CHAPTER

FIFTEEN

Calibration

In the image guided surgery, a surgeon uses tracked toolsafdgation or intervention. A
general transform procedure called calibration is reguicealign the output of the tracking
device to the specific operation points on the tool, suchesptof a surgical needle or the end
of its handle. For surgeons, these specific operation pafateore important and intuitive than
the positions of the trackers which are often embedded imilddle or at the hind of the tool.

Generally speaking, calibration refers to the process tihgethe magnitude of the output (or
response) of a measuring instrument to the magnitude ohiiné property or attribute within

a specified range of accuracy and precisiowhen calibrating the tracker, those inputs are the
positions and the orientation reported from the trackingae and the outputs are the positions
of the specific operation points. When calibrating both theker and an imaging device, such
as an ultrasound probe, the inputs are the positions of timefiracker and the image coordinate
in the ultrasound imaging, and the outputs are the 3D coaté@of those image pixels in the
global world coordinate system. Hence, in most cases, tliteration procedure produces the
transform between the trackers and specific positions.

In the IGSTK calibration package, several calibration stagsare currently provided in the
main repository and sanbox, including igstkPivotCalilmatigstkPrincipalAxisCalibration and

igstkLandmarkUItrasoundCalibration. Those calibratitasses work closely with the tracker
component to provide a safe and accurate environment fointhge-guided surgical proce-
dures. Some specialized features, such as the essentatidis calibration for the electro-

magnetically tracking device, will also be provided foliog the requirement process of IGSTK
framework.

This chapter will firstly describe the rationale and desigttgrns for the existing calibration
components. Next it will introduce the calibration datanfiat used and its 1/0 classes in the
sample application. Finally, it will discuss the future@nxsion of the calibration package.

1 http://en.wikipedia.org/wiki/Calibration

100 Chapter 15. Calibration

15.1 Pivot Calibration

15.1.1 Introduction

The reported positions from both optical and electro-mégrieackers are generally at fixed
points on their sensors. For example, in the AURORA tracliygtem, the reported position
for a single sensor is at the center of the sensor coil thamizeelded in the surgical tool. When
multiple sensors are used, the reported position is detedry the configuration SROM file
that is stored in the tools. Generally, this position is acfffiepoint that is rigidly related to the

tracked tool.

For a tracked needle, its tip and the end of its handle areritapfor the surgeon. Those points
provide an intuitive means to visualize and locate the sdotidy. In an image-guided surgery
application, a point at the tip of the tool is always used tmte the spatial position of landmark
points, such as skin fiducials or the internal bifurcatiosifions of the vessels. Additionally,
for the navigation and validation, the tip of the trackeddieer the guide-wire indicates the
surgeon’s point of focus. Thus, a tracked tool can also sasve& 'locator’ or a 'pointer’. The
transform between the internal sensor or marker’s postiothose specific operation points is
accomplished by a procedure called pivot calibration.

Most tracking device manufacturers provide specific safévia handle this pivot calibration;
for example, Northern Digital Inc. provides '6D ArchitectuAurora’ and 'Toolviewer’ for
this purpose. This kind of software establishes commuiticatracks the tools, visualizes
the positions, and calculates the pivot calibration tramsf The pivot calibration result is
calculated before the experiment or the procedure, theshlusthe application for each specific
tool. However, for the on-site pivot calibration, a geng@uaipose class gives the developer more
flexibility.

In a typical pivot procedure like the one shown in Figaf&12, the tip of the instrument is
placed in a divot (a series of small holes) and the instrunsawotated back and forth (it pivots)
while tracking data is collected with enough sample ingha,ttansformation from the tracked
sensor’s point to the pivot point is calculated, along with talibration error represented as a
root mean square error.

15.1.2 Principle

The information from the tracker consists of the positiod #me orientation. Some systems
also provide the measurement error at that position. Relsitd the original point, the position
is located by a translation vector and a quaternion thaesgmts the rotation from the default
principal axis (mostly along the z-axis from the manufaetgettings). Depending on the sensor
or sensors, the reported tracker information may have thine® or six degrees of freedom
(DOF). The first three degrees are represented by the tteomsland the others are determined
by the quaternion. The transformation from the originalnpad the tool tip in the tracking
coordinate system is represented by:

2 NDI 6D Architecture Aurora

15.1. Pivot Calibration 101

Figure 15.1Pivot Calibration Routine.

of fse roo roi roz ftx of fse X0
[R T } | offsey | | rio ru riz ty | | offsey | | yo (15.1)
0 1 of fset roog o1 roo t; of fset 2)
1 O 0 0 1 1 1

In this equationR is the rotation matrixT is the translation vector angk, Yo, 2o) is the pivot
position. In most pivoting cases, the pivot position is tipeof the tool. Typically, we record
several hundred samples while pivoting the tools. Equati®d can be re-written as follows

where the constraints of offset afxb, o, Z0) are arranged as:

roo-Of fsek+ro1-of fsef+ro2-0ffset—1-x0+0-yo+0-70 = —tx
rio-offsek+ri1-offsef+rio-offsep+0-x0—1-yo+0-720= —ty
roo-of fsek+ro1-0f fsef+rop-0ffsep+0-x+0-yo—1-20= —t;

(15.2)

With several input samples, those equations can then beradated as:

of fse
offsey
m. | offset | (15.3)
Xo
Yo
2

SinceM is not a square matrix, the unknowns are solved using thelsingalue decomposition
(SVD) or Moore-Penrose inverse:

102 Chapter 15. Calibration

IdleState

Samplelnput ResetCalibrationinput

SampleAddState ResetCalibrationinput

CalculateCalibrationZInput “\Samplelnput

CalibrationZCalculatedState

CalculateCalibrationZInput /CalculateCalibrationinput
CalibrationCalculatedState

Figure 15.2:State Diagram of the igstkPivotCalibration class.

Samplelnput| CalculateCalibrationInput

of fse
of fsej
of fseg

Xo

Yo

2

:(MT.M)*l.MT.N

Additionally, the root mean square error is computed as:

RMS=,/|M-[offse} offse} offset xo Yo 2]T — N|2/num
Y

ResetCalibrationinput

(15.4)

(15.5)

wherenumis the number of samples. Note that in the pivot calibratioocpdure, the final

transform only contains only a translation factor and natioh factor.

When calculating the calibration only along the Z-axis dolya cylinder-like track tools, some-
times users may only want to get the calibration offset alinegZ-axis. In this condition, the
of fseg, of fsej variables are restricted to 0 and the computation formuaslaghtly changed.

15.1.3 State Machine Diagram

Figure15.2is a state machine diagram of thegst k: : Pi vot Cal i brati on class. There are

four states inside this class: initial ’Idle’ state, 'Samfstld’ state, 'CalibrationCalculated’ state

and 'CalibrationZCalculated’ state. The ’Idle’ state i€ fimitial state for all IGSTK classes.

When the position samples from pivoting the tracker are timto the class, the internal state
will be invoked to the 'SampleAdd’ state. As described in grevious section, there are two

ways to calculate the calibration matrix, either in the tudinslation mode or in the Z-axis

only mode. The final stages are the 'CalibrationCalculaded CalibrationZCalculated’ states

respectively. Only in these two states can the PivotCalitmeclass return a valid calibration

transform.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PivotCalibration.html

15.1. Pivot Calibration 103

15.1.4 Component Interface

The core functions of the igstkPivotCalibration class unld:

1. Input the samples (translation and quaternion) from thetipg trackers;
- igstkPivotCalibration::RequestAddSample();

2. Calculate the calibration transform;
- igstkPivotCalibration::RequestCalculateCalibratipn
- igstkPivotCalibration::RequestCalculateCalibrad ¢y

w

. Return the final calibration transform and pivot position
- igstkPivotCalibration::GetValidCalibration();
- igstkPivotCalibration::GetCalibrationTransform();
- igstkPivotCalibration::GetPivotPosition();
4. Calculate the root mean square error to evaluate whetieasile calibration transform
has been computed;
- igstkPivotCalibration::GetRootMeanSquareError();

5. Provide the convenient function to retrieve the input siamn
- igstkPivotCalibration::GetNumberOfSamples();
- igstkPivotCalibration::RequestGetinputSample();

6. Provide the convenient function to simulate the pivotifpms for any input translation
and quaternion from the calculated calibration transform;

- igstkPivotCalibration::RequestSimulatePivotPosif)o

15.1.5 Example
The source code for this section can be found in the file
Exanpl es/ Pi vot Cal i brati on/ Pi vot Cal i brati onl. cxx.

This example illustrates how to use IGSTK's pivot calibpatclass to determine a calibration
matrix for the tracker tools.

To use the pivot calibration component, the header file fgat k: : Pi vot Cal i brat i on should
be added.

#include "igstkPivotCalibration.h"

After defining the headers, the main function implementeitsostarted.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PivotCalibration.html

104 Chapter 15. Calibration

int main(int argc, char * argv[])

{

All the necessary data types in the pivot calibration arenéefi VersorType and VectorType
are used to represent the quaternion and translation ifoumbsthe tracker; PointType is used
to represent the position coordinate of the specific poimd; BrrorType is used to represent the
root mean square error.

typedef igstk::PivotCalibration Pi vot Cal i brationType;
typedef PivotCalibrationType:: VersorType VersorType;

typedef PivotCalibrationType:: VectorType VectorType;

typedef PivotCalibrationType:: Point Type Point Type;

typedef PivotCalibrationType::ErrorType ErrorType;

typedef itk::Logger Logger Type;

typedef itk::StdStreanmlogQut put LogQut put Type;

At the beginning, a pivot calibration class is initializezifallows:
Pivot Cal i brationType: : Pointer pivot = PivotCalibrationType:: New);

A logger is then created for logging the process of calibraiomputation, and then attached
to the pivot calibration class

Logger Type: : Poi nt er | ogger = Logger Type:: New();
LogQut put Type: : Poi nt er | ogQut put = LogQut put Type: : New();

| ogQut put - >Set Strean(std::cout);
| ogger - >AddLogQut put (| ogQut put);
| ogger->SetPriorityLevel (itk::Logger::DEBUG);

pi vot - >Set Logger (| ogger);

To use the pivot calibration class, some input samples frentracker should be provide. Those
samples come directly from tracker tools. In our examples¢hsamples are read from the
record data file in the IGSTK data directory.

i nput.open(argv[1]);

if (input.is_open() == 1)
{

std::cout << "PivotCalibration data open sucessully!" << std::endl;

}

el se

{

std::cout << "PivotCalibration data open error!" << std::endl;

return EXIT_FAI LURE;
}

15.1. Pivot Calibration 105

Before the computation, it is better to reset the calibratitass to to remove all necessary
information which may come from the previous codes.

pi vot - >Request Reset () ;
Then, the sample frame is read from the data file and inputliloration class

while (!input.eof())
{

doubl e vx;
doubl e vy;
doubl e vz;
doubl e vw;

input >> frame >> tenp >> tine;
i nput >> pos[0] >> pos[1] >> pos[2];
input >> vw >> vx >> vy >> vz;

versor.Set(vx, vy, vz, vw);
pi vot - >Request AddSanpl e(versor, pos);
}

After this, a simple request will invole the class to comphtecalibration transform.

pi vot - >Request Cal cul ateCal i bration();

Before the final calibration transform is retrieved, therug®uld check the tag to see whether
a valid calibration has been computed. The final calibratésult is stored in the translation

factor in the transform matrix. The pivot position is alsdrievable. The sample code is as
follows:

if (!pivot->CetValidPivotCalibration())
{

std::cout << "No valid calibration!" << std::endl;

return EXIT_FAI LURE;
}

el se

{

/1 Get the calibration transformation
Vector Type translation = pivot->GetCalibrationTransforn{). GetTranslation();

/] Get the pivot focus position
Poi nt Type position = pivot->GetPivot Position();

106 Chapter 15. Calibration

/1 Get the calibration RVS error
Error Type error = pivot->Get Root MeanSquar eError ();

[/ Dunp the calibration class information

std::cout << "PivotCalibration: " << std::endl;

std::cout << "NunberOf Sanples: " << pivot->Get Nunber Of Sanpl es()
<< std::endl;

std::cout << "Translation: " << translation << std::endl;

std::cout << "Pivot Position: " << position << std::endl;

std::cout << "Calibration RMS: " << error << std::endl;

}

For only computing the calibration along Z-axis, anotherction is used instead:

pi vot - >Request Cal cul ateCal i brationZ();

15.2 Principal Axis Calibration

15.2.1 Introduction

The pivot calibration provides only the translation inf@tion of the tracked tool and thus is
based on the assumption that the geometry coordinate adéfduet tracking coordinate are the
same. In most cases, the principal axis is along the Z-akthelprincipal axis of the tracked
tool is not well aligned with the geometry representatiomotation transform is required to
work together with the pivot calibration routine to constrthe full transform matrix. Since
IGSTK works closely with ITK, and the transform is based oa iff::Vector and itk::Versor
classes, the itk::\Versor can be used to represent theawoditiectly. For example, if the tracked
tool’s principal axis is along the Z-axis, but the spatiabgetry object is along the Y-axis, an
itk::Versor::SetRotationAroundX() function solves th@plem. This approach works for these
specific rotations, but for an arbitrary rotation between tmspecific directions it is hard to
use a combination of rotations around the X, Y or Z-axes tapce the exact result. In this
case, a general purpose igstkPrincipalAxisCalibratias<lprovides an intuitive means to set
the initial and desired orientations (tracker tool’s pijpat axis and spatial object’s principal
axis) and to return the rotation between them.

For cylindrical tracker tools, the spatial principal axims mostly along the cylinder geometry
axis. In some different configurations, this alignment miagrgge. For example, the ITK spatial
object’s default axis is along the Y-axis, but the IGSTK sglaibject’s default axis is along the
Z-axis. For the 5DOF and 6DOF trackers, the default prin@gas in the tracking coordinate

system, as defined by most hardware manufacturers, is dieng-axis. Note that this default
principal axis in the tracking coordinate system often isalong the tracker tool's geometry
principal axis. A combination tracker tool is shown in Figarl5.3and 15.43. For the tracker

3 Traxtal Inc.

15.2. Principal Axis Calibration 107

handle, the optical markers are arranged along the handlehariracking coordinate system’s

principal axis is well aligned with the spatial geometryghaBut for the tracker probe tip, the

specially designed curves make them different. In an ingagded surgery application, these
probe tips are of greater concern to the surgeon, for theneat@perational parts and will touch

the patient. When the tracker probe tip and the handle aehat together, the principal axis in
the tracking coordinate system is different than the opmrat part’s principal axis. For those

tracker tools, an igstkPrincipalAxisCalibration classyides an intuitive means to calculate the
rotation matrix.

J

Figure 15.3: Tracker Handle Figure 15.4: Tracker Probe Tip

15.2.2 Principle

The purpose of computing the principal axis calibrationadibd the rotation between two
defined orientations. Our method is based on the rotatiommatiltiplication. In IGSTK, the
rotation factor is stored in the quaternion format, and thievert between the quaternion and
the rotation matrix is unified. When a point is rotated, initmethematically representation, the
vector is multiplied by a rotation matrix. So, the differenoetween two orientations can be
calculated by the divide operation of the two matrices, H#evi:

M = Mori1 - Mg iy (15.6)
Mori1 is the rotation matrix from the desired orientation, &gli» is the rotation matrix from
the initial orientation.

The igstkPrincipalAxisCalibration class provides an itite means to set the orientation, which
is defined by the principal axis and the normal axis of the tdbE principal axis is generally the
major axis along the cylindrical tools that are very poputatlinical procedures. The normal
vector defines the view-up direction of the system cooréin@hose two parameters are easy
to measure by the geometry shape design profile of the tobks.r@tation matrix can be built
from the principal axis and normal vector using the follogvauation:

Px Py Pz
Mori — nx ny nz (157)

NEMENE

108 Chapter 15. Calibration

e
InitialOrientationSetState

DesiredOrientationinput

OrientationAllSetState
CalculateRotationlnput
RotationCalculatedState

Figure 15.5:State Diagram of the PrincipalAxisCalibration class.

[nitialOrientationinput ResetCalibrationinput

where(py, py, Pz) is the normalized principal axis vectdn, ny,n;) is the normalized orthog-
onal view-up vector, andy, ly, 1) is the vector along the third direction which is made by the
cross production of the first two vectors.

15.2.3 State Machine Diagram

Figure15.5illustrates the State Machine of thiggst k: : Pri nci pal Axi sCal i brati on class.
There are five states inside this class: ’ldle, ’Initial@rtationSet,’ 'DesiredOrientationSet,’
'OrientationAllSet,” and 'RotationCalculated.’ 'ldlesithe initial state for all IGSTK classes.
Subsequently, a class’s state will be 'InitialOrientaen,’ 'DesiredOrientationSet,’ or 'Orien-
tationAllSet, depending on whether the initial or desicegentations of the tracker are put into
the class. Only when a class has reached the 'OrientatiSeAktate will a request to calculate
the calibration function bring the class into the final 'RaiaCalculated’ state.

15.2.4 Component Interface

From the description, the core functions of the igstkPpatAxisCalibration class include:

1. Setthe initial principal axis and view-up normal;
- igstkPrincipal AxisCalibration::RequestSetinitial@mtation();

2. Set the desired principal axis and view-up normal,
- igstkPrincipal AxisCalibration::RequestSetDesireg@tation();

3. Automatically adjust the plane normal to make it perpeuldir with the principal axis;

4. Calculate the rotation matrix from those two orientasion
- igstkPrincipalAxisCalibration::RequestCalculate&an();

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PrincipalAxisCalibration.html

15.2. Principal Axis Calibration 109

15.2.5 Example

The source code for this section can be found in the file
Exanpl es/ Princi pal Axi sCal i brati on/ Princi pal Axi sCal i brationl. cxx.

This example illustrates how to use IGSTK's princiapl axadilaration class to determine the
rotation matrix for the tracker tools.

To use the principal axis calibration component, the headgéle for
i gstk::Principal AisCalibration should be added.

#include "igstkPrincipal AisCalibration.h"
After defining the headers, the main function implementeitsostarted.

int min(int argc, char * argv[])

{

All the necessary data types in the principal axis calibratire defined. VectorType and Covari-
antVectorType are used to represent the vectors along &gl axis and the plane normal.

typedef igstk::Principal AxisCalibration Principal AisCalibrationType;

typedef Principal AxisCalibrationType:: Vector Type Vect or Type;

typedef Principal AxisCalibrationType:: CovariantVect or Type Covari ant Vect or Type;
typedef itk::Logger Logger Type;

typedef itk::StdStreanmiogQut put LogQut put Type;

At the beginning, a principal axis calibration class isialized as follows:

Princi pal Axi sCal i brati onType: : Poi nter principal
= Princi pal Axi sCal i brationType:: New();

A logger is then created for logging the process of calibraiomputation, and then attached
to the principal axis calibration class

Logger Type: : Poi nt er | ogger = Logger Type:: New();
LogQut put Type: : Poi nt er | ogQut put = LogQut put Type: : New() ;

| ogQut put - >Set Strean{ std::cout);
| ogger - >AddLogQut put (| ogQut put);
| ogger->SetPriorityLevel (itk::Logger::DEBUG);

princi pal - >Set Logger (| ogger);

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PrincipalAxisCalibration.html

110 Chapter 15. Calibration

Before the computation, it is better to reset the calibratitass to to remove all necessary
information which may come from the previous codes.

princi pal - >Request Reset () ;

Some parameters, such as axis and normal, are defined tdtetdngut information to deter-
mine the initial and desired orientations

Vect or Type axis;
Covari ant Vect or Type nor mal ;

An initial orientation is given as the default one for theckter tools

axi s[0]
axi s[1]
axi s[2]
nor mal [0]
nor mal [1]
nor mal [2]
principal -

nmn i ok o

1

OOO

.0;
. 0;
. 0;
0.
0.
1.
RequestSetlnltlalOlentatlon(axis, normal);

A desired orientation of the tracker tools are also specified

axi s[0]
axi s[1]
axi s[2]
nor mal [0] . 0;
nor mal [1] . 0;
nor mal [2] 0.3;

princi pal - >Request Set Desi redOri entation(axis, normal);

1

TR TR
koo
Poeee

Then a RequestCalculateRotation function is invoked topamthe final results
princi pal - >Request Cal cul at eRot ati on();

Before the final calibration transform is retrieved, therueould check the tag to see whether
a valid calibration has been computed. The sample code @law$:

if (!principal->CetValidRotation())
{

std::cout << "No valid calibration!" << std::endl;

return EXIT_FAI LURE;
}

15.3. Calibration Data I/O

111

el se

{

std::
std::
std::
std::

std::

principal -

}

cout

cout

cout

cout

cout

<< "lnitial Principal Axis:"

<< principal ->CetInitialPrincipal AXis() << std::endl;
<< "Initial Plane Normal:"

<< principal->CGetlnitial PlaneNormal () << std::endl;
<< "Desired Principal Axis:"

<< principal - >CGet Desi redPrinci pal Axis() << std::endl;
<< "Desired Plane Normal:"

<< principal - >CGet Desi redPl aneNormal () << std::endl;
<< "Calibration Transform"

<< principal ->CGetCalibrationTransforn() << std::endl;

>Print(std::cout);

15.3 Calibration Data I/O

15.3.1 Data Format

IGSTK needs a common file format for storing tool calibrattamsformations. Because the
tools must be calibrated before the surgery, it is necedsargrify that the correct calibration
file is applied to the correct tool.

The tool calibration file must contain the following inforticn:

1. The date and time that the calibration was performed (iI@@N date/time format:
YYYYMMDD HHMMSS.SSSS);

2. Information about the method and the equipment used ioratd the tool;

3. ldentification information for the tool, including the mafacturer, part number, and serial
number for the tool;

4. The transform type (which will be limited to rigid quatéyn transforms for now);

5. The transform parameters;

6. A description of the error associated with the calibratedsform.

A sample pre-computed calibration file is like:

<?xml version="1.0"2
<IGSTKFile type="ToolCalibration” version="0.1%

112

Chapter 15. Calibration

<Creation date="20050824" time="070907.0705" method¥t®Calibration”
/>

<Tool type="Pointer” manufacturer="Traxtal” partNumbé&e23-X" serialNum-
ber="200501268"%

<Transform type="Rigid3D*
<ParameterNames
translation_x translation_y translation_z
guaternionx quaterniony quaternionz quaternionw
</ParameterNames
<ParameterValues
5.02.03.0

9.7467943448089631 -0.20519567041703082 0.92338056688
0.30779350562554625

</ParameterValues
<ErrorParameterNamgs
rms
</ErrorParameterNames
<ErrorParameterValues
0.187876234
</ErrorParameterValues
</[Transform>
<IGSTKFileCRC32-
4f6a3b2d
</IGSTKFileCRC32-
</IGSTKFile>

TheCRC32 is a 32-bilCRCthat can be checked to validate the integrity of the data. OR€E
is calculated from the start of thelGSTKFile> tag to the end of the:/IGSTKFile> tag, not
for the whole file. A propeDTD is specified for the above XML file. The following error
parameters could be defined:

. rms the root-mean-square error for the translation (Fidu&esyistration Error for land-

mark registration)

. centroid_x, _y, _z the landmark centroid (or the center of rotation that wasdu®r

image registration)

3. Additional parameters to express rotational error

15.3. Calibration Data I/O 113

IdleState

> ObjectReadState

ObjectFileNameValidinput

ObjectFileNa

ObjectReadingSuccessinput

Figure 15.6:State Diagram of the PivotCalibrationReader class.

As the calibration data format is to handle all calibratinformation and is still improving, it
is better to check the online update of the current calibrdfile format®.

15.3.2 Data Reader

For the convenience of reading/writing the calibrationagd@&STK also provides some utility
classes to handle the input and output of calibration datgur€ 15.6 illustrates the State
Machine of thei gst k: : Pi vot Cal i br ati onReader class. This class provides the function to
input the calibration from the pivoting routine.

15.3.3 Example

The source code for this section can be found in the file
Exanpl es/ Pi vot Cal i br at i onReader/ Pi vot Cal i br ati onReader 1. cxx.

This example illustrates how to use IGSTK's pivot calibvatreader class to read the calibration
matrix from an offline calibration file.

To wuse the pivot calibration reader component, the headere fifor
i gstk::PivotCalibrationReader should be added.

#include "igstkPivotCalibrationReader.h"

At the very beginning of the program, two kinds of event andeslers are defined to track
the information from the reader. The first event is igstklifi¢ationModifiedEvent, which is to
retrieve the calibration class from the reader. The secord®igstk::StringEvent, which is to
retrieve some string-like information from the generallwation class.

nanmespace Tool Cal i brationTest

{
i gst kObserver Macro(Calibration,::igstk::CalibrationMdifiedEvent,

4 http://public.kitware.com/IGSTKWIKI/index.php/Califition_Data

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PivotCalibrationReader.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PivotCalibrationReader.html

114 Chapter 15. Calibration

crigstk::PivotCalibration:: Pointer)
i gstkCbserverMacro(String,::igstk::StringEvent,std::string)
}

After defining the headers, the main function implementeitsostarted.

int main(int argc, char * argv[])

{
A pivot calibration reader is created and then a logger &catd.

Logger Type: : Poi nt er | ogger = Logger Type: : New();
LogQut put Type: : Poi nt er | ogQut put = LogQut put Type: : New();

| ogQut put - >Set Strean{ std::cout);
| ogger - >AddLogQut put (| ogQut put);
| ogger->SetPriorityLevel (itk::Logger::DEBUG);

/] Create the pivot calibration reader and attach the | ogger
i gstk::PivotCalibrationReader:: Pointer reader =
i gstk::PivotCalibrationReader:: New();

reader - >Set Logger (| ogger);

The pivot calibration file’'s name is passed through the agntmAfter the filename is desig-
nated, a RequestReadObject function is invoked to parsdataefile. The information in the
reader can be easily dumped by default Print function.

reader - >Request Set Fi | eNane(argv[1]);
r eader - >Request ReadObj ect () ;

reader->Print(std::cout);

To retrieve the whole calibration data information, theviwas defined observer is attached
to the reader class. After the RequestGetCalibration fonds called, the calibration info is
passed by observer's GetCalibration function. The sangie ¢ as follows.

typedef Tool CalibrationTest:: CalibrationCohserver CalibrationCbhserverType;
Cal i brationhserver Type: : Poi nter calibrationCbserver
= CalibrationOoserver Type: : New();

reader - >AddCbser ver (::igstk::CalibrationhdifiedEvent(),calibrationCbserver);
reader - >Request Get Cal i bration();

igstk::PivotCalibration::Pointer calibration = NULL;

15.3. Calibration Data I/O 115

std::cout << "Testing Calibration: ";
if(calibrationCbserver->GotCalibration())
{
calibration = calibrationCohserver->CGetCalibration();
1
el se
{
std::cout << "No calibration!" << std::endl;
return EXIT_FAI LURE;

}

std::cout << "[PASSED|" << std::endl;

To retrieve some specific information, like serial numbed aranufacturer, from the trackers,

another string even and observer is attached to the catibrelass we just get. For each request,
the information content will be passed by observer's Gat§tiunction. Some sample codes

are shown as below:

typedef Tool CalibrationTest::StringCoserver StringCoserverType;
StringQbserver Type: : Pointer stringCbserver = StringQoserver Type:: New();
cal i bration->AddCoserver(::igstk::StringEvent(), stringCbserver);

std::cout << "Testing Date: ";
cal i bration->Request Get Date();
i f(stringChserver->GotString())
{
std::cout << stringCbserver->CGetString().c_str() << std::endl;
std::cout << "[PASSED|" << std::endl;
}

el se
{
std::cout << "No date!" << std::endl;
return EXIT_FAI LURE;

}

std::cout << "Testing Manufacturer: ";

cal i bration->Request Get Tool Manuf act urer () ;
i f(stringCbserver->GotString())
{
std::cout << stringCbserver->CGetString().c_str() << std::endl;
std::cout << "[PASSED|" << std::endl;
}

el se

{

std::cout << "No tool manufacturer!" << std::endl;
return EXIT_FAI LURE;

}

116 Chapter 15. Calibration

std::cout << "Testing Serial Number: ";
cal i bration->Request Get Tool Seri al Nunber () ;
i f(stringChserver->GotString())

{

std::cout << stringCbserver->GetString().c_str() << std::endl;
std::cout << "[PASSED|" << std::endl;

}

el se

{

std::cout << "No tool serial nunber!" << std::endl;
return EXI T_FAI LURE;

}

15.4 Future Extension

Calibration, as well as registration, play an importan¢iiolthe IGSTK toolkit. It serves like a
broker between the tracker device and the physical and ispaee, and its role is to precisely
guide the surgical tools and display them in the correcttjoos.

Currently igstkPivotCalibration, igstkPrincipal Axislitaration and igstkLandmarkUltrasound-
Calibration are implemented in IGSTK'’s main and sandboxsépries. These classes works
with surgical tracker tools and a tracked ultrasound problee calibration data I/O classes,
which provide the off-line processing of those calibraticansforms, are another important
part for calibration components. Definitely it covers onlgraall part of the calibration field.
Following IGSTK'’s requirement-driven implementationlstysome other features, such as dis-
tortion calibration for the specific electro-magneticalgcking, can be provided when it is
required by the user.

