . More information on the state
machine design pattern and guidelines can be found on the IGSTK wiki page under ”Develop-
ment” section on “Design discussions” page.http://public.kitware.com/IGSTKWIKI

Once we have the higher level abstraction of the applicationand prototyped it in the state ma-
chine model, we need to take the following steps to program the state machine into the applica-
tions.

1. The first step is to use the state machine declaration macroin your class’s header
file. This macro defines types for state and input, creates a private member variable
m_StateMachine , and two private member functions for exporting the state machine de-
scription into dot format for the state machine diagram visualization and LTSA (Labeled
Transition Systems Analyzer) format for state machine animation and validation.

igstkStateMachineMacro();

2. Then take the states and inputs mapped out during the prototyping stage and define them
in the header file using the following macros. To enforce the naming conventions of the
state machine, the declaration macros will append “State” or “Input” automatically after
the variable name. For instance, the following two lines will definem_InitialState and
m_RequestLoadImageInput .

igstkDeclareStateMacro(Initial);
igstkDeclareInputMacro(RequestLoadImage);

3. The next step is to construct the state machine in the constructor of the source file. First,
we need to add all the states and inputs declared in the headerinto the state machine.

igstkAddStateMacro(Initial);
igstkAddInputMacro(RequestLoadImage);

http://public.kitware.com/IGSTKWIKI

190 Chapter 21. Needle Biopsy

4. The next step is a crucial step which creates the state machine transition table to
control the logic and workflow of the application. This is done using the macro
igstkAddTransitionMacro(From_State, Received_Input, T o_State, Action) .
This means when the state machine is in theFrom_State and receives the
Received_Input , it will enter into theTo_State and evoke theActionProcessing()
as an action for this transition. This macro requires the “ActionProcessing” method to be
pre-defined in the class for the state machine to call. For example:

igstkAddTransitionMacro(Initial, RequestSetPatientNa me,
WaitingForPatientName, SetPatientName);

In this case, we need to have a SetPatientNameProcessing() method defined in the class
for this code to compile.

5. After we have setup the transition table, the next step is to select an initial state, and
flag the state machine to be ready to run. After the state machine is ready to run, we
cannot change the state machine transition table in the code. This is designed this way
to enhance the safety of the state machine and prevent accidentally changes to the state
machine behavior in the code.

igstkSetInitialStateMacro(Initial);
m_StateMachine.SetReadyToRun();

6. Now the state machine is setup and ready to run. We can then export the state machine
description in dot format and generate the graphical visualization as shown in Figure21.2.
This graph will help us to examine the workflow of the application and the state transition
table.

std::ofstream ofile;
ofile.open("DemoApplicationStateMachineDiagram.dot");
const bool skipLoops = false;
this->ExportStateMachineDescription(ofile, skipLoops);
ofile.close();

This will output the state machine into a dot file when we execute the application. If
you have the dot tool installed in your system, then you can run the following command,
which will take the dot file and generate a png format picture named “SMDiagram.png”
for the state machine.

>dot -T png -o SMDiagram.png DemoApplicationStateMachine Diagram.dot

7. All the requests to a state machine should be translated into inputs and the state machine
will response to those inputs depending on its current state. These actual actions should
be protected methods and only called by the state machine directly. In the code, a click
on the load image button will be translated to aRequestLoadImageInput , and then we
call ProcessInputs() to let the state machine handle this request.

21.3. Result 191

igstkPushInputMacro(RequestLoadImage);
m_StateMachine.ProcessInputs();

If the state machine is in the right state to load the image, a protected method associated
with this transition (eg.LoadImageProccessing()) will be evoked by the state machine
as defined in the transition table constructed in the constructor.

21.2.4 Should I use the state machine in my application?

From the computational theory point of view, all computers are state machines, and all com-
puter programs are state machines regardless of whether thedevelopers used the state machine
programming pattern or not. Traditional programming approaches represent the states ambigu-
ously by using a large number of variables and flags, which result in many conditional tests
in the code (if-then-else or switchcase statements in C/C++). Programmers could neglect to
consider all possible paths in the code while struggling with if-else conditional tests and flag
checks. These practices may result in unpredictable behavior and limit safety in the design
of the underlying applications. Since predictability is critical for mission critical applications
running in the surgery room, this approach is not suitable for our purpose.

In comparison to traditional approaches, state machines will reduce the number of paths in the
code, save the developers from convoluted conditional tests, and encourage them to focus on
higher level design. From the above example, we can see that the state machine is easy to
program and manage under the IGSTK framework. We encourage developers to design and
code the state machine of their application first, and then generate the state machine diagram
as shown in Figure21.2. They can go through the diagram, examine and verify their design
of the work flow. If they want to add or change a path of the application, it is just a matter of
adding or deleting a transition table entry. This eliminates the level of difficulty required for
going through the code and struggling with if-then-else logic. This will largely facilitate the
application prototyping, and the implementation code can be plugged into the skeleton program
later. These techniques should result in clearer designs and safer applications.

21.3 Result

Figure21.3shows the user interface of the needle biopsy application written in FLTK. The left
side is the control panel, consists of a set of buttons corresponding to the series of tasks per-
formed during the procedure. These buttons’ callbacks should call the public request methods of
the application, which will be translated into state machine inputs. The state machine will then
take proper action according to its own state. For example, when the patient information is not
set, the ‘Load Image’ button won’t respond to the user click.There is no need for conditional
checks or disabling of buttons here as these actions are already in the state machine transition
table. On the right hand side, there are four standardized views, axial, sagittal, coronal, and
3D view. Here we loaded an abdominal phantom CT images. The green cylinder represents

192 Chapter 21. Needle Biopsy

Figure 21.3:User interface for needle biopsy program.

the needle being tracked by the tracker. The viewer will automatically reslice the images as the
needle tip is moving in the anatomy.

CHAPTER

TWENTYTWO

Ultrasound Guided Radio-Frequency
Ablation

22.1 Introduction

Liver lesions suitable to be treated using radio-frequencyablation (RFA) are often clearly visible
under CT/MR but not using Ultrasound (US) imaging. Therefore most of the RFA surgeries of
the liver are performed under CT. Other alternatives consist of waiting until the lesions enlarge
and show up under US or perform an open surgery. An ideal visualization system would show
tumor contours under US to the surgeons. A typical workflow ofan RFA surgery is described
in figure22.1.

This application registers a pre-operative model of the tumors with a 2D US slice in pseudo
real-time. The system can be divided into three parts: a) tracking devices, b) registration algo-
rithm and c) display. First, the 2D ultrasound probe is tracked using an optical tracker (Polaris
from NDI). Second, an image-to-image registration algorithm registers each 2D slice with a the
pre-operative CT. One can notice that this registration step should be performed as quickly as
possible. Third and last, a display presents the actual 2D USslice with tumor outlines to the
surgeon.

Next the different components of the application, the tracking systems and the registration al-
gorithm are presented.

22.2 Running the Application

This application can be found in the Examples/UltrasoundGuidedRFA. In order to build this
application you will need the cross-platform FLTK GUI toolkit available from www.fltk.org.
Then you need to make sure that IGSTKUSE FLTK is turned ON when running CMake.

194 Chapter 22. Ultrasound Guided Radio-Frequency Ablation

Figure 22.1:Typical RFA Ablation Surgery Workflow.

22.3. Implementation 195

22.3 Implementation

22.3.1 Tracker

Using a tracker in IGSTK is quite easy. First we create a tracker object using smart pointers.

typedef igstk::PolarisTracker TrackerType;
TrackerType::Pointer m_Tracker = TrackerType::New();

Then, we set a ToolCalibrationTransform which defines the relationship between the tracking
device and the origin of the tool. In our case, the optical sensor is attached to arm the probe,
therefore the calibration transform is defined as a rigid transform from the sensor position to the
tip of the probe. This transform can be computed from a calibration experiment or using some
heuristics.

m_Tracker->SetToolCalibrationTransform(TRACKER_TOOL _PORT, 0,
ToolCalibrationTran

Next, we need to define the relationship between the trackingsystem origin and the actual pa-
tient position in the OR. Most of the surgical applications define the OR as the world coordinate
origin. This PatientTransform is often assessed via calibration.

m_Tracker->SetPatientTransform(PatientTransform);

The IGSTK spatial object to be tracked is attached to the tracker using AttachObjectToTrack-
erTool. Therefore when the position and orientation of the tracking device is modified, the
updated position of the spatial object is automatically computed. One can notice that this step
involves the concatenation with the ToolCalibrationTransform and the PatientTrasnform.

m_Tracker->AttachObjectToTrackerTool(TRACKER_TOOL_P ORT,
TRACKER_TOOL_NUMBER,

m_UltrasoundProbe);

Our tracker is ready to be used, we start the tracking by first opening the serial communication
port usingOpen() , then we initialize the tracker and start the tracking.

m_Tracker->Open();
m_Tracker->Initialize();
m_Tracker->StartTracking();

To stop the tracking device we just use theStopTracking() function.

m_Tracker->StopTracking();

One can notice that switching from one tracker to another canbe done by modifying a single
line of the code above, e.g. the tracker type definition.

196 Chapter 22. Ultrasound Guided Radio-Frequency Ablation

22.3.2 Registration

Using the tracking information of the ultrasound probe the location of the US slice is roughly
defined in the OR. To define a proper alignment of the US slice and the pre-operative CT volume
registration is needed. The registration algorithm is an image-to-image technique based on the
cross-correlation.

IGSTK makes use of registration algorithms already implemented in the Insight Segmentation
and Registration Toolkit [?]. However, IGSTK propose algorithm already tuned from specific
modalities and organs. Using class hierarchies, programmers can still makes use of higher level
registration technique. For instance, the igstkMR3DImageToUS3DImageRegistrationclass per-
forms registration of any 3D MR to 3D US. The parameters of theregistration are already tuned
to support most of the MR-to-US registrations but some othertuning might be required for
different organs.

22.3.3 Display

IGSTK propose several visualization techniques based on the Visualization Toolkit [?]. Basi-
cally for a given IGSTK spatial object, several representation objects can be created and added
the display as shown in figure??.

Image volumes such as CT or MR datasets can be renderered as textured oblique slices or can
be volume renderered. Mesh objects such as segmented tumorscan be renderered in 3D as
triangle surfaces and in 2D as contours. The update of the display is done in real-time when the
number of objects in the scene is not excessive and does not require extensive computation, i.e
volume rendering of large datasets.

22.3.4 Implementation

Here we show an example on how to read and display a vasculature extracted from CT.

First we create a vascular network reader using smart pointers.

typedef igstk::VascularNetworkReader VascularNetworkR eaderType;
VascularNetworkReaderType::Pointer m_VascularNetwork Reader;
m_VascularNetworkReader = VascularNetworkReaderType:: New();

Then we set the vasculature filename and we ask the reader to read the file using the Re-
questReadObject() function.

m_VascularNetworkReader->RequestSetFileName(Vascula tureFilename);
m_VascularNetworkReader->RequestReadObject();

In order to get a spatial object from a reader, IGSTK uses theevent/observermechanism. We
declare a specific observer to get the vasculature from the reader and we ask the reader to return
the object.

22.4. Conclusion 197

VascularNetworkObserver::Pointer vascularNetworkObse rver
= VascularNetworkObserver::New();

m_VascularNetworkReader->AddObserver(
VascularNetworkReader::VascularNetworkModifiedEvent (),
vascularNetworkObserver);

m_VascularNetworkReader->RequestGetVascularNetwork();

Next, we instantiate an object representation for the VascularNetwork object.

typedef igstk::VascularNetworkObjectRepresentation
VascularNetworkRepresentationType;

VascularNetworkRepresentationType::Pointer m_Vascula rNetworkRepresentation =
VascularNetworkRepre

Then we set the spatial object to the object representation.Internally the object representation
creates a suitable visualization of the object from its internal geometry.

m_VascularNetworkRepresentation->RequestSetVascular NetworkObject(
vascularNetworkObserver->GetVascularNetwork());

Finally, we add the object to the display.

this->Display3D->RequestAddObject(m_VascularNetwork Representation);

22.4 Conclusion

CHAPTER

TWENTYTHREE

Robot Assisted Needle Placement

Even with the image guidance introduced in the previous needle biopsy application (Chapter
21), the physician might be limited by the view of the exact position of any surgical instru-
ments in the interventional field, and they might need to spend a fair amount of time to align
the instruments with the planned path. In this chapter we present an image-guided platform for
precision placement of surgical instruments based upon a small four degree-of-freedom robot
shown in Figure23.1(B-RobII; ARC Seibersdorf Research GmbH, Vienna, Austria). This plat-
form includes a custom needle guide with an integrated spiral fiducial pattern as the robot’s
end-effector and uses pre-operative computed tomography (CT) to register the robot to the pa-
tient directly before the intervention. The robot can then automatically align the instrument
guide to a physician-selected path for percutaneous access. The path is chosen by the physician
before the intervention using an established graphical user interface built using open-source
toolkits such as the Image-Guided Surgery Toolkit (IGSTK).Potential abdominal targets in-
clude the liver, kidney, prostate, and spine. This system isaimed to increase the accuracy and
speed of the biopsy procedure by incorporating robot. Figure23.2shows the setup of the whole
system.

23.1 Running the Application

This application can be found in theExamples/DeckOfCardRobot . In order to build this appli-
cation you will need the cross-platform FLTK GUI toolkit available from www.fltk.org. Then
you need to make sure that IGSTKUSE FLTK is turned ON when running CMake.

As shown in Figure23.3, the workflow of this application is (Suppose we are having a lung
biopsy procedure):

1. Place the phantom on the CT table and mount the robot to the CT gantry.

2. Position the robot needle holder close to the region of interest.

3. Scan the phantom together with the robot.

200 Chapter 23. Robot Assisted Needle Placement

Figure 23.1:B-RobII four degree-of-freedom precision placement modules for needle positioning and

orientation.

Figure 23.2:Robot assisted needle placement phantom study setup.

23.2. Implementation 201

4. Load CT images into the robot control software.

5. Using the control software, segment out the fiducials in the CT image and perform the
paired-point registration.

6. In the display window, plan the needle insertion path.

7. If the planned path is within the robot’s working range, then command the robot to align
the needle to the planned path. Otherwise, go back to step 2 and reposition the robot
closer to the biopsy entry point.

8. Advance the needle by hand. The depth of insertion will also be calculated by the system
and this depth can be judged by observing depth graduations on the needle itself.

23.2 Implementation

1. INTRODUCTION 1.1. Image guided needle placement Needle and needle tools are widely
used in the clinical environment, especially in minimum invasive procedures, for both diagnos-
tic and treatment purposes. One of the most commonly practiced procedures is needle biopsy,
in which clinicians deploy needles into patient body to sample a small amount of tissue for
laboratory analysis. This procedure is mostly being used for lung, breast, liver, and prostate
for tumor diagnosis and cancer staging. In other proceduressuch as radio frequency ablation,
surgeon insert ablation needle into the center of tumor and use the radio frequency energy to
’cook’ the tumor. Both procedures are minimum invasive, butthey also require a great amount
of experience to accurately targeting the tumor to achieve the best result. By overlaying real-
time location of tracked surgical tool on top of pre or intra-operative images, image guided
technology can provide insight into the patient anatomy, thus increase the accuracy of mini-
mum invasive procedures. 1.2. Deck of card robot The deck of cards robot is designed and
manufactured by ARC Seibersdorf Research GmbH, Austria. (Figure 1 left). The robot has
two joints (upper box and lower box, which can move parallel to each other) and 4 degree of
freedoms (+19mm in translation and + 30o in rotation). Its unique shape gave it the name deck
of card robot. Figure 1 right shows the system setup. The robot is mounted on the CT table after
patient is in place. Robot arm is adjusted to position the needle holder close to the biopsy area.
A CT scan is then acquired and loaded into robot assisted needle biopsy application. Surgeon
can go through the image slices, identify tumors, and plan anoptimal biopsy path by setting
proper target and entry points to avoid important and vulnerable organs and tissues. The robot
will then move the needle holder and align it with the planed path. Surgeon can advance the
needle manually to hit the target. The deck of card robot can be operated remotely by multiple
clients through TCP/IP communication. Client applicationshould first connect to the server
application as an active client before it can command the robot.

Figure 1. Deck of card robot (left) and robot assisted needlebiopsy system setup (right) 1.3.
Image-Guided Surgery Toolkit (IGSTK) IGSTK is an open source toolkit designed for devel-
opment of image guided surgical applications [1, 2]. IGSTK is developed on top of three other
open source toolkits i.e. ITK (segmentation and registration), VTK (visualization) and FLTK

202 Chapter 23. Robot Assisted Needle Placement

Figure 23.3:Clinical Workflow for Robot Assisted Needle Placement.

23.2. Implementation 203

for graphical user interface. IGSTK contains basic components needed in image guided surgery
applications such as view classes for displaying and presenting results to the clinician, spatial
object and spatial object representation classes for modeling and displaying physical object in-
cluding images and anatomical structures, and tracker classes to handle and communicate with
tracked surgical tools. 2. METHOD The critical step in robotguided needle placement ap-
plication is to determine the transformation parameters between the robot and patient/image
coordinate system. This registration procedure is commonly performed using fiducial based
(point-based) registration technique. In this procedure,surgeons examine the image slice by
slice and identify fiducial markers and establish the pairing to the physical fiducial markers.
This manual tagging and matching procedure is time consuming and is prone to human errors.
Hence, we developed automatic fiducial marker detecting andmatching algorithm. We embed-
ded 1mm diameter metal fiducial markers (19 in total) onto thesurface of the cylindrical needle
holder (Figure 2 left). Figure 2 right shows 3D reconstructed image of the fiducial markers
from a CT scan. The markers follow a spiral pattern. The positions of each fiducial marker with
respect to the robot space origin are known and are referred as the model points later in this
paper.

Figure 2. Needle holder with embedded fiducial markers (left), and reconstructed image show-
ing the fiducial markers (right). 2.1. Fiducial point detection Metal fiducial markers have very
high absorption rate in CT images. Thus we can threshold the image, extract high intensity
objects, and then calculate the centroid of each object as fiducial point position. In the case of
the existence of other metal objects in the image, we used maximum and minimum size criteria
to filter out non fiducial points such as needle, metal part of the robot, and metal implantation
in patient. Even if we use the size restriction, there are still some small objects in the segmen-
tation results can not be separate from the true fiducial points. The goal for fiducial clustering
is to filter out those false positive segmentation results. Given the high density distribution of
fiducial markers in the end effecter (19 fiducials in total), and no other metal object except fidu-
cial points are detected within or around plastic needle holder (needle can be filter out by size
criteria), we can conclude that the remaining false positives are all outliers. We can then cal-
culate the distance map of the segmented point set, and iteratively delete point with the largest
average distance to the rest of the points, until the maximumdistance between point pair is
less or equal than the maximum scale of the model. This is similar to the max-cut clustering
algorithm. More sophisticated algorithm can be used to cluster the similarity map between seg-
mented points and model points. Using the former two steps won’t guarantee to segment out
exact 19 fiducial points which is required by the next step landmark based registration. If a high
threshold value is used, then we might miss detect some of thefiducial markers, if a low thresh-
old value is used, then we might end up detecting too much false positive points, which does not
the meet the assumption of the clustering algorithm that no points other than fiducial markers
are detected within or around the needle holder area. Here weused two stage segmentation
algorithms (Figure 3). First we use a high threshold value (3000) to segment the whole volume
and followed by the clustering algorithm to extract the highconfidence fiducial markers, this
stage guarantee all the result points are true positive. We then use these points to extract the
volume of interest which only contains the needle holder, and perform the segmentation again
with a lower threshold (2000) followed by the clustering. This will guarantee to segment all the
fiducial points. Because it’s applied to a sub volume contains only the needle holder, it’s much

204 Chapter 23. Robot Assisted Needle Placement

faster, and won’t generate false positive segmentation results.

Figure 3. Flow chart for the two stage segmentation algorithm 2.2. Fiducial point matching and
registration After segmenting all the fiducial points in theimage, we can then sort the points by
projecting them on to its center axis, the axis of cylinder shaped needle holder. This axis can
be approximated by extracting the principle component axisof the 3D points set. One design
flaw of this particular end effecter is that it is symmetric with respect to the center plane per-
pendicular to end effecter’s axis, which makes it hard for computer program to identify what’s
the right order of the point sequence. In this program we use the assumption that the point
with largest Y coordinate (the lowest elevation, because the robot can not flip upside down, so
the end effecter is always pointing downwards) corresponding to the smallest Z axis point in
the model. A better solution to this problem is to manually take out one of the fiducial point
on either upper or lower side of end effecter and make it asymmetric, and try the landmark
based registration with two different orders of the points,and take the registration result with
the smaller RMS error. 3. IMPLEMENTATION The fiducial segmentation and matching al-
gorithm was implemented using ITK classes. The algorithm takes an ITK image, a threshold,
and maximum and minimum sizes as input and generates a segmented points list. The ma-
jor classes used are [3]: itk::BinaryThresholdImageFilter itk::ConnectedComponentImageFilter
itk::RelabelComponentImageFilter Fiducial clustering filter takes a list of sample points and list
of the model points as input and returns the clustered pointslist. The communication between
the application and robot server is through TCP/IP protocol. For this purpose, socket com-
munication component of IGSTK was used. Other modules of this application, user interface,
visualization, registration and path planning are implemented using view, registration compo-
nents of IGSTK. 4. RESULTS 4.1. Application GUI Figure 4 leftshows the user interface
of the application with control panel on the left, 3 standard2D slice views and a 3D volume
rendering on the right. The yellow cylinder is the needle holder, the purple square indicates
robot’s working region, a path is being planed to target the tumor while avoiding the ribs, and
it is showing the robot being aligned with the planned path. Figure 4 right shows the phantom
study setup. After registering the robot, the application can command the robot to align with the
planned path, and the robot is able to hit the pre-attached skin fiducial markers on the planned
path.

Figure 4. Application user interface showing the registered robot (left) and phantom study
(right) 4.2. Validation study To validate the whole system especially the robot registration and
communication part, we acquired three groups of data, each group contains one home position
and three other know robot positions. That’s 12 scans in total. The image is reconstructed with
0.637x0.637x1.00mm resolution. It takes about 30 seconds to run the algorithm on a moderate
PC with an image size of 512x512x105. The automated algorithm can successfully register all
12 data sets with an accuracy of 0.298+0.018mm RMS errors. 5.DISCUSSION and CON-
CLUSION The results showed that the registration method developed here is robust. We are
currently investigating to use more relaxed registration methods such as iterative closest points
and model-to-image registration which do not require the exact same number of segmented
fiducial points as in the model and the points pairing, and compare their success rate and ac-
curacy to the this landmark based method. Furthermore, the algorithm doesn’t take respiratory
motion effect into consideration. In lung and liver biopsy,respiratory motion can introduce as
much as 5 cm errors into the system. Motion compensation techniques must be used to reduce

23.3. Result 205

Figure 23.4:3D rendering of CT scan showing spiral fiducial pattern for registration of robot to CT images.

the motion error when using the robot assisted needle biopsysystem. 6. DISCLAIMER and
ACKNOWLEDGEMENT This application is being developed as an example application with
the release of IGSTK open source software toolkit, and it’s not suitable for clinical use. The
author would like to thank for help from other IGSTK developers while developing the system,
there are Luis Ibanez, Julien Jomier, Stephen Aylward, RickAvila, David Gobbi, Brain Blake,
and Kevin Gary. This research is supported by the National Institute of Biomedical Imaging and
Bioengineering (NIBIB) at the National Institutes of Health (NIH) under grant R42EB000374
and by U.S. Army grant W81XWH-04-1-0078

23.3 Result

206 Chapter 23. Robot Assisted Needle Placement

Figure 23.5:User interface for the robot application.

Part V

Appendices

APPENDIX

A

IGSTK Style Guide

A.1 Purpose

The following document is a description of the accepted coding style for the Image Guided Soft-
ware Toolkit (IGSTK). We have chosen to follow the Style Guide for NLM Insight Registration
and Segmentation Toolkit (ITK) with minor modifications where needed.

A.2 Document Overview

This document is organized into the following sections.

• XXX

This style guide is an evolving document. Any changes to style guide (addition, modification,
or deletion of rules) you wish to propose has to be discussed and agreed upon at the IGstk
Developers meeting or mailing list.

A.3 Implementation Framework

A.3.1 Implementation Language

The core implementation language is C++. C++ was chosen for its flexibility, performance, and
familiarity to development members. IGstk uses the full spectrum of C++ features including
const and volatile correctness, and namespaces. Operator overloading is done in moderation,
and only for very basic object types.

210 Appendix A. IGSTK Style Guide

A.3.2 Generic Programming

The use of templates in IGSTK is discouraged, and it is only accepted for well justified cases.

A.3.3 Generic Programming

Use of the STL is encouraged. STL is typically used by a class,rather than serving as a
base class for derivation of IGstk classes. We encourage theuse of STL in the internal code
of IGSTK classes, but avoid it at the API level. For example, if an IGSTK class needs
a list of points as argument to a method, we should not define the method’s signature as
SetPoints(std::vector<points>) , but rather define and IGSTK ListOfPoints class, and
define the methodSetPoints(const ListOfPoints &list) . This allows enforcing correct-
ness on the types passed to methods and reduces the risks of unwanted or inadverted castings
that may result in run-time errors.

A.3.4 Portability

IGstk is designed to compile on a set of target operating system/compiler combinations. These
combinations include:

• XXX

Since some of these compilers do not support all C++ features, some important C++ features
(such as partial specialization) may not be used because of limitations in compilers (e.g., MSVC
6.0).

Whatever is the list of compilers we select to support, we must make sure that we setup Nightly
builds for all of them. The de-facto definition of a supportedcompiler iscompiler that is sub-
mitting a green nightly build to the Dashboard.

A.3.5 CMake Configuration Environment

The IGstk configuration environment is CMake. CMake is an open-source, advanced cross-
platform build system that enables developers to write simple ed native build tools for a partic-
ular operating system/compiler combinations. (www.cmake.org).

A.3.6 Doxygen Documentation System

The Doxygen open-source system is used to generate on-line documentation. Doxygen requires
the embedding of simple comments in the code which is in turn extracted and formatted into
documentation. (http://www.stack.nl/ dimitri/doxygen/). (It is important for developers to get

A.4. Copyright 211

familiar with Doxygen tokens. The Doxygen manual is quite detailed and offers a large num-
ber of possibilities. For example, relating one class to another, including equations, including
images, including links to URLs.

A.3.7 vnl Math Library

IGstk would use vnl Math Library for math related functions.These library are included in the
ITK source code. (http://www.robots.ox.ac.uk/ vxl/). We should try to avoid using VNL inside
IGSTK classes, and rather try to use it through ITK. Definitely never expose vnl at the IGSTK
API level (in the same way that we should avoid exposing ITK orVTK).

A.3.8 Reference Counting and SmartPointers

IGSTK has adopted reference counting viasmart pointersto manage object references. Smart
pointers automatically increment and decrement an instance’s reference count, deleting the ob-
ject when the count goes to zero. The use of SmartPointers is limited to classes that have a
significant memory footprint, such as high level IGSTK components.

A.3.9 CVS Environment

CVS would be used for the Version Control, software updates and downloads.

A.3.10 Dart Dashboard Testing Environment

IGstk intends to have testing for 100which uses every line ofthe IGstk code. Test code should
be written preferably before the main code is written, or along with the main code. The
Dart/Dashboard would be used as the testing environment. The notion of 100coverage. It goes
beyond 100been executed as part of a test. In the case of IGSTKwe must test all possible com-
binations of function calls in order to ensure the robustness of the toolkit against inappropriate
usage. The use of State Machines is fundamental in order to achieve this goal. The stringent
testing must be enforced if we expect IGSTK ever to be used in asurgery room.

A.4 Copyright

IGSTK has adopted a standard copyright. This copyright should be placed at the head of every
source code file. The current header added to every IGSTK file reads as follows:

/*=== =============

Program: Image Guided Surgery Software Toolkit

212 Appendix A. IGSTK Style Guide

Module: $RCSfile: IGSTKStyleGuide.tex,v $
Language: C++
Date: $Date: 2006/10/26 19:19:11 $
Version: $Revision: 1.2 $

Copyright (c) ISIS Georgetown University. All rights reser ved.
See IGSTKCopyright.txt or http://www.igstk.org/HTML/Co pyright.htm
for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PAR TICULAR
PURPOSE. See the above copyright notices for more informati on.

=== ============*/

Note the use of embedded CVS commands at the top of the header,such asRCS f ile:
IGSTKStyleGuide.tex,v, Date: 2006/10/2619 : 19 : 11,Revision: 1.2. These should be used
in each source file under CVS control.

The copyright read as follows:

/*=== ========================

Copyright (c) 1999-2003 Imaging Science and Information Sy stems Center
Georgetown University.

All rights reserved.

Redistribution and use in source and binary forms, with or wi thout
modification, are permitted provided that the following co nditions are met:

* Redistributions of source code must retain the above copyr ight notice,
this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above co pyright notice,
this list of conditions and the following disclaimer in the d ocumentation
and/or other materials provided with the distribution.

* The name of Imaging Science and Information Systems Center , nor the names
of any of the developers, nor of any contributors, may be used to endorse or
promote products derived from this software without specif ic prior written
permission.

* Modified source versions must be plainly marked as such, an d must not be
misrepresented as being the original software.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS ‘‘AS IS’’
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

A.5. File Organization 213

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR C ONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=== ======================*/

A.5 File Organization

Classes are created and (usually) organized into a single class per file set. A file set consists
of .h header file, .cxx implementation file, and/or a .txx templated implementation file. Helper
classes may also be defined in the file set, typically these arenot visible to the system at large, or
placed into a special namespace. Source files must be placed in the correct directory for logical
consistency with the rest of the system, and to avoid cyclic dependencies. Currently the IGstk
source directory looks as follows:

IGSTK
Source

{all *.h, *.txx and *.cxx code of the basic code}
Examples

{all *.h, *.txx and *.cxx code of the example (application) c ode}
Testing

{all *.h, *.txx and *.cxx code of the test code}
Data

Baseline
{all sample result data for comparing}

Input
{ all input data for the test code }

A.6 Namespaces

All classes should be placed in theigstknamespace. Sub-namespaces may be used for helper
IGstk classes. Additional sub-namespaces may be designed to support special functionality.

214 Appendix A. IGSTK Style Guide

A.7 Naming Conventions

In general, names are constructed by using case change to indicate separate words, as in TimeS-
tamp (versus Time Stamp). Underscores are not used. Variable names are chosen carefully with
the intention to convey the meaning behind the code. Names are generally spelled out; use of
abbreviations is discouraged. (Abbreviation are allowable when in common use, and should
be in uppercase as in RGB). While this does result in long names, it self-documents the code.
Depending on whether the name is a class, file, variable, or other name, variations on this theme
result as explained in the following subsections.

A.7.1 Naming Classes

Classes are named beginning with a capital letter. Classes are placed in the appropriate names-
pace, typically igstk. Classes are named according to the following general rule:

class name = <process><input><concept>

In this formula, the name of the process (possibly with an associated adjective or adverb) comes
first, followed by an input type (e.g. modality of the images), and completed by a concept
name. A concept is an informal classification describing what a class does. Here are some of
the concepts defined in IGSTK:

• Reader - A component that read medical images from files.

• Tracker - A proxy for a hardware device.

• Viewer - An abstraction of a visualization window.

The naming of classes is an art form; please review existing names to catch the spirit of the
naming convention. Example names include: DicomReader, TrackerInterface, DefaultImage-
Traits.

A.7.2 Naming Files

Files should have the same name as the class, with an igstk” prepended. Header files are named
.h, while implementation files are named either .cxx or .txx,depending on whether they are im-
plementations of templated classes. For example, the classigstk::DicomReader is declared and
defined in the files igstkDicomReader.h and files igstkDicomReader.txx (because DicomReader
is templated).

A.7.3 Naming Methods and Functions

Global functions and class methods, either static or class members, are named beginning with
a capital letter. The biggest challenge when naming methodsand functions is to be consistent

A.7. Naming Conventions 215

with existing names.

When referring to class methods in code, an explicitthis pointer should be used. The use
of the explicitthispointer helps clarify exactly which method, and where it originates, is being
invoked. Similarly the global namespace (::) should be usedwhen referring to a global function.

A.7.4 Naming Class Data Members

Member variables are named beginning with a capital letter.All member variables are declared
as private, with Get/Set methods. When refereeing to a member variable, an explicitthispointer
should be used. Derived classes must us the combination ofthisand Get/Set methods.

A.7.5 Naming Local Variables

Local variables begin in lowercase. There is more flexibility in the naming of local variables.
Please remember that others will study, maintain, fix, and extend your code. Explanatory vari-
able names and comments will go a long way towards helping other developers. Variable names
are considered to be part of the documentation of the code. Avoid short names that do not de-
scribe the role of the variable.

A.7.6 Naming Template Parameters

Template parameters follow the usual rules with naming except that they should start with either
the capital letter T or V. Type parameters begin with the letter T while value template parameters
begin with the letter V.

A.7.7 Naming Typedefs

The use of Typedefs is encouraged. They significantly improve the readability of code, and
facilitate the declaration of complex syntactic combinations. Unfortunately, creation of typedefs
is tantamount to creating another programming language. Hence typedefs must be used in a
consistent fashion.

The general rule for typedef names is that they end in the wordType. For example

typedef TPixel PixelType;

However, there are certain exceptions to this rule in order to highlight important concepts used
in IGSTK. Following is the list of these exceptional cases:

• Self as in:typedef Image Self; All classes should define this typedef.

• Superclass as in:typedef ImageBase<VImageDimension> Superclass; All classes
should define the Superclass typedef.

216 Appendix A. IGSTK Style Guide

• Pointer as in a smart pointer to an object as in:typedef SmartPointer<Self>
Pointer; and ConstPointer as in: typedef SmartPointer< const Self >
ConstPointer;

For classes following concepts Container, Iterator and Identifier, the concept name is used in
preference to Type at the end of a typedef as appropriate. Forexample

typedef typename ImageTraits::PixelContainer PixelCont ainer;

Here Container is a concept used in place of Type.

A.7.8 Using Underscores

Don’t use them. The only exception is when defining class datamember variables, preprocessor
variables and macros (which are discouraged). In this case,underscores are allowed to separate
words.

A.7.9 Preprocessor Directives

Please avoid using preprocessor directives, except to support minor differences in compilers or
operating systems. If a class makes extensive use of preprocessor directives, it is a candidate
for separation into its own class.

A.8 Const Correctness

Const correctness is important. Please use it as appropriate to your class or method. Const
correctness is fundamental for maintaining the integrity of IGSTK classes. A safe approach is
to start considering everything asconstand making classes and methodsnon-constonly when
a justification exists. Const verification is done by the compiler and prevents inappropriate and
unsafe use of the classes and methods. Note that VTK does not enforce const correctness and
ITK still have some flexible spots. IGSTK must cover these eventual const-correctness failures
and enforce complete const-correctness verification.

A.9 Code Layout and Indentation

We chose to follow the accepted ITK code layout rules and indentation style, and we are repro-
ducing them below. After reading this section, you may wish to visit many of the source files
found in ITK. This will help crystalize the rules described here.

A.9. Code Layout and Indentation 217

A.9.1 General Layout

Each line of code should take no more than 79 characters. Break the code across multiple
lines as necessary. Use lots of whitespace to separate logical blocks of code, intermixed with
comments. To a large extent the structure of code directly expresses its implementation.

The appropriate indentation level is two spaces for each level of indentation. DO NOT USE
TABS. Set up your editor to insert spaces. Using tabs may lookgood in your editor but will
wreak havoc in others.

The declaration of variables within classes, methods, and functions should be one declaration
per line.

int i;
int j;
char* stringname;

A.9.2 Class Layout

Classes are defined using the following guidelines.

• Begin with #ifndef guards and finish with #endif guard.

• Follow with the necessary includes. Include only what is necessary to avoid dependency
problems.

• Place the class in the correct namespace.

• Public methods come first.

• Protected methods follow.

• Private members come last.

• Public data members are forbidden.

• Templated classes require a special preprocessor directive to control the manual instanti-
ation of templates. (See the example below and look for ITK MANUAL INSTANTIA-
TION.)

The class layout looks something like this:

#include ‘‘igstkDicomReaderBase.h’’
#include ‘‘itkPixelTraits.h’’
#include ‘‘itkDefaultImageTraits.h’’
#include ‘‘itkDefaultDataAccessor.h’’

218 Appendix A. IGSTK Style Guide

namespace igstk
{
template <class TPixel, unsigned int VImageDimension=2,

class TImageTraits=DefaultImageTraits< TPixel, VImageD imension > >
class IGSTK_EXPORT DicomReader : public DicomReaderBase< VImageDimension>
{
public:
....stuff...
protected:
....stuff...
private:
....stuff...
};
}//end of namespace
#ifndef ITK_MANUAL_INSTANTIATION
#include ‘‘igstkDicomReader.txx’’
#endif
#endif //end include guard

A.9.3 Method Definition

Methods are defined across multiple lines. This is to accommodate the extremely long defini-
tions possible when using templates. The starting and ending brace should be in column one.
For example:

template<class TPixel, unsigned int VImageDimension, cla ss TImageTraits>
const double *
Image<TPixel, VImageDimension, TImageTraits>
::GetSpacing() const
{...}

The first line is the template declaration. The second line isthe method return type. The third
line is the class qualifier. And the fourth line in the exampleabove is the name of the method.

A.9.4 Use of Braces

Braces must be used to delimit the scope of anif, for while, switch, or other control structure.
Braces are placed on a line by themselves:

for (i=0; i<3; i++)
{

...
}

A.10. Doxygen Documentation System 219

or when using an if:

if (condition)
{

...
}

else if (other condition)
{

...
}

else
{

....
}

A.9.5 Use of Whitespace

Use spaces around arguments of functions and around operators. For example, instead of

function(sum,operator,output);

write

function(sum, operator, output);

A.10 Doxygen Documentation System

Doxygen is an open-source, powerful system for automatically generating documentation from
source code. To use Doxygen effectively, the developer mustinsert comments, delimited in a
special way, which Doxygen extracts to produce the documentation. We chose that every com-
ment starts with /**, each subsequent line has an aligned *, and the comment block terminates
with a */.

A.10.1 Documenting a Class

Classes should be documented using the class and brief Doxygen commands, followed by the
detailed class description:

/** Object
* Base class for most itk classes.
*
* Object is the second-highest level base class for most igst k objects.
* It extends the base object functionality of LightObject by
* implementing debug flags/methods and modification time t racking.

220 Appendix A. IGSTK Style Guide

*/

A.10.2 Documenting a Method

Methods should be documented using the following comment block style as shown in the fol-
lowing example. Make sure you use correct English and complete, grammatically correct sen-
tences.

/** Access a pixel at a particular index location.
* This version can be an lvalue. */
TPixel &operator[](const IndexType &index)
{return this->GetPixel(index); }

The documentation is only written in the header files (.h). Additional comments may be added
to the .cxx files, but they will not be collected by Doxygen. Note that documentation must be
maintained along with the code. Whenever a method is modified, its documentation must be
checked in order to ensure that it is still applicable to the new modified method.

A.11 Using Standard Macros

There are several macros defined for IGSTK in the file igstkMacros.h. These macros help
perform several important operations, that if not done correctly can cause serious, hard to debug
problems in the system. These operations are:

• Management of Object modified time.

• Printing Debug information.

• Handling Reference counting.

Some of the more important object macros are the following.

igstkNewMacro(T) Creates the static class method New(void) that instantiates objects without
using factories. The method returns a SmartPointer¡T¿ properly reference counted.

igstkSetMacro(name,type) Creates a method SetName() thattakes argument type type.

igstkGetMacro(name,type) Creates a method GetName() thatreturns a non-const value of type
type.

A.12 Exception Handling

C++ Exceptions will not be used since they make difficult to guarantee that the state of the
classes is valid after recovering from an exceptions.

A.13. Documentation Style 221

Error conditions will be modeled as error states in the statemachines of every IGSTK compo-
nent. Events and Observers will be used for notifying other classes whenever an error condition
is encountered.

A.13 Documentation Style

The guidelines for producing supplemental documentation (other than the documentation pro-
duced by Doxygen) are as follows:

• The common denominator for documentation is either PDF or HTML. All documents
in the system should be available in these formats, even if ther are mastered by another
system.

• Presentations are acceptable in Microsoft PowerPoint format.

• Administrative and planning documents are acceptable in Microsoft Word format (either
.doc or .rtf).

• Larger documents, such as the user’s or developer’s guides,are written in Microsoft Word.

A.14 Programming Practices

A.14.1 Choice of double or float

Use doubleinstead offloat; Most of the computation is done internally with double evenif the
variables are declared float. Usefloatwhen you are allocating a large number of them, such as
a pixel type of an image.

A.14.2 Choice of signed or unsigned

Be careful for signed/unsigned mismatch warnings. In general, for for loops, you want to use
unsigned int.

APPENDIX

B

State Machine Validation

Need 2-3 pages on state machine validation

BIBLIOGRAPHY

[1] A. Alexandrescu.Modern C++ Design: Generic Programming and Design PatternsAp-
plied. Professional Computing Series. Addison-Wesley, 2001.3.7.4

[2] A. Cheng.RealTime Systems: Scheduling, Analysis, and Verification. Wiley Interscience,
2002.3.1, 3.7.4, 6.2

[3] B. P. Douglas. RealTime Design Patterns: Robust Scalable Architecture for RealTime
Systems. Addison-Wesley Professional, 2002.3.1, 3.7.4, 6.1, 6.2.7, 7.1

[4] M.E. Fagan. Design and code inspections to reduce errorsin program development.IBM
Systems Journal, 15(3), 1976.5.2.2

[5] K. Fogel. Open Source Development with CVS. Corolis, 1999.1.4.2, 2.1.4

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns, Elements of Reusable
Object-Oriented Software. Professional Computing Series. Addison-Wesley, 1995.3.7.4,
7.1

[7] J. E. Hopcroft, R. Motwani, and J. D. Ullman.Introduction to Automata Theory, Languges,
and Computation. Addison Wesley, 2001.6.2

[8] B. K. Horn. Closed-form solution of absolute orientation using unit quaternions.Journal
of the Optical Society of America, 4:629–642, April 1987.14.1

[9] L. Ibanez and W. Schroeder.The ITK Software Guide. Kitware, Inc. ISBN 1-930934-10-6,
http://www.itk.org/ItkSoftwareGuide.pdf, 2003.5.2.6

[10] L. Kohn, J. Corrigan, and M.Donaldson, editors.To Err is Human: Building a safer health
system. National Academy Press, 2001.3.2

[11] D. C. Kozen.Automata and Computability. Springer, 1997.6.1

[12] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. Aries: A transaction
recovery method supporting fine-granularity locking and partial rollbacks using write-
ahead logging.ACM Transactions on Database Systems, 17:94–162, 1992.12.1

226 Bibliography

[13] J. B. West, J. M. Fitzpatrick, S. A. Toms, and C.R. MaurerR.J Maciunas. Fiducial Point
Placement and Accuracy of Point-based Rigid body registration. Neurosurgery, 48:810–
817, 2001.14.2

[14] K.E. Wiegers.Peer Reviews in Software. Addison-Wesley, 2002.5.2.2

[15] L. Wingerd and C. Seiwald. High-level best practices insoftware
configuration management. Technical report, Perforce, Inc., 1998.
http://www.perforce.com/perforce/bestpractices.html. 5.2.4

INDEX

, 50

agile development,50

best practices,49

CMake,50
code coverage,59
code review,52
communication

blocking,85
configuration management,50, 54
CVS,55

DART, 50, 59
dashboard,59
defect tracking,62
Downloading,6, 13
Doxygen,50, 51

Graphviz,69

IGSTK
mail list, 16

igstk::AxesObject,97
igstk::BoxObject,98
igstk::BoxObjectRepresentation,109
igstk::ConeObject,99
igstk::CTImageSpatialObject,100
igstk::CylinderObject,99
igstk::EllipsoidObject,100
igstk::MeshObject,102
igstk::ReadVascularNetworkObject,106
igstk::SpatialObjectHierarchy,95

igstk::TubeObject,103
igstk::VascularNetworkObject,105
ITK

CVS repository,7, 15
downloading release,6, 15
history,11
mailing list,7

KWStyle,50, 52, 59

Layered Architecture,26
logging,121

AAL, 122
flushing,124
level of seriousness,122
Logger,122, 125
LoggerBase,123
LoggerManager,125
LogOutput,122
OAL, 122
PriorityLevel,123
WAL, 121

LTSA, 69

mail list, 16
mailing list,7, 49, 53
Medical Errors,25

open source development,53

release cycle,56

Safety by design,24
sandbox,56

228 Index

SharedObjectRepresentation,115
Software Quality,27
State Machine,65

API, 70
Architecture Motivation,24
C++ Implementation,69
Code Complexity,67
Determinism,66
Exporting its description,71
Exporting to Graphviz,69
Exporting to LTSA,69
Helper Macros,71
Motivation to use it,65
Programming,71
Testing and Code Coverage,68

stereotaxis,83

Tracker,83
TrackerTool,84
tracking,83

buffer,87
communication,84
localizer,83
position measurement system,83
PulseGenerator,84
reference,89
state machine,91
timestamps,88
tracking system,83

Transform,88

unit test,50, 59

wiki, 49, 52, 53

	I Overview and Design
	Introduction
	Rationale and Background
	Organization
	Software Organization
	Obtaining the Software

	Downloading IGSTK
	Downloading Packaged Releases
	Downloading from CVS
	Join the Mailing List
	Directory Structure
	Documentation
	Data

	The Insight Community and Support
	A Brief History of ITK

	Getting Started
	Downloading IGSTK
	Instruction on command line CVS client user
	Instruction on Windows GUI CVS client user
	Downloading Packaged Releases
	Downloading from CVS

	Software Organization
	Directory Structure
	Documentation
	Data
	IGSTK Community and Support
	Additional Resources

	Installation
	Prerequisite
	Install IGSTK on Windows System
	Install IGSTK on Unix System

	Hello World in IGSTK

	Architecture
	General Background
	Medical Errors
	Layered Architecture
	Software Quality
	The Main Components
	Timing
	Pulse Generator Implementation

	State Machine Architecture
	Safe States
	Public versus Private API
	Communication Protocols
	Events, Inputs and Transduction

	Helper Macros

	Requirements
	Introduction
	What is an IGSTK Requirement
	Types of Requirements
	Requirements Hierarchy
	Snapshot of Requirements at Publication Time
	Lightweight Requirements Management Process
	Defined Requirements Management Process
	Conceptualizing Requirements through Activity Modeling
	Integrating Requirements Management and Bug Tracking
	Accessing and Contributing to IGSTK Requirements

	Software Development Process
	IGSTK Best Practices
	Developer Practices
	Code Conventions
	Code Reviews
	Managed Communication
	Configuration Management
	Build and Release Management Processes
	Continuous Testing using DART
	Software Quality Statistics

	Software Development Process Summary

	II Components
	StateMachine
	General Background
	Motivation
	Deterministic Behavior
	Preclude Wrong Use
	Robustness to misuse
	Managing Complexity
	Traceability
	Suitability for Testing
	Consistent Documentation

	Implementation
	C++ Features
	Integration inside a Class
	State Machine API

	Usage

	Events
	General Background
	Motivation
	Implementation
	Relationship with ITK
	Events with Payload
	Events and State Machines
	Observers

	Usage
	Internal Usage
	External Usage: The Request/Observe Pattern

	Conclusion

	Tracker
	The Role of the Tracker Component in IGSTK
	Structure of the Tracking Component
	Communication
	Threading
	Safety
	Performance

	Buffering
	Transforms and Timestamps
	Coordinate Transformations

	State Machines
	States

	Component Interface
	Interface Methods
	Events

	Supporting New Devices
	Internal Interface
	Command Interpreters

	Special Topics
	Simulation and Testing

	Hazardous Conditions
	Tracking Device Failure
	Loss of Accuracy

	Spatial Objects
	Introduction
	SpatialObject Hierarchy
	Common Objects
	AxesObject
	BoxObject
	ConeObject
	CylinderObject
	EllipsoidObject
	ImageObjects
	MeshObject
	TubeObject
	VascularNetwork & Vessel Objects

	Reading SpatialObjects
	Conclusion

	SpatialObject Representation
	Introduction
	Displaying my first object
	Standard Object Representations
	Axes Object
	Box Object
	Cone Object
	Cylinder Object
	Ellipsoid Object
	Mesh Object
	Vascular Network Object

	Ultrasound Probe Representation
	Sharing & Duplicating Object Representations

	View
	State Machine
	Component Interface
	Example

	Logging
	Role of Logging in DBMS
	Role of Logging in IGSTK
	Structure of the Logging Component
	LogOutput
	StdStreamLogOutput
	MultipleOutput
	MultipleLogOutput
	FLTKTextBufferLogOutput
	FLTKTextLogOutput
	Extending LogOutput

	Logger
	LoggerBase
	PriorityLevel
	Flushing
	Formatting
	Timestamp
	Logger
	LoggerManager

	Multi-threaded Logging
	LoggerThreadWrapper
	ThreadLogger

	Redirecting ITK, VTK log messages to Logger
	Overriding itk::OutputWindow
	Overriding vtkOutputWindow

	Example

	ImageIO
	DICOM Reader
	State Machine Design
	Component Interface
	Special features
	Example

	Screenshot generation

	Registration
	 Landmark-based registration
	State Machine Design
	Component Interface
	Example

	Registration error prediction
	State Machine Design
	Component Interface
	Example

	Conclusion

	Calibration
	Pivot Calibration
	Introduction
	Principle
	State Machine Diagram
	Component Interface
	Example

	Principal Axis Calibration
	Introduction
	Principle
	State Machine Diagram
	Component Interface
	Example

	Calibration Data I/O
	Data Format
	Data Reader
	Example

	Future Extension

	III User Guide
	HelloWorld
	TwoViews
	FourViews
	FourViewsAndTracking
	FourViewsTrackingWithCT

	IV Example Applications
	Needle Biopsy
	Running the Application
	Implementation
	State Machine in Application
	Mapping clinical work flow to state machine
	Coding the state machine
	Should I use the state machine in my application?

	Result

	Ultrasound Guided Radio-Frequency Ablation
	Introduction
	Running the Application
	Implementation
	Tracker
	Registration
	Display
	Implementation

	Conclusion

	Robot Assisted Needle Placement
	Running the Application
	Implementation
	Result

	V Appendices
	IGSTK Style Guide
	Purpose
	Document Overview
	Implementation Framework
	Implementation Language
	Generic Programming
	Generic Programming
	Portability
	CMake Configuration Environment
	Doxygen Documentation System
	vnl Math Library
	Reference Counting and SmartPointers
	CVS Environment
	Dart Dashboard Testing Environment

	Copyright
	File Organization
	Namespaces
	Naming Conventions
	Naming Classes
	Naming Files
	Naming Methods and Functions
	Naming Class Data Members
	Naming Local Variables
	Naming Template Parameters
	Naming Typedefs
	Using Underscores
	Preprocessor Directives

	Const Correctness
	Code Layout and Indentation
	General Layout
	Class Layout
	Method Definition
	Use of Braces
	Use of Whitespace

	Doxygen Documentation System
	Documenting a Class
	Documenting a Method

	Using Standard Macros
	Exception Handling
	Documentation Style
	Programming Practices
	Choice of double or float
	Choice of signed or unsigned

	State Machine Validation
	Index

