
Part IV

Example Applications

CHAPTER

TWENTYONE

Needle Biopsy

In this part of the book, we will show three example applications developed using IGSTK.
These applications come from our observation of clinical procedures, such as needle biopsy,
ultra-sound guided radio frequency ablation, and robot assisted needle placement. You will be
able to learn the concepts and work flows of these common image-guided procedures as well as
how to implement these applications under the IGSTK framework.

The first application is image guided needle biopsy. The definition for needle biopsy procedure
on Society of Interventional Radiology website is:

Needle biopsy is a medical test performed by interventionalradiologists to iden-
tify the cause of a lump or mass, or other abnormal condition in the body. Dur-
ing the procedure, the doctor inserts a small needle, guidedby X-ray or other
imaging techniques, into the abnormal area. A sample of tissue is removed and
given to a pathologist who looks at it under a microscope to determine what
the abnormality is – for example, cancer, a noncancerous tumor, infection, or
scar.(http://www.sirweb.org/patPub/needleBiopsy.shtml)

Needle biopsy is a widely used procedure for lung, breast, liver, and prostate cancer diagnosis.
A typical image-guided needle biopsy procedure involves first acquiring a pre-operative CT
image and then registering the CT image to the patient coordinate system. For this purpose,
fiducial-based rigid body registration techniques are commonly used. During the biopsy phase,
the needle is tracked by an optical tracking device with real-time visualization of its location
overlaid on top of the CT image. This overlay image provides guidance to the surgeon for better
targeting of the needle to its desired location.

Figure21.1shows the setup of the application. You will need the NDI Vicra tracker to run the
program. You can also modify the program to use other supported trackers.

http://www.sirweb.org/patPub/needleBiopsy.shtml

186 Chapter 21. Needle Biopsy

Figure 21.1:System setup for needle biopsy application.

21.1 Running the Application

This application can be found in the Examples/NeedleBiopsy. In order to build this application
you will need the cross-platform FLTK GUI toolkit availablefrom www.fltk.org. Then you
need to make sure that IGSTKUSE FLTK is turned ON when running CMake.

The following steps outline the work flow or operating sequences of this application.

1. Obtain the patient demographic information (name, etc.).

2. Load in the pre-operative CT image using the DICOM file format. Fiducials (small mark-
ers) are usually placed on the anatomy prior to the scan for landmark based registration
in Steps 4-7.

3. Verify the patient information against the information in the image. Prompt the surgeon
if there is a discrepancy. This step is typical of the error checking that should be done and
one should assume that if anything can go wrong it will go wrong and safeguards should
be provided.

4. Identify the image landmarks by going through the CT imageslices and selecting the
fiducials using the mouse. For paired-point based registration, at least three points are
required although at least four are preferred.

5. Initialize the tracking device.

21.2. Implementation 187

6. Add patient landmarks by touching the physical fiducials attached to patient using the
tracked pointer device.

7. Perform the image to patient landmark registration.

8. Path planning. The surgeon will select a target point and an entry point to plan the path
for the needle puncture.

9. Provide a real-time display of the overlay of the needle probe and pre-operative images
in the quadrant viewer window during the biopsy procedure.

21.2 Implementation

State machine is very important and distinct feature in IGSTK. Although it seems to be very
complicated to many people, we are trying to provide some guidance here to help users to
familiarize this concept and design pattern.

21.2.1 State Machine in Application

Given that IGSTK is intended for developing applications that will be used to treat patients,
robustness and quality are the highest priorities in the design of the toolkit. To minimize the risk
of harm to the patient resulting from misuse of the classes, IGSTK incorporates state machine
design pattern into its components. All IGSTK components are governed by a state machine.
A state machine is contained within the class to control the access to the class. Components are
always in a valid state to ensure they will perform in a predictable manner. The use of a state
machine also helps enforce high quality standards for code coverage and run-time validation.

In this example, state machine is being implemented at the application level(Figure21.2shows
the partial state machine diagram of this application). While this is not mandatory, it is strongly
recommended when using IGSTK. A state machine architecturegives the application developer
an easier way to prototype the application and to control thework flow of the surgical procedure,
and also adds an extra layer of security to the application tomake it more robust. The following
sections demonstrate how to write an application using the IGSTK framework.

21.2.2 Mapping clinical work flow to state machine

The first step to develop an application is to analyze the surgical procedure and develop a mini-
mal specification. By analyzing a typical needle biopsy procedure, we identify a serial of tasks
or work flow. Then it becomes relatively easy to translate clinical work flow into state machine
logic. If we think the application as a state machine, the completion of each task will cause
the application to enter a new state, and there will be a set ofstates to indicate the status of the
application. The user interaction with the GUI can be translated into inputs to the state machine.

188 Chapter 21. Needle Biopsy

Figure 21.2:State machine diagram (partial) for the needle biopsy application(Circle for state and arrow

for transition and corresponding input).

21.2. Implementation 189

For instance, when we click on the register patient button, this will generate a “RequestSetPa-
tientNameInput” to the state machine. The state machine will take this input and change its
current state from “InitialState” to “WaitingForPatientNameState”, and the action is to pop up
a window asking for input of the patient name. If the user inputs a valid name, then there will
be a “PatientNameInput” which brings the state machine into“PatientNameReadyState”, oth-
erwise there will be a “PatientNameEmptyInput”, which willreturn the state machine to the
“InitialState”. Thus, we can map the application into series of states and inputs and this higher
level abstraction will help the developer design a clear work flow for the application. Figure
21.2shows the state machine diagram for the needle biopsy application which was generated
automatically when the state machine is constructed using the ‘dot’ tool from Graphviz.

21.2.3 Coding the state machine

This section shows how to code the state machine into the needle biopsy application. IGSTK
has a number of convenient macros to facilitate the programming of the state machine. The
details of these macros can be found inSource/igstkMacro.h . More information on the state
machine design pattern and guidelines can be found on the IGSTK wiki page under ”Develop-
ment” section on “Design discussions” page.http://public.kitware.com/IGSTKWIKI

Once we have the higher level abstraction of the applicationand prototyped it in the state ma-
chine model, we need to take the following steps to program the state machine into the applica-
tions.

1. The first step is to use the state machine declaration macroin your class’s header
file. This macro defines types for state and input, creates a private member variable
m_StateMachine , and two private member functions for exporting the state machine de-
scription into dot format for the state machine diagram visualization and LTSA (Labeled
Transition Systems Analyzer) format for state machine animation and validation.

igstkStateMachineMacro();

2. Then take the states and inputs mapped out during the prototyping stage and define them
in the header file using the following macros. To enforce the naming conventions of the
state machine, the declaration macros will append “State” or “Input” automatically after
the variable name. For instance, the following two lines will definem_InitialState and
m_RequestLoadImageInput .

igstkDeclareStateMacro(Initial);
igstkDeclareInputMacro(RequestLoadImage);

3. The next step is to construct the state machine in the constructor of the source file. First,
we need to add all the states and inputs declared in the headerinto the state machine.

igstkAddStateMacro(Initial);
igstkAddInputMacro(RequestLoadImage);

http://public.kitware.com/IGSTKWIKI

190 Chapter 21. Needle Biopsy

4. The next step is a crucial step which creates the state machine transition table to
control the logic and workflow of the application. This is done using the macro
igstkAddTransitionMacro(From_State, Received_Input, T o_State, Action) .
This means when the state machine is in theFrom_State and receives the
Received_Input , it will enter into theTo_State and evoke theActionProcessing()
as an action for this transition. This macro requires the “ActionProcessing” method to be
pre-defined in the class for the state machine to call. For example:

igstkAddTransitionMacro(Initial, RequestSetPatientNa me,
WaitingForPatientName, SetPatientName);

In this case, we need to have a SetPatientNameProcessing() method defined in the class
for this code to compile.

5. After we have setup the transition table, the next step is to select an initial state, and
flag the state machine to be ready to run. After the state machine is ready to run, we
cannot change the state machine transition table in the code. This is designed this way
to enhance the safety of the state machine and prevent accidentally changes to the state
machine behavior in the code.

igstkSetInitialStateMacro(Initial);
m_StateMachine.SetReadyToRun();

6. Now the state machine is setup and ready to run. We can then export the state machine
description in dot format and generate the graphical visualization as shown in Figure21.2.
This graph will help us to examine the workflow of the application and the state transition
table.

std::ofstream ofile;
ofile.open("DemoApplicationStateMachineDiagram.dot");
const bool skipLoops = false;
this->ExportStateMachineDescription(ofile, skipLoops);
ofile.close();

This will output the state machine into a dot file when we execute the application. If
you have the dot tool installed in your system, then you can run the following command,
which will take the dot file and generate a png format picture named “SMDiagram.png”
for the state machine.

>dot -T png -o SMDiagram.png DemoApplicationStateMachine Diagram.dot

7. All the requests to a state machine should be translated into inputs and the state machine
will response to those inputs depending on its current state. These actual actions should
be protected methods and only called by the state machine directly. In the code, a click
on the load image button will be translated to aRequestLoadImageInput , and then we
call ProcessInputs() to let the state machine handle this request.

21.3. Result 191

igstkPushInputMacro(RequestLoadImage);
m_StateMachine.ProcessInputs();

If the state machine is in the right state to load the image, a protected method associated
with this transition (eg.LoadImageProccessing()) will be evoked by the state machine
as defined in the transition table constructed in the constructor.

21.2.4 Should I use the state machine in my application?

From the computational theory point of view, all computers are state machines, and all com-
puter programs are state machines regardless of whether thedevelopers used the state machine
programming pattern or not. Traditional programming approaches represent the states ambigu-
ously by using a large number of variables and flags, which result in many conditional tests
in the code (if-then-else or switchcase statements in C/C++). Programmers could neglect to
consider all possible paths in the code while struggling with if-else conditional tests and flag
checks. These practices may result in unpredictable behavior and limit safety in the design
of the underlying applications. Since predictability is critical for mission critical applications
running in the surgery room, this approach is not suitable for our purpose.

In comparison to traditional approaches, state machines will reduce the number of paths in the
code, save the developers from convoluted conditional tests, and encourage them to focus on
higher level design. From the above example, we can see that the state machine is easy to
program and manage under the IGSTK framework. We encourage developers to design and
code the state machine of their application first, and then generate the state machine diagram
as shown in Figure21.2. They can go through the diagram, examine and verify their design
of the work flow. If they want to add or change a path of the application, it is just a matter of
adding or deleting a transition table entry. This eliminates the level of difficulty required for
going through the code and struggling with if-then-else logic. This will largely facilitate the
application prototyping, and the implementation code can be plugged into the skeleton program
later. These techniques should result in clearer designs and safer applications.

21.3 Result

Figure21.3shows the user interface of the needle biopsy application written in FLTK. The left
side is the control panel, consists of a set of buttons corresponding to the series of tasks per-
formed during the procedure. These buttons’ callbacks should call the public request methods of
the application, which will be translated into state machine inputs. The state machine will then
take proper action according to its own state. For example, when the patient information is not
set, the ‘Load Image’ button won’t respond to the user click.There is no need for conditional
checks or disabling of buttons here as these actions are already in the state machine transition
table. On the right hand side, there are four standardized views, axial, sagittal, coronal, and
3D view. Here we loaded an abdominal phantom CT images. The green cylinder represents

192 Chapter 21. Needle Biopsy

Figure 21.3:User interface for needle biopsy program.

the needle being tracked by the tracker. The viewer will automatically reslice the images as the
needle tip is moving in the anatomy.

CHAPTER

TWENTYTWO

Ultrasound Guided Radio-Frequency
Ablation

22.1 Introduction

Liver lesions suitable to be treated using radio-frequencyablation (RFA) are often clearly visible
under CT/MR but not using Ultrasound (US) imaging. Therefore most of the RFA surgeries of
the liver are performed under CT. Other alternatives consist of waiting until the lesions enlarge
and show up under US or perform an open surgery. An ideal visualization system would show
tumor contours under US to the surgeons. A typical workflow ofan RFA surgery is described
in figure22.1.

This application registers a pre-operative model of the tumors with a 2D US slice in pseudo
real-time. The system can be divided into three parts: a) tracking devices, b) registration algo-
rithm and c) display. First, the 2D ultrasound probe is tracked using an optical tracker (Polaris
from NDI). Second, an image-to-image registration algorithm registers each 2D slice with a the
pre-operative CT. One can notice that this registration step should be performed as quickly as
possible. Third and last, a display presents the actual 2D USslice with tumor outlines to the
surgeon.

Next the different components of the application, the tracking systems and the registration al-
gorithm are presented.

22.2 Running the Application

This application can be found in the Examples/UltrasoundGuidedRFA. In order to build this
application you will need the cross-platform FLTK GUI toolkit available from www.fltk.org.
Then you need to make sure that IGSTKUSE FLTK is turned ON when running CMake.

194 Chapter 22. Ultrasound Guided Radio-Frequency Ablation

Figure 22.1:Typical RFA Ablation Surgery Workflow.

22.3. Implementation 195

22.3 Implementation

22.3.1 Tracker

Using a tracker in IGSTK is quite easy. First we create a tracker object using smart pointers.

typedef igstk::PolarisTracker TrackerType;
TrackerType::Pointer m_Tracker = TrackerType::New();

Then, we set a ToolCalibrationTransform which defines the relationship between the tracking
device and the origin of the tool. In our case, the optical sensor is attached to arm the probe,
therefore the calibration transform is defined as a rigid transform from the sensor position to the
tip of the probe. This transform can be computed from a calibration experiment or using some
heuristics.

m_Tracker->SetToolCalibrationTransform(TRACKER_TOOL _PORT, 0,
ToolCalibrationTran

Next, we need to define the relationship between the trackingsystem origin and the actual pa-
tient position in the OR. Most of the surgical applications define the OR as the world coordinate
origin. This PatientTransform is often assessed via calibration.

m_Tracker->SetPatientTransform(PatientTransform);

The IGSTK spatial object to be tracked is attached to the tracker using AttachObjectToTrack-
erTool. Therefore when the position and orientation of the tracking device is modified, the
updated position of the spatial object is automatically computed. One can notice that this step
involves the concatenation with the ToolCalibrationTransform and the PatientTrasnform.

m_Tracker->AttachObjectToTrackerTool(TRACKER_TOOL_P ORT,
TRACKER_TOOL_NUMBER,

m_UltrasoundProbe);

Our tracker is ready to be used, we start the tracking by first opening the serial communication
port usingOpen() , then we initialize the tracker and start the tracking.

m_Tracker->Open();
m_Tracker->Initialize();
m_Tracker->StartTracking();

To stop the tracking device we just use theStopTracking() function.

m_Tracker->StopTracking();

One can notice that switching from one tracker to another canbe done by modifying a single
line of the code above, e.g. the tracker type definition.

196 Chapter 22. Ultrasound Guided Radio-Frequency Ablation

22.3.2 Registration

Using the tracking information of the ultrasound probe the location of the US slice is roughly
defined in the OR. To define a proper alignment of the US slice and the pre-operative CT volume
registration is needed. The registration algorithm is an image-to-image technique based on the
cross-correlation.

IGSTK makes use of registration algorithms already implemented in the Insight Segmentation
and Registration Toolkit [?]. However, IGSTK propose algorithm already tuned from specific
modalities and organs. Using class hierarchies, programmers can still makes use of higher level
registration technique. For instance, the igstkMR3DImageToUS3DImageRegistrationclass per-
forms registration of any 3D MR to 3D US. The parameters of theregistration are already tuned
to support most of the MR-to-US registrations but some othertuning might be required for
different organs.

22.3.3 Display

IGSTK propose several visualization techniques based on the Visualization Toolkit [?]. Basi-
cally for a given IGSTK spatial object, several representation objects can be created and added
the display as shown in figure??.

Image volumes such as CT or MR datasets can be renderered as textured oblique slices or can
be volume renderered. Mesh objects such as segmented tumorscan be renderered in 3D as
triangle surfaces and in 2D as contours. The update of the display is done in real-time when the
number of objects in the scene is not excessive and does not require extensive computation, i.e
volume rendering of large datasets.

22.3.4 Implementation

Here we show an example on how to read and display a vasculature extracted from CT.

First we create a vascular network reader using smart pointers.

typedef igstk::VascularNetworkReader VascularNetworkR eaderType;
VascularNetworkReaderType::Pointer m_VascularNetwork Reader;
m_VascularNetworkReader = VascularNetworkReaderType:: New();

Then we set the vasculature filename and we ask the reader to read the file using the Re-
questReadObject() function.

m_VascularNetworkReader->RequestSetFileName(Vascula tureFilename);
m_VascularNetworkReader->RequestReadObject();

In order to get a spatial object from a reader, IGSTK uses theevent/observermechanism. We
declare a specific observer to get the vasculature from the reader and we ask the reader to return
the object.

22.4. Conclusion 197

VascularNetworkObserver::Pointer vascularNetworkObse rver
= VascularNetworkObserver::New();

m_VascularNetworkReader->AddObserver(
VascularNetworkReader::VascularNetworkModifiedEvent (),
vascularNetworkObserver);

m_VascularNetworkReader->RequestGetVascularNetwork();

Next, we instantiate an object representation for the VascularNetwork object.

typedef igstk::VascularNetworkObjectRepresentation
VascularNetworkRepresentationType;

VascularNetworkRepresentationType::Pointer m_Vascula rNetworkRepresentation =
VascularNetworkRepre

Then we set the spatial object to the object representation.Internally the object representation
creates a suitable visualization of the object from its internal geometry.

m_VascularNetworkRepresentation->RequestSetVascular NetworkObject(
vascularNetworkObserver->GetVascularNetwork());

Finally, we add the object to the display.

this->Display3D->RequestAddObject(m_VascularNetwork Representation);

22.4 Conclusion

CHAPTER

TWENTYTHREE

Robot Assisted Needle Placement

In the previous needle biopsy application (Chapter21), with the image guidance the physician
might still be limited by the view of the exact position of anysurgical instruments in the in-
terventional field, and they might need to spend a fair amountof time to align the instruments
with the planned path. In this chapter we present an image-guided platform for precision place-
ment of surgical instruments based upon a small four degree-of-freedom robot shown in Figure
23.1(B-RobII; ARC Seibersdorf Research GmbH, Vienna, Austria). The robot has two joints
(upper box and lower box, which can move parallel to each other) and 4 degree of freedoms.
Its unique shape gave it the name deck of card robot. This platform includes a custom needle
guide with an integrated spiral fiducial pattern as the robot’s end-effector and uses pre-operative
computed tomography (CT) to register the robot to the patient directly before the intervention.
The robot can then automatically align the instrument guideto a physician-selected path for
percutaneous access. The path is chosen by the physician before the intervention using an es-
tablished graphical user interface built using open-source toolkits such as the Image-Guided
Surgery Toolkit (IGSTK). Potential abdominal targets include the liver, kidney, prostate, and
spine.

Figure23.2shows the setup of the whole system. The robot is mounted on the CT table after
patient (we use phantom in the picture) is in place. Robot armis adjusted to position the needle
holder close to the biopsy area. A CT scan is then acquired andloaded into robot assisted needle
biopsy application. Surgeon can go through the image slices, identify tumors, and plan an
optimal biopsy path by setting proper target and entry points to avoid important and vulnerable
organs and tissues. The robot will then move the needle holder and align it with the planed
path. Surgeon can advance the needle manually to hit the target. The deck of card robot can
be operated remotely by multiple clients through TCP/IP communication. Client application
should first connect to the server application as an active client before it can command the
robot.

200 Chapter 23. Robot Assisted Needle Placement

Figure 23.1:B-RobII four degree-of-freedom precision placement modules for needle positioning and

orientation.

Figure 23.2:Robot assisted needle placement phantom study setup.

23.1. Running the Application 201

23.1 Running the Application

This application can be found in theExamples/DeckOfCardRobot . In order to build this appli-
cation you will need the cross-platform FLTK GUI toolkit available from www.fltk.org. Then
you need to make sure that IGSTKUSE FLTK is turned ON when running CMake.

As shown in Figure23.3, the workflow of this application are(suppose we have a lung biopsy
procedure):

1. Place the phantom on the CT table and mount the robot to the CT gantry.

2. Position the robot needle holder close to the region of interest.

3. Scan the phantom together with the robot.

4. Load CT images into the robot control software.

5. Using the control software, segment out the fiducials in the CT image and perform the
paired-point registration.

6. In the display window, plan the needle insertion path.

7. If the planned path is within the robot’s working range, then command the robot to align
the needle to the planned path. Otherwise, go back to step 2 and reposition the robot
closer to the biopsy entry point.

8. Advance the needle by hand. The depth of insertion will also be calculated by the system
and this depth can be judged by observing depth graduations on the needle itself.

23.2 Implementation

This application is unique in a way that it is using some classes that are not in the core IGSTK
library. We have already introduced the concept of this application, in the implementation
section we will be focusing on the topic of writing your own code under the IGSTK framework,
in another word, how to interface and extend IGSTK library.

23.2.1 Pass IGSTK image objects to ITK filters

One task of the application is to automatically detecting the fiducial pattern in the CT images.
It makes sense to leverage from ITK as it has an extensive library for a wide variety of image
analysis algorithms. IGSTK usesitkOrientedImage inside theigstkImageSpatialObject ,
but ITK objects are encapsulated under IGSTK API, so we need to get the native ITK object
out and pass it to the ITK filters to perform segmentation or registration. In IGSTK we pass
information using loaded “event”, and we need a “observer” to catch that “event”.

202 Chapter 23. Robot Assisted Needle Placement

Figure 23.3:Clinical Workflow for Robot Assisted Needle Placement.

23.2. Implementation 203

1. First step, we need to use theigstkObserverConstObjectMacro to define the observer

igstkObserverConstObjectMacro(ITKImage,
ImageSpatialObjectType::ITKImageModifiedEvent,
ITKImageType)

The first parameter “ITKImage” is just a string used to concatenate with “Observer” to
construct a new observer class. In this case, we will have a observer class named “ITKIm-
ageObserver”. This macro also specifies the observer will beobserving the “ITKImage-
ModifiedEvent” and this event will carry an object of type “ITKImageType”. The expan-
sion of this macro can be found inigstkMacro.h .

2. Next you will need to instantiate the observer, and tell the observer to catch the event
from IGSTK image spatial object using theAddObserver function.

ITKImageObserver::Pointer itkImageObserver = ITKImageO bserver::New();
m_ImageSpatialObject->AddObserver(

ImageSpatialObjectType::ITKImageModifiedEvent(),
itkImageObserver);

3. You will need to call theRequestGetITKImage method to cause the IGSTK image spatial
object class to send out the event carrying the ITK image.

m_ImageSpatialObject->RequestGetITKImage();

4. The The final step is to check the observer to see if it catches any event. If it does, then
we can “Get” the loaded object out of the catched event.m_ITKImage is an ITK image
pointer.

if (itkImageObserver->GotITKImage())
{
m_ITKImage = itkImageObserver->GetITKImage();
}

else
{
return false;
}

5. After getting the ITK image, we can pass it to any ITK filter for further processing. In
this example, we use the following filters:

itk::BinaryThresholdImageFilter
itk::ConnectedComponentImageFilter
itk::RelabelComponentImageFilter

The detailed code can be found in theExample/DeckOfCardRobot/FiducialSegmentation
class.

204 Chapter 23. Robot Assisted Needle Placement

23.2.2 Write your own representation class

If you want to have your own visualization class to get special rendering ef-
fect, you might want to write a new representation class inherited from one of
the IGSTK representation classes. Here we give an example ofimplementing the
igstkImageSpatialObjectVolumeRepresentation class. The code can be found in the
Example\DeckOfCardRobot directory.

We can work on changing the code inigstkCTImageSpatialObjectRepresentation class.
It gives us a good starting point, and we can reused its frame and old state machine logic since
these two classes perform similar tasks except using different rendering technique.

1. First, we can make a copy of the code, and rename the file and class names to the new
class name

2. Second, we need to include some headers for the volume rendering. Here we use 3D
texture mapping, this feature is only supported by recent graphics cards.

#include "vtkImageShiftScale.h"
#include "vtkColorTransferFunction.h"
#include "vtkPiecewiseFunction.h"
#include "vtkVolumeTextureMapper3D.h"
#include "vtkVolumeProperty.h"
#include "vtkVolume.h"

3. Next thing to do is declaring member variables necessary for volume rendering

vtkPiecewiseFunction * m_OpacityTransferFunction;
vtkColorTransferFunction * m_ColorTransferFunction;

vtkImageShiftScale * m_ShiftScale;
vtkVolumeTextureMapper3D * m_VolumeMapper;
vtkVolumeProperty * m_VolumeProperty;

vtkImageData * m_ImageData;
vtkVolume * m_ImageActor;

unsigned m_ShiftBy;
unsigned m_MinThreshold;
unsigned m_MaxThreshold;

4. The most important function you need to work on isCreateActors() . The
m_ImageData in the following code is avtkImageData object, which can be obtained
from IGSTK image spatial object in a similar fashion mentioned in section23.2.1

igstkLogMacro(DEBUG, "igstk::ImageSpatialObjectRepre sentation\

23.2. Implementation 205

::CreateActors called...\n");

//To avoid duplicates we clean the previous actors
this->DeleteActors();

//Create new actor
m_ImageActor = vtkVolume::New();
this->AddActor(m_ImageActor);

//Shift the data to desired range
m_ShiftScale = vtkImageShiftScale::New();
m_ShiftScale->SetInput(m_ImageData);
m_ShiftScale->SetShift(m_ShiftBy);
m_ShiftScale->SetOutputScalarTypeToUnsignedShort();

//Pass the image data to the volume mapper
m_VolumeMapper = vtkVolumeTextureMapper3D::New();
m_VolumeMapper->SetInput(m_ShiftScale->GetOutput()) ;

//Create opacity transfer function
m_OpacityTransferFunction = vtkPiecewiseFunction::New ();
m_ColorTransferFunction = vtkColorTransferFunction::N ew();

m_OpacityTransferFunction = vtkPiecewiseFunction::New ();
m_OpacityTransferFunction->AddPoint(0, 0.0);
if(m_MinThreshold > 0)

{
m_OpacityTransferFunction->AddPoint(m_MinThreshold, 0.05);
}

m_OpacityTransferFunction->AddPoint(m_MaxThreshold, 0.1);
m_OpacityTransferFunction->AddPoint(m_MaxThreshold+ 1, 0.0);

//Create color transfer function
m_ColorTransferFunction = vtkColorTransferFunction::N ew();
m_ColorTransferFunction->AddRGBPoint(m_MinThreshold , 0.0, 0.0, 0.0);
m_ColorTransferFunction->AddRGBPoint(m_MaxThreshold /4, 1, 0, 0);
m_ColorTransferFunction->AddRGBPoint(m_MaxThreshold /2, 0, 0, 1);
m_ColorTransferFunction->AddRGBPoint(m_MaxThreshold /4*3, 0, 1, 0);
m_ColorTransferFunction->AddRGBPoint(m_MaxThreshold , 1, 1, 1);

//Pass opacity and color transfer function to volume proper ty
m_VolumeProperty = vtkVolumeProperty::New();
m_VolumeProperty->SetColor(m_ColorTransferFunction) ;
m_VolumeProperty->SetScalarOpacity(m_OpacityTransfe rFunction);

206 Chapter 23. Robot Assisted Needle Placement

//Push an input to state machine and request it to process it
igstkPushInputMacro(ConnectVTKPipeline);
m_StateMachine.ProcessInputs();

This piece of code specifies the color and opacity transfer functions and pass
them to a vtkVolumeProperty , and also passes the VTK image data to a
vtkVolumeTexture3DMapper , The last two lines of code generate an input
ConnectVTKPipeline to the state machine, and call for the state machine to process
this input. The state machine will decide whether the representation class is ready to
render the image or not.

5. Look into the code of theConnectVTKPipelineProcessing() function, which will be
called when the representation class is ready to visualize the image.

m_ImageActor->SetMapper(m_VolumeMapper);
m_ImageActor->SetProperty(m_VolumeProperty);
m_ImageActor->SetVisibility(1);
m_ImageActor->SetPickable(0);

This passes the volume and volume property to an ITK actor forrendering.

23.2.3 Using the socket communication class

The communication between the application and robot serveris through TCP/IP protocol. For
this purpose, socket communication component of IGSTK was used. You can write your
own command interpreter class for your specific hardware. Here we give a simple exam-
ple on how to implement the robot control class. The detailedcode can be found in the
Example/DeckOfCardRobot/RobotCommunication class.

1. First, create a client object.

typedef igstk::SocketCommunication SocketCommunicatio nType;
SocketCommunicationPointerType m_Client;
m_Client = SocketCommunicationType::New();

2. Second, initialize the socket communication and connectto the host and port.

m_Client->RequestOpenCommunication()
m_Client->RequestConnect(IPADDRESS, PORT)

3. For this particular robot, we need to login first

m_Client->RequestWrite("@AUTH;Team;A\r\n");
m_Client->RequestRead(buffer, 100, num, READ_TIMEOUT);

23.3. Result 207

4. Before we operating the robot, we should ’home’ the robot first. This is a self-calibration
method.

snprintf(sendmessage, ROBOT_MAX_COMMAND_SIZE, "@HOME; %d;%d\r\n",
TRIGGER_IMMEDIATE, WRITE_TIMEOUT);

m_Client->RequestWrite(sendmessage);
m_Client->RequestRead(buffer, 100, num, READ_TIMEOUT);

5. Now we can command the robot to move to certain translations (X,Y, and Z) with certain
rotations (A,B, and C)

snprintf(sendmessage, ROBOT_MAX_COMMAND_SIZE,
"@MAW;%d;%d;%d;%f;%f;%f;%f;%f;%f\r\n", TRIGGER_IMMED IATE,
INTERRUPT_IMMEDIATE, WRITE_TIMEOUT, X, Y, Z, A, B, C);

m_Client->RequestWrite(sendmessage);
m_Client->RequestRead(buffer, 100, num, READ_TIMEOUT);

6. When we done, log out of the robot and close the communication.

m_Client->RequestWrite("@QUIT\r\n");
m_Client->RequestCloseCommunication()

23.3 Result

Figure23.4shows the user interface of the application with control panel on the left, 3 standard
2D slice views and a 3D volume rendering on the right. The yellow cylinder is the needle holder,
the purple square indicates robot’s working region, a path is being planed to target the tumor
while avoiding the ribs, and it is showing the robot being aligned with the planned path.

Figure23.5shows TeraRecon rendered image of the robot needle holder.

208 Chapter 23. Robot Assisted Needle Placement

Figure 23.4:User interface for the robot application.

23.3. Result 209

Figure 23.5:3D rendering of CT scan showing spiral fiducial pattern for registration of robot to CT images.

