Part IV

Example Applications

CHAPTER

TWENTYONE

Needle Biopsy

In this part of the book, we will show three example applicasi developed using IGSTK.
These applications come from our observation of clinicalcpdures, such as needle biopsy,
ultra-sound guided radio frequency ablation, and robastesbneedle placement. You will be
able to learn the concepts and work flows of these common irga@gked procedures as well as
how to implement these applications under the IGSTK frantkwo

The first application is image guided needle biopsy. The diefimfor needle biopsy procedure
on Society of Interventional Radiology website is:

Needle biopsy is a medical test performed by interventioadiologists to iden-
tify the cause of a lump or mass, or other abnormal conditiothé body. Dur-
ing the procedure, the doctor inserts a small needle, guiyed-ray or other
imaging techniques, into the abnormal area. A sample afi¢iss removed and
given to a pathologist who looks at it under a microscope tterdeine what
the abnormality is — for example, cancer, a noncancerousrtuimfection, or
scar.fittp://www.sirweb.org/patPub/needleBiopsy.shtml)

Needle biopsy is a widely used procedure for lung, breast,land prostate cancer diagnosis.
A typical image-guided needle biopsy procedure involves ficquiring a pre-operative CT
image and then registering the CT image to the patient coatelisystem. For this purpose,
fiducial-based rigid body registration techniques are comisnused. During the biopsy phase,
the needle is tracked by an optical tracking device with-tieaé visualization of its location
overlaid on top of the CT image. This overlay image providgéisignce to the surgeon for better
targeting of the needle to its desired location.

Figure21.1shows the setup of the application. You will need the NDI ¥itmacker to run the
program. You can also modify the program to use other supgdrackers.

http://www.sirweb.org/patPub/needleBiopsy.shtml

186 Chapter 21. Needle Biopsy

Poreks Vicna Tracker

Tracker inol

Figure 21.1:System setup for needle biopsy application.

21.1 Running the Application

This application can be found in the Examples/NeedleBiopsgrder to build this application
you will need the cross-platform FLTK GUI toolkit availabieom www.fltk.org. Then you
need to make sure that IGSTKISE_FLTK is turned ON when running CMake.

The following steps outline the work flow or operating seqresnof this application.

1. Obtain the patient demographic information (name, etc.)

2. Load in the pre-operative CT image using the DICOM file fatniriducials (small mark-
ers) are usually placed on the anatomy prior to the scan faintark based registration
in Steps 4-7.

3. Verify the patient information against the informationthe image. Prompt the surgeon
if there is a discrepancy. This step is typical of the erraating that should be done and
one should assume that if anything can go wrong it will go warand safeguards should
be provided.

4. Identify the image landmarks by going through the CT imaliges and selecting the
fiducials using the mouse. For paired-point based regisiraat least three points are
required although at least four are preferred.

5. Initialize the tracking device.

21.2. Implementation 187

6. Add patient landmarks by touching the physical fiducidlached to patient using the
tracked pointer device.

7. Perform the image to patient landmark registration.

8. Path planning. The surgeon will select a target point anerary point to plan the path
for the needle puncture.

9. Provide a real-time display of the overlay of the needtébprand pre-operative images
in the quadrant viewer window during the biopsy procedure.

21.2 Implementation

State machine is very important and distinct feature in I&SAlthough it seems to be very
complicated to many people, we are trying to provide somelange here to help users to
familiarize this concept and design pattern.

21.2.1 State Machine in Application

Given that IGSTK is intended for developing applicationatttvill be used to treat patients,
robustness and quality are the highest priorities in thegdex the toolkit. To minimize the risk
of harm to the patient resulting from misuse of the clas€8S,TKK incorporates state machine
design pattern into its components. All IGSTK componenésgoverned by a state machine.
A state machine is contained within the class to control teess to the class. Components are
always in a valid state to ensure they will perform in a prehite manner. The use of a state
machine also helps enforce high quality standards for coderage and run-time validation.

In this example, state machine is being implemented at thicapion level(Figure21.2shows
the partial state machine diagram of this application). lé/this is not mandatory, it is strongly
recommended when using IGSTK. A state machine architegives the application developer
an easier way to prototype the application and to controhrd flow of the surgical procedure,
and also adds an extra layer of security to the applicatiometke it more robust. The following
sections demonstrate how to write an application using@®TK framework.

21.2.2 Mapping clinical work flow to state machine

The first step to develop an application is to analyze theisalrgrocedure and develop a mini-
mal specification. By analyzing a typical needle biopsy pthae, we identify a serial of tasks
or work flow. Then it becomes relatively easy to translateictil work flow into state machine
logic. If we think the application as a state machine, the gletion of each task will cause
the application to enter a new state, and there will be a s&ttds to indicate the status of the
application. The user interaction with the GUI can be tratesl into inputs to the state machine.

188 Chapter 21.

Needle Biopsy

T
e - _T"-- .,
i __.j..__ e s
AT 2 —— |
T Eregandrmi ot L
_':_T_I.d.l-,.-imﬂuq&-;i_'_:
- - _'_ o T .
- L= — y
R T oy
- i,
- Eruaniny ___.'-
Mgt e S ovphiend
I — —
{l_::ﬂ:lﬂwlﬂ.ug}
Nepenia egartodbon

Figure 21.2:State machine diagram (partial) for the needle biopsy application(Circle for state and arrow

for transition and corresponding input).

21.2. Implementation 189

For instance, when we click on the register patient buttois, will generate a “RequestSetPa-
tientNamelnput” to the state machine. The state machinktakie this input and change its
current state from “InitialState” to “WaitingForPatierdfeState”, and the action is to pop up
a window asking for input of the patient name. If the user isuvalid name, then there will
be a “PatientNamelnput” which brings the state machine ‘iRtitientNameReadyState”, oth-
erwise there will be a “PatientNameEmptylnput”, which witurn the state machine to the
“InitialState”. Thus, we can map the application into seidé states and inputs and this higher
level abstraction will help the developer design a clearkwftow for the application. Figure
21.2shows the state machine diagram for the needle biopsy agiplicwhich was generated
automatically when the state machine is constructed ukim(dbt’ tool from Graphviz.

21.2.3 Coding the state machine

This section shows how to code the state machine into thdebeampsy application. IGSTK
has a number of convenient macros to facilitate the prograguaf the state machine. The
details of these macros can be foun&aurce/igstkMacro.h . More information on the state
machine design pattern and guidelines can be found on thEK@#ki page under "Develop-
ment” section on “Design discussions” pag://public.kitware.com/IGSTKWIKI

Once we have the higher level abstraction of the applicati@hprototyped it in the state ma-
chine model, we need to take the following steps to progranstate machine into the applica-
tions.

1. The first step is to use the state machine declaration macyour class’'s header
file. This macro defines types for state and input, createsvatermember variable
m_StateMachine , and two private member functions for exporting the statehire de-
scription into dot format for the state machine diagram &igation and LTSA (Labeled
Transition Systems Analyzer) format for state machine atiom and validation.

igstkStateMachineMacro();

2. Then take the states and inputs mapped out during thetypatg stage and define them
in the header file using the following macros. To enforce theimg conventions of the
state machine, the declaration macros will append “Statélhput” automatically after
the variable name. For instance, the following two lines definem_InitialState and
m_RequestLoadlmagelnput

igstkDeclareStateMacro(Initial);
igstkDeclarelnputMacro(RequestLoadlmage);

3. The next step is to construct the state machine in the eatst of the source file. First,
we need to add all the states and inputs declared in the hiesioléne state machine.

igstkAddStateMacro(Initial);
igstkAddInputMacro(RequestLoadlmage);

http://public.kitware.com/IGSTKWIKI

190

Chapter 21. Needle Biopsy

4. The next step is a crucial step which creates the state imedtansition table to

control the logic and workflow of the application. This is @onsing the macro
igstkAddTransitionMacro(From_State, Received Input, T 0_State, Action)

This means when the state machine is in them State and receives the
Received_Input , it will enter into theTo_State and evoke théctionProcessing()

as an action for this transition. This macro requires theti@xdProcessing” method to be
pre-defined in the class for the state machine to call. Fomeiex

igstkAddTransitionMacro(Initial, RequestSetPatientNa me,
WaitingForPatientName, SetPatientName);

In this case, we need to have a SetPatientNameProcessiati{pddefined in the class
for this code to compile.

. After we have setup the transition table, the next step isetect an initial state, and

flag the state machine to be ready to run. After the state madhkiready to run, we
cannot change the state machine transition table in the. cblis is designed this way
to enhance the safety of the state machine and prevent ataligechanges to the state
machine behavior in the code.

igstkSetlInitialStateMacro(Initial);
m_StateMachine.SetReadyToRun();

. Now the state machine is setup and ready to run. We can #pamtehe state machine

description in dot format and generate the graphical visatibn as shown in Figurl.2
This graph will help us to examine the workflow of the applicatand the state transition
table.

std::ofstream ofile;
ofile.open("DemoApplicationStateMachineDiagram.dot");
const bool skipLoops = false;

this->ExportStateMachineDescription(ofile, skipLoops);
ofile.close();

This will output the state machine into a dot file when we exedhe application. If
you have the dot tool installed in your system, then you carthe following command,
which will take the dot file and generate a png format pictiamad “SMDiagram.png”
for the state machine.

>dot -T png -0 SMDiagram.png DemoApplicationStateMachine Diagram.dot

. All the requests to a state machine should be translatednputs and the state machine

will response to those inputs depending on its current.siitiese actual actions should
be protected methods and only called by the state machigetlyir In the code, a click
on the load image button will be translated tBequestLoadimagelnput , and then we
call ProcessInputs() to let the state machine handle this request.

21.3. Result 191

igstkPushinputMacro(RequestLoadlmage);
m_StateMachine.Processinputs();

If the state machine is in the right state to load the imageptepted method associated
with this transition (egloadimageProccessing()) will be evoked by the state machine
as defined in the transition table constructed in the coaistru

21.2.4 Should | use the state machine in my application?

From the computational theory point of view, all computens state machines, and all com-
puter programs are state machines regardless of whethdetetopers used the state machine
programming pattern or not. Traditional programming ajpph®s represent the states ambigu-
ously by using a large number of variables and flags, whichltr@s many conditional tests
in the code (if-then-else or switchcase statements in C)CProgrammers could neglect to
consider all possible paths in the code while strugglindhvfielse conditional tests and flag
checks. These practices may result in unpredictable behand limit safety in the design
of the underlying applications. Since predictability igical for mission critical applications
running in the surgery room, this approach is not suitabl®fw purpose.

In comparison to traditional approaches, state machinksediuce the number of paths in the
code, save the developers from convoluted conditionas testd encourage them to focus on
higher level design. From the above example, we can seehhbattate machine is easy to
program and manage under the IGSTK framework. We encouregmapers to design and
code the state machine of their application first, and theregee the state machine diagram
as shown in Figur@1.2 They can go through the diagram, examine and verify thesigme
of the work flow. If they want to add or change a path of the agpion, it is just a matter of
adding or deleting a transition table entry. This elimisatee level of difficulty required for
going through the code and struggling with if-then-elsadogrhis will largely facilitate the
application prototyping, and the implementation code aaplbgged into the skeleton program
later. These techniques should result in clearer desighsafer applications.

21.3 Result

Figure21.3shows the user interface of the needle biopsy applicatidttenrin FLTK. The left

side is the control panel, consists of a set of buttons cpording to the series of tasks per-
formed during the procedure. These buttons’ callbacksldhuall the public request methods of
the application, which will be translated into state maehimputs. The state machine will then
take proper action according to its own state. For examhenthe patient information is not
set, the ‘Load Image’ button won’t respond to the user clithkere is no need for conditional
checks or disabling of buttons here as these actions ar&dglia the state machine transition
table. On the right hand side, there are four standardizedsyiaxial, sagittal, coronal, and
3D view. Here we loaded an abdominal phantom CT images. Téengeylinder represents

192 Chapter 21. Needle Biopsy

Figure 21.3User interface for needle biopsy program.

the needle being tracked by the tracker. The viewer will mattically reslice the images as the
needle tip is moving in the anatomy.

CHAPTER

TWENTYTWO

Ultrasound Guided Radio-Frequency
Ablation

22.1 Introduction

Liver lesions suitable to be treated using radio-frequerdgtion (RFA) are often clearly visible
under CT/MR but not using Ultrasound (US) imaging. Therefmost of the RFA surgeries of
the liver are performed under CT. Other alternatives con$iwaiting until the lesions enlarge
and show up under US or perform an open surgery. An ideal Nzsti@n system would show
tumor contours under US to the surgeons. A typical workflo@mRFA surgery is described
in figure22.1

This application registers a pre-operative model of thedtswith a 2D US slice in pseudo
real-time. The system can be divided into three parts: akiing devices, b) registration algo-
rithm and c) display. First, the 2D ultrasound probe is tegtldsing an optical tracker (Polaris
from NDI). Second, an image-to-image registration aldnniregisters each 2D slice with a the
pre-operative CT. One can notice that this registratiop stould be performed as quickly as
possible. Third and last, a display presents the actual 2B3lld& with tumor outlines to the
surgeon.

Next the different components of the application, the tiaglsystems and the registration al-
gorithm are presented.

22.2 Running the Application

This application can be found in the Examples/Ultrasourid€dRFA. In order to build this
application you will need the cross-platform FLTK GUI totlkvailable from www.fltk.org.
Then you need to make sure that IGSTUSE_FLTK is turned ON when running CMake.

Chapter 22. Ultrasound Guided Radio-Frequency Ablation

194

Palients Body | 1GS Schware Applcatar, | Tracking Hardware | Guidowira Toal
| Fibagials pasimonid on hody
| PreOpes v Boan woan e
_\-_q____
e R i
i | I ot Infilaltoe Tosle|
M it

| Loaa 30 View|

Corfigr Softwirn Wiow |

(Patard Pra-Op Display |

{Renord Post-Dp Dispiay {Periem Heode Flasement

| Dzl Procodure |

Figure 22.1Typical RFA Ablation Surgery Workflow.

22.3. Implementation 195

22.3 Implementation

22.3.1 Tracker

Using a tracker in IGSTK is quite easy. First we create a gaobkject using smart pointers.

typedef igstk::PolarisTracker TrackerType;
TrackerType::Pointer m_Tracker = TrackerType::New();

Then, we set a ToolCalibrationTransform which defines thatiomship between the tracking
device and the origin of the tool. In our case, the opticakeeis attached to arm the probe,
therefore the calibration transform is defined as a rigidgfarm from the sensor position to the
tip of the probe. This transform can be computed from a caiibn experiment or using some
heuristics.

m_Tracker->SetToolCalibrationTransform(TRACKER_TOOL _PORT, 0,
ToolC:

Next, we need to define the relationship between the tradgstem origin and the actual pa-
tient position in the OR. Most of the surgical applicatioe$ide the OR as the world coordinate
origin. This PatientTransform is often assessed via catiitn.
m_Tracker->SetPatientTransform(PatientTransform);
The IGSTK spatial object to be tracked is attached to thekénagsing AttachObjectToTrack-
erTool. Therefore when the position and orientation of ttaeking device is modified, the
updated position of the spatial object is automatically patad. One can notice that this step
involves the concatenation with the ToolCalibrationTfan® and the PatientTrasnform.
m_Tracker->AttachObjectToTrackerTool(TRACKER_TOOL P ORT,

TRACKER_

m_UltrasoundPrc

Our tracker is ready to be used, we start the tracking by fiyehing the serial communication
port usingOpen() , then we initialize the tracker and start the tracking.

m_Tracker->Open();

m_Tracker->Initialize();

m_Tracker->StartTracking();

To stop the tracking device we just use StepTracking() function.

m_Tracker->StopTracking();

One can notice that switching from one tracker to anotherb@adone by modifying a single
line of the code above, e.g. the tracker type definition.

196 Chapter 22. Ultrasound Guided Radio-Frequency Ablation

22.3.2 Registration

Using the tracking information of the ultrasound probe theation of the US slice is roughly
defined in the OR. To define a proper alignment of the US slidelpre-operative CT volume
registration is needed. The registration algorithm is aageito-image technique based on the
cross-correlation.

IGSTK makes use of registration algorithms already implet@e in the Insight Segmentation
and Registration Toolkitq]. However, IGSTK propose algorithm already tuned from #pec
modalities and organs. Using class hierarchies, prograscaa still makes use of higher level
registration technique. For instance, the igstkMR3DInmagtS3DImageRegistration class per-
forms registration of any 3D MR to 3D US. The parameters of#ggstration are already tuned
to support most of the MR-to-US registrations but some otheing might be required for
different organs.

22.3.3 Display

IGSTK propose several visualization techniques based @witualization Toolkit]. Basi-
cally for a given IGSTK spatial object, several represeotadbjects can be created and added
the display as shown in figufZ?.

Image volumes such as CT or MR datasets can be rendereredwagdeoblique slices or can
be volume renderered. Mesh objects such as segmented teamoize renderered in 3D as
triangle surfaces and in 2D as contours. The update of tipdagliss done in real-time when the
number of objects in the scene is not excessive and doesquiteextensive computation, i.e
volume rendering of large datasets.

22.3.4 Implementation

Here we show an example on how to read and display a vascaittracted from CT.

First we create a vascular network reader using smart psinte

typedef igstk::VascularNetworkReader ~ VascularNetworkR eaderType;
VascularNetworkReaderType::Pointer m_VascularNetwork Reader;
m_VascularNetworkReader = VascularNetworkReaderType:: New();

Then we set the vasculature filename and we ask the readeadothe file using the Re-
guestReadObject() function.

m_VascularNetworkReader->RequestSetFileName(Vascula tureFilename);
m_VascularNetworkReader->RequestReadObject();

In order to get a spatial object from a reader, IGSTK use®tlemt/observemechanism. We
declare a specific observer to get the vasculature from titlereand we ask the reader to return
the object.

22.4. Conclusion 197

VascularNetworkObserver::Pointer vascularNetworkObse rver
= VascularNetworkObserver::New();
m_VascularNetworkReader->AddObserver(

VascularNetworkReader::VascularNetworkModifiedEvent 0,
vascularNetworkObserver);
m_VascularNetworkReader->RequestGetVascularNetwork();

Next, we instantiate an object representation for the askietwork object.

typedef igstk::VascularNetworkObjectRepresentation
VascularNetworkRepresentationType;
VascularNetworkRepresentationType::Pointer m_Vascula rNetworkRepresentation =
VascularNe

Then we set the spatial object to the object representdtidernally the object representation
creates a suitable visualization of the object from itsrimdégeometry.

m_VascularNetworkRepresentation->RequestSetVascular NetworkObject(
vascularNetworkObserver->GetVascularNetwork());

Finally, we add the object to the display.

this->Display3D->RequestAddObject(m_VascularNetwork Representation);

22.4 Conclusion

CHAPTER

TWENTYTHREE

Robot Assisted Needle Placement

In the previous needle biopsy application (Cha@®r; with the image guidance the physician
might still be limited by the view of the exact position of agyrgical instruments in the in-
terventional field, and they might need to spend a fair amofititne to align the instruments
with the planned path. In this chapter we present an imaggeduyplatform for precision place-
ment of surgical instruments based upon a small four degiéeeedom robot shown in Figure
23.1(B-Robll; ARC Seibersdorf Research GmbH, Vienna, Austritije robot has two joints
(upper box and lower box, which can move parallel to eachrptned 4 degree of freedoms.
Its unique shape gave it the name deck of card robot. Thifoptatincludes a custom needle
guide with an integrated spiral fiducial pattern as the rgtestd-effector and uses pre-operative
computed tomography (CT) to register the robot to the paterctly before the intervention.
The robot can then automatically align the instrument gtitdda physician-selected path for
percutaneous access. The path is chosen by the physiciae ltle¢ intervention using an es-
tablished graphical user interface built using open-satwolkits such as the Image-Guided
Surgery Toolkit (IGSTK). Potential abdominal targets urdé the liver, kidney, prostate, and
spine.

Figure23.2shows the setup of the whole system. The robot is mountedeo@1htable after
patient (we use phantom in the picture) is in place. Robotiamdjusted to position the needle
holder close to the biopsy area. A CT scan is then acquiretbanéd into robot assisted needle
biopsy application. Surgeon can go through the image slicestify tumors, and plan an
optimal biopsy path by setting proper target and entry gdimeivoid important and vulnerable
organs and tissues. The robot will then move the needle hald align it with the planed
path. Surgeon can advance the needle manually to hit thettaf@pe deck of card robot can
be operated remotely by multiple clients through TCP/IP eamication. Client application
should first connect to the server application as an actiemtcbefore it can command the
robot.

200 Chapter 23. Robot Assisted Needle Placement

Figure 23.1:B-Robll four degree-of-freedom precision placement modules for needle positioning and
orientation.

Figure 23.2:Robot assisted needle placement phantom study setup.

23.1. Running the Application 201

23.1 Running the Application

This application can be found in tfsamples/DeckOfCardRobot . In order to build this appli-
cation you will need the cross-platform FLTK GUI toolkit akadole from www.fltk.org. Then
you need to make sure that IGSTKSE _FLTK is turned ON when running CMake.

As shown in Figure23.3 the workflow of this application are(suppose we have a luongdy
procedure):

Place the phantom on the CT table and mount the robot toTrga@try.
Position the robot needle holder close to the region efast.
Scan the phantom together with the robot.

Load CT images into the robot control software.

o M w0 nhpoPRE

. Using the control software, segment out the fiducials @@T image and perform the
paired-point registration.

(o2}

. In the display window, plan the needle insertion path.

7. If the planned path is within the robot’s working rangesrittommand the robot to align
the needle to the planned path. Otherwise, go back to step 2egosition the robot
closer to the biopsy entry point.

8. Advance the needle by hand. The depth of insertion widl Biscalculated by the system
and this depth can be judged by observing depth graduatiotieeneedle itself.

23.2 Implementation

This application is unique in a way that it is using some aaghat are not in the core IGSTK
library. We have already introduced the concept of this iappibn, in the implementation
section we will be focusing on the topic of writing your owrdgounder the IGSTK framework,
in another word, how to interface and extend IGSTK library.

23.2.1 Pass IGSTK image objects to ITK filters

One task of the application is to automatically detectirgftducial pattern in the CT images.
It makes sense to leverage from ITK as it has an extensivariilfor a wide variety of image
analysis algorithms. IGSTK usékOrientedimage inside thegstkimageSpatialObject ,
but ITK objects are encapsulated under IGSTK API, so we neegt the native ITK object
out and pass it to the ITK filters to perform segmentation gisteation. In IGSTK we pass
information using loaded “event”, and we need a “observecdtch that “event”.

202 Chapter 23. Robot Assisted Needle Placement

Place patient on gantry and attach robot to gantry

!

Position needle guide near ROI <

+

Perform CT scan

3

Retrieve CT volumes

-

Segment volumes and register coordinate systems
1 No

View workstation display with overlay of tool

&

Plan path on image overlay using software

v

Is target within robot workspace?

Yes

)

C Robot crients to planned path)

Figure 23.3Clinical Workflow for Robot Assisted Needle Placement.

23.2. Implementation 203

1. First step, we need to use tlgstkObserverConstObjectMacro to define the observer

igstkObserverConstObjectMacro(ITKImage,
ImageSpatialObjectType::ITKImageModifiedEvent,
ITKImageType)

The first parameter “ITKImage” is just a string used to coanate with “Observer” to
construct a new observer class. In this case, we will havesargbr class named “ITKIm-
ageObserver”. This macro also specifies the observer witliserving the “ITKImage-
ModifiedEvent” and this event will carry an object of type HlmageType”. The expan-
sion of this macro can be found igstkMacro.h

2. Next you will need to instantiate the observer, and tedl dbbserver to catch the event
from IGSTK image spatial object using tAddObserver function.

ITKImageObserver::Pointer itkimageObserver = ITKImageO bserver::New();

m_ImageSpatialObject->AddObserver(
ImageSpatialObjectType::ITKImageModifiedEvent(),
itkimageObserver);

3. You will need to call th&®equestGetITKImage method to cause the IGSTK image spatial
object class to send out the event carrying the ITK image.

m_ImageSpatialObject->RequestGetI TKImage();

4. The The final step is to check the observer to see if it catahg event. If it does, then
we can “Get” the loaded object out of the catched eveniTKimage is an ITK image
pointer.

if (itkimageObserver->GotlITKImage())

(
{
m_ITKImage = itkimageObserver->GetlTKImage();
}

else

{

return false;

}

5. After getting the ITK image, we can pass it to any ITK filter further processing. In
this example, we use the following filters:

itk::BinaryThresholdimageFilter
itk::ConnectedComponentimageFilter
itk::RelabelComponentimageFilter

The detailed code can be found in themple/DeckOfCardRobot/FiducialSegmentation
class.

204

Chapter 23. Robot Assisted Needle Placement

23.2.2 Write your own representation class

If you want to have your own visualization class to get spediandering ef-

fect,

you might want to write a new representation class ritd@ from one of

the IGSTK representation classes. Here we give an examplémpfementing the
igstkimageSpatialObjectVolumeRepresentation class. The code can be found in the
Example\DeckOfCardRobot directory.

We can work on changing the codeigstkCTImageSpatialObjectRepresentation class.
It gives us a good starting point, and we can reused its frardehl state machine logic since
these two classes perform similar tasks except using diffeendering technique.

1.

First, we can make a copy of the code, and rename the filelassl kames to the new
class name

. Second, we need to include some headers for the volumeniagd Here we use 3D

texture mapping, this feature is only supported by receayplgjcs cards.

#include "vtkimageShiftScale.h"
#include "vtkColorTransferFunction.h"
#include "vtkPiecewiseFunction.h"
#include "vtkVolumeTextureMapper3D.h"
#include "vtkVolumeProperty.h"
#include "vtkVolume.h"

. Next thing to do is declaring member variables necessarydiume rendering
vtkPiecewiseFunction * m_OpacityTransferFunction;
vtkColorTransferFunction * m_ColorTransferFunction;
vtkimageShiftScale * m_ShiftScale;
vtkVolumeTextureMapper3D * m_VolumeMapper;
vtkVolumeProperty * m_VolumeProperty;
vtkimageData * m_ImageData;
vtkVolume * m_ImageActor;
unsigned m_ShiftBy;
unsigned m_MinThreshold;
unsigned m_MaxThreshold;

. The most important function you need to work on GseateActors() . The

m_lmageData in the following code is attkimageData object, which can be obtained
from IGSTK image spatial object in a similar fashion menédrin sectior23.2.1

igstkLogMacro(DEBUG, "igstk::ImageSpatialObjectRepre sentation\

23.2. Implementation

205

::CreateActors called...\n");

/ITo avoid duplicates we clean the previous actors
this->DeleteActors();

/ICreate new actor
m_lmageActor = vtkVolume::New();
this->AddActor(m_ImageActor);

/IShift the data to desired range

m_ShiftScale = vtkimageShiftScale::New();
m_ShiftScale->Setlnput(m_ImageData);
m_ShiftScale->SetShift(m_ShiftBy);
m_ShiftScale->SetOutputScalarTypeToUnsignedShort();

/IPass the image data to the volume mapper
m_VolumeMapper = vtkVolumeTextureMapper3D::New();
m_VolumeMapper->Setinput(m_ShiftScale->GetOutput())

/ICreate opacity transfer function
m_OpacityTransferFunction = vtkPiecewiseFunction::New
m_ColorTransferFunction = vtkColorTransferFunction::N

m_OpacityTransferFunction = vtkPiecewiseFunction::New
m_OpacityTransferFunction->AddPoint(0, 0.0);
ifC(m_MinThreshold > 0)
{
m_OpacityTransferFunction->AddPoint(m_MinThreshold,
}
m_OpacityTransferFunction->AddPoint(m_MaxThreshold,
m_OpacityTransferFunction->AddPoint(m_MaxThreshold+

/ICreate color transfer function

m_ColorTransferFunction = vtkColorTransferFunction::N
m_ColorTransferFunction->AddRGBPoint(m_MinThreshold
m_ColorTransferFunction->AddRGBPoint(m_MaxThreshold
m_ColorTransferFunction->AddRGBPoint(m_MaxThreshold
m_ColorTransferFunction->AddRGBPoint(m_MaxThreshold
m_ColorTransferFunction->AddRGBPoint(m_MaxThreshold

== = = =

/IPass opacity and color transfer function to volume proper
m_VolumeProperty = vtkVolumeProperty::New();
m_VolumeProperty->SetColor(m_ColorTransferFunction)
m_VolumeProperty->SetScalarOpacity(m_Opacity Transfe

0.05);

0.2);
1, 0.0);

ew();
, 0.0, 0.0, 0.0);
4, 1, 0, 0);
2, 0, 0, 1);
14*3, 0, 1, 0);
, 11,1,

ty

rFunction);

206 Chapter 23. Robot Assisted Needle Placement

/IPush an input to state machine and request it to process it
igstkPushinputMacro(ConnectVTKPipeline);
m_StateMachine.Processinputs();

This piece of code specifies the color and opacity transferctions and pass
them to a vtkVolumeProperty , and also passes the VTK image data to a
vtkVolumeTexture3DMapper , The last two lines of code generate an input
ConnectVTKPipeline to the state machine, and call for the state machine to psoces
this input. The state machine will decide whether the repridion class is ready to
render the image or not.

5. Look into the code of th€onnectVTKPipelineProcessing() function, which will be
called when the representation class is ready to visudlzétage.

m_lmageActor->SetMapper(m_VolumeMapper);
m_ImageActor->SetProperty(m_VolumeProperty);
m_ImageActor->SetVisibility(1);
m_lmageActor->SetPickable(0);

This passes the volume and volume property to an ITK actarefodering.

23.2.3 Using the socket communication class

The communication between the application and robot séswarough TCP/IP protocol. For
this purpose, socket communication component of IGSTK wsedu You can write your
own command interpreter class for your specific hardwarere hee give a simple exam-
ple on how to implement the robot control class. The detadlede can be found in the
Example/DeckOfCardRobot/RobotCommunication class.

1. First, create a client object.
typedef igstk::SocketCommunication SocketCommunicatio nType;
SocketCommunicationPointerType m_Client;
m_Client = SocketCommunicationType::New();

2. Second, initialize the socket communication and conteettte host and port.

m_Client->RequestOpenCommunication()
m_Client->RequestConnect(IPADDRESS, PORT)

3. For this particular robot, we need to login first

m_Client->RequestWrite("@AUTH;Team;A\n\n");
m_Client->RequestRead(buffer, 100, num, READ_TIMEOUT);

23.3.

Result 207

. Before we operating the robot, we should 'home’ the robist.fiThis is a self-calibration

method.

snprintf(sendmessage, ROBOT_MAX_COMMAND_SIZE, "@HOME; 9%d;%d\n\n",
TRIGGER_IMMEDIATE, WRITE_TIMEOUT);

m_Client->RequestWrite(sendmessage);

m_Client->RequestRead(buffer, 100, num, READ_TIMEOUT);

. Now we can command the robot to move to certain transla{iry, and Z) with certain

rotations (A,B, and C)

snprintf(sendmessage, ROBOT_MAX_COMMAND_SIZE,
"@MAW;%d;%d;%d; %f;%f;%f;%f;%f;%f\r\n", TRIGGER_IMMED IATE,
INTERRUPT_IMMEDIATE, WRITE_TIMEOUT, X, Y, Z, A B, C);
m_Client->RequestWrite(sendmessage);
m_Client->RequestRead(buffer, 100, num, READ_TIMEOUT);

. When we done, log out of the robot and close the communitati

m_Client->RequestWrite("@QUIT\"\n");
m_Client->RequestCloseCommunication()

23.3 Result

Figure23.4shows the user interface of the application with controlgban the left, 3 standard

2D slice views and a 3D volume rendering on the right. Theoyetlylinder is the needle holder,
the purple square indicates robot’s working region, a patbeing planed to target the tumor
while avoiding the ribs, and it is showing the robot beingaéd with the planned path.

Figure23.5shows TeraRecon rendered image of the robot needle holder.

208 Chapter 23. Robot Assisted Needle Placement

W |G5TH: Deck af Card Robot

ﬁ

=
iduﬂlo-il-l Bl
| ,J‘

I

| Rztt G

i
i

i

2 4ER000 M8 00 124 JEHHLIE I i a0 ROl Croe | P T e e St e

T Tekig o vl LR,
T T T AT ¢ e

Figure 23.4User interface for the robot application.

23.3. Result 209

Figure 23.53D rendering of CT scan showing spiral fiducial pattern for registration of robot to CT images.

