
CHAPTER

FIFTEEN

Calibration

In the image guided surgery, a surgeon uses tracked tools fornavigation or intervention. A
general transform procedure called calibration is required to align the output of the tracking
device to the specific operation points on the tool, such as the tip of a surgical needle or the end
of its handle. For surgeons, these specific operation pointsare more important and intuitive than
the positions of the trackers which are often embedded in themiddle or at the hind of the tool.

Generally speaking, calibration refers to the process of setting the magnitude of the output (or
response) of a measuring instrument to the magnitude of the input property or attribute within
a specified range of accuracy and precision1. When calibrating the tracker, those inputs are the
positions and the orientation reported from the tracking device, and the outputs are the positions
of the specific operation points. When calibrating both the tracker and an imaging device, such
as an ultrasound probe, the inputs are the positions of the probe tracker and the image coordinate
in the ultrasound imaging, and the outputs are the 3D coordinates of those image pixels in the
global world coordinate system. Hence, in most cases, the calibration procedure produces the
transform between the trackers and specific positions.

In the IGSTK calibration package, several calibration classes are currently provided in the
main repository and sanbox, including igstkPivotCalibration, igstkPrincipalAxisCalibration and
igstkLandmarkUltrasoundCalibration. Those calibrationclasses work closely with the tracker
component to provide a safe and accurate environment for theimage-guided surgical proce-
dures. Some specialized features, such as the essential distortion calibration for the electro-
magnetically tracking device, will also be provided following the requirement process of IGSTK
framework.

This chapter will firstly describe the rationale and design patterns for the existing calibration
components. Next it will introduce the calibration data format used and its I/O classes in the
sample application. Finally, it will discuss the future extension of the calibration package.

1 http://en.wikipedia.org/wiki/Calibration

100 Chapter 15. Calibration

15.1 Pivot Calibration

15.1.1 Introduction

The reported positions from both optical and electro-magnetic trackers are generally at fixed
points on their sensors. For example, in the AURORA trackingsystem, the reported position
for a single sensor is at the center of the sensor coil that is embedded in the surgical tool. When
multiple sensors are used, the reported position is determined by the configuration SROM file
that is stored in the tools. Generally, this position is a specific point that is rigidly related to the
tracked tool.

For a tracked needle, its tip and the end of its handle are important for the surgeon. Those points
provide an intuitive means to visualize and locate the tool’s body. In an image-guided surgery
application, a point at the tip of the tool is always used to locate the spatial position of landmark
points, such as skin fiducials or the internal bifurcation positions of the vessels. Additionally,
for the navigation and validation, the tip of the tracked needle or the guide-wire indicates the
surgeon’s point of focus. Thus, a tracked tool can also serveas a ’locator’ or a ’pointer’. The
transform between the internal sensor or marker’s positions to those specific operation points is
accomplished by a procedure called pivot calibration.

Most tracking device manufacturers provide specific software to handle this pivot calibration;
for example, Northern Digital Inc. provides ’6D Architecture Aurora’ and ’Toolviewer’ for
this purpose. This kind of software establishes communication, tracks the tools, visualizes
the positions, and calculates the pivot calibration transform. The pivot calibration result is
calculated before the experiment or the procedure, then used by the application for each specific
tool. However, for the on-site pivot calibration, a generalpurpose class gives the developer more
flexibility.

In a typical pivot procedure like the one shown in Figure15.1 2, the tip of the instrument is
placed in a divot (a series of small holes) and the instrumentis rotated back and forth (it pivots)
while tracking data is collected with enough sample input, the transformation from the tracked
sensor’s point to the pivot point is calculated, along with the calibration error represented as a
root mean square error.

15.1.2 Principle

The information from the tracker consists of the position and the orientation. Some systems
also provide the measurement error at that position. Related with the original point, the position
is located by a translation vector and a quaternion that represents the rotation from the default
principal axis (mostly along the z-axis from the manufacturer settings). Depending on the sensor
or sensors, the reported tracker information may have three, five, or six degrees of freedom
(DOF). The first three degrees are represented by the translation, and the others are determined
by the quaternion. The transformation from the original point to the tool tip in the tracking
coordinate system is represented by:

2 NDI 6D Architecture Aurora

15.1. Pivot Calibration 101

Figure 15.1:Pivot Calibration Routine.

[

R T
0 1

]

·

o f f setx
o f f sety
o f f setz

1

=

r00 r01 r02 tx
r10 r11 r12 ty
r20 r21 r22 tz
0 0 0 1

·

o f f setx
o f f sety
o f f setz

1

=

x0

y0

z0

1

(15.1)

In this equation,R is the rotation matrix,T is the translation vector and(x0,y0,z0) is the pivot
position. In most pivoting cases, the pivot position is the tip of the tool. Typically, we record
several hundred samples while pivoting the tools. Equation15.1can be re-written as follows
where the constraints of offset and(x0,y0,z0) are arranged as:

r00 ·o f f setx + r01 ·o f f sety + r02 ·o f f setz−1 ·x0+0 ·y0+0 ·z0 = −tx
r10 ·o f f setx + r11 ·o f f sety + r12 ·o f f setz+0 ·x0−1 ·y0+0 ·z0 = −ty
r20 ·o f f setx + r21 ·o f f sety + r22 ·o f f setz+0 ·x0+0 ·y0−1 ·z0 = −tz

(15.2)

With several input samples, those equations can then be accumulated as:

M ·

o f f setx
o f f sety
o f f setz

x0

y0

z0

= N (15.3)

SinceM is not a square matrix, the unknowns are solved using the singular value decomposition
(SVD) or Moore-Penrose inverse:

102 Chapter 15. Calibration

IdleState

SampleAddState

SampleInput ResetCalibrationInput

CalibrationCalculatedState

CalculateCalibrationInput CalibrationZCalculatedState

CalculateCalibrationZInput ResetCalibrationInput

SampleInput

CalculateCalibrationZInput

ResetCalibrationInput

SampleInput

CalculateCalibrationInput

Figure 15.2:State Diagram of the igstkPivotCalibration class.

o f f setx
o f f sety
o f f setz

x0

y0

z0

= (MT ·M)−1 ·MT ·N (15.4)

Additionally, the root mean square error is computed as:

RMS=
√

|M · [o f f setx o f f sety o f f setz x0 y0 z0]T −N|2/num (15.5)

wherenum is the number of samples. Note that in the pivot calibration procedure, the final
transform only contains only a translation factor and no rotation factor.

When calculating the calibration only along the Z-axis onlyfor a cylinder-like track tools, some-
times users may only want to get the calibration offset alongthe Z-axis. In this condition, the
o f f setx, o f f sety variables are restricted to 0 and the computation formulas are slightly changed.

15.1.3 State Machine Diagram

Figure15.2 is a state machine diagram of theigstk::PivotCalibration class. There are
four states inside this class: initial ’Idle’ state, ’SampleAdd’ state, ’CalibrationCalculated’ state
and ’CalibrationZCalculated’ state. The ’Idle’ state is the initial state for all IGSTK classes.
When the position samples from pivoting the tracker are input into the class, the internal state
will be invoked to the ’SampleAdd’ state. As described in theprevious section, there are two
ways to calculate the calibration matrix, either in the fulltranslation mode or in the Z-axis
only mode. The final stages are the ’CalibrationCalculated’and CalibrationZCalculated’ states
respectively. Only in these two states can the PivotCalibration class return a valid calibration
transform.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PivotCalibration.html

15.1. Pivot Calibration 103

15.1.4 Component Interface

The core functions of the igstkPivotCalibration class include:

1. Input the samples (translation and quaternion) from the pivoting trackers;

- igstkPivotCalibration::RequestAddSample();

2. Calculate the calibration transform;

- igstkPivotCalibration::RequestCalculateCalibration();

- igstkPivotCalibration::RequestCalculateCalibrationZ();

3. Return the final calibration transform and pivot position;

- igstkPivotCalibration::GetValidCalibration();

- igstkPivotCalibration::GetCalibrationTransform();

- igstkPivotCalibration::GetPivotPosition();

4. Calculate the root mean square error to evaluate whether afeasible calibration transform
has been computed;

- igstkPivotCalibration::GetRootMeanSquareError();

5. Provide the convenient function to retrieve the input sample;

- igstkPivotCalibration::GetNumberOfSamples();

- igstkPivotCalibration::RequestGetInputSample();

6. Provide the convenient function to simulate the pivot position for any input translation
and quaternion from the calculated calibration transform;

- igstkPivotCalibration::RequestSimulatePivotPosition();

15.1.5 Example

The source code for this section can be found in the file
Examples/PivotCalibration/PivotCalibration1.cxx.

This example illustrates how to use IGSTK’s pivot calibration class to determine a calibration
matrix for the tracker tools.

To use the pivot calibration component, the header file forigstk::PivotCalibration should
be added.

#include "igstkPivotCalibration.h"

After defining the headers, the main function implementation is started.

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PivotCalibration.html

104 Chapter 15. Calibration

int main(int argc, char * argv[])
{

All the necessary data types in the pivot calibration are defined. VersorType and VectorType
are used to represent the quaternion and translation inputsfrom the tracker; PointType is used
to represent the position coordinate of the specific point; and ErrorType is used to represent the
root mean square error.

typedef igstk::PivotCalibration PivotCalibrationType;
typedef PivotCalibrationType::VersorType VersorType;
typedef PivotCalibrationType::VectorType VectorType;
typedef PivotCalibrationType::PointType PointType;
typedef PivotCalibrationType::ErrorType ErrorType;
typedef itk::Logger LoggerType;
typedef itk::StdStreamLogOutput LogOutputType;

At the beginning, a pivot calibration class is initialized as follows:

PivotCalibrationType::Pointer pivot = PivotCalibrationType::New();

A logger is then created for logging the process of calibration computation, and then attached
to the pivot calibration class

LoggerType::Pointer logger = LoggerType::New();
LogOutputType::Pointer logOutput = LogOutputType::New();

logOutput->SetStream(std::cout);
logger->AddLogOutput(logOutput);
logger->SetPriorityLevel(itk::Logger::DEBUG);

pivot->SetLogger(logger);

To use the pivot calibration class, some input samples from the tracker should be provide. Those
samples come directly from tracker tools. In our example, those samples are read from the
record data file in the IGSTK data directory.

input.open(argv[1]);

if (input.is_open() == 1)
{
std::cout << "PivotCalibration data open sucessully!" << std::endl;
}

else
{
std::cout << "PivotCalibration data open error!" << std::endl;

return EXIT_FAILURE;
}

15.1. Pivot Calibration 105

Before the computation, it is better to reset the calibration class to to remove all necessary
information which may come from the previous codes.

pivot->RequestReset();

Then, the sample frame is read from the data file and input to calibration class

while (!input.eof())
{
double vx;
double vy;
double vz;
double vw;

input >> frame >> temp >> time;
input >> pos[0] >> pos[1] >> pos[2];
input >> vw >> vx >> vy >> vz;

versor.Set(vx, vy, vz, vw);
pivot->RequestAddSample(versor, pos);
}

After this, a simple request will invole the class to computethe calibration transform.

pivot->RequestCalculateCalibration();

Before the final calibration transform is retrieved, the user should check the tag to see whether
a valid calibration has been computed. The final calibrationresult is stored in the translation
factor in the transform matrix. The pivot position is also retrievable. The sample code is as
follows:

if (!pivot->GetValidPivotCalibration())
{
std::cout << "No valid calibration!" << std::endl;

return EXIT_FAILURE;
}

else
{

// Get the calibration transformation
VectorType translation = pivot->GetCalibrationTransform().GetTranslation();

// Get the pivot focus position
PointType position = pivot->GetPivotPosition();

106 Chapter 15. Calibration

// Get the calibration RMS error
ErrorType error = pivot->GetRootMeanSquareError();

// Dump the calibration class information
std::cout << "PivotCalibration: " << std::endl;
std::cout << "NumberOfSamples: " << pivot->GetNumberOfSamples()

<< std::endl;
std::cout << "Translation: " << translation << std::endl;
std::cout << "Pivot Position: " << position << std::endl;
std::cout << "Calibration RMS: " << error << std::endl;

}

For only computing the calibration along Z-axis, another function is used instead:

pivot->RequestCalculateCalibrationZ();

15.2 Principal Axis Calibration

15.2.1 Introduction

The pivot calibration provides only the translation information of the tracked tool and thus is
based on the assumption that the geometry coordinate and thedefault tracking coordinate are the
same. In most cases, the principal axis is along the Z-axis. If the principal axis of the tracked
tool is not well aligned with the geometry representation, arotation transform is required to
work together with the pivot calibration routine to construct the full transform matrix. Since
IGSTK works closely with ITK, and the transform is based on the itk::Vector and itk::Versor
classes, the itk::Versor can be used to represent the rotation directly. For example, if the tracked
tool’s principal axis is along the Z-axis, but the spatial geometry object is along the Y-axis, an
itk::Versor::SetRotationAroundX() function solves the problem. This approach works for these
specific rotations, but for an arbitrary rotation between two unspecific directions it is hard to
use a combination of rotations around the X, Y or Z-axes to produce the exact result. In this
case, a general purpose igstkPrincipalAxisCalibration class provides an intuitive means to set
the initial and desired orientations (tracker tool’s principal axis and spatial object’s principal
axis) and to return the rotation between them.

For cylindrical tracker tools, the spatial principal axis runs mostly along the cylinder geometry
axis. In some different configurations, this alignment may change. For example, the ITK spatial
object’s default axis is along the Y-axis, but the IGSTK spatial object’s default axis is along the
Z-axis. For the 5DOF and 6DOF trackers, the default principal axis in the tracking coordinate
system, as defined by most hardware manufacturers, is along the Z-axis. Note that this default
principal axis in the tracking coordinate system often is not along the tracker tool’s geometry
principal axis. A combination tracker tool is shown in Figures 15.3and 15.43. For the tracker

3 Traxtal Inc.

15.2. Principal Axis Calibration 107

handle, the optical markers are arranged along the handle and the tracking coordinate system’s
principal axis is well aligned with the spatial geometry shape. But for the tracker probe tip, the
specially designed curves make them different. In an image-guided surgery application, these
probe tips are of greater concern to the surgeon, for they arereal operational parts and will touch
the patient. When the tracker probe tip and the handle are attached together, the principal axis in
the tracking coordinate system is different than the operational part’s principal axis. For those
tracker tools, an igstkPrincipalAxisCalibration class provides an intuitive means to calculate the
rotation matrix.

Figure 15.3: Tracker Handle Figure 15.4: Tracker Probe Tip

15.2.2 Principle

The purpose of computing the principal axis calibration is to find the rotation between two
defined orientations. Our method is based on the rotation matrix multiplication. In IGSTK, the
rotation factor is stored in the quaternion format, and the convert between the quaternion and
the rotation matrix is unified. When a point is rotated, in themathematically representation, the
vector is multiplied by a rotation matrix. So, the difference between two orientations can be
calculated by the divide operation of the two matrices, as follows:

M = Mori1 ·M
−1
ori2 (15.6)

Mori1 is the rotation matrix from the desired orientation, andMori2 is the rotation matrix from
the initial orientation.

The igstkPrincipalAxisCalibration class provides an intuitive means to set the orientation, which
is defined by the principal axis and the normal axis of the tool. The principal axis is generally the
major axis along the cylindrical tools that are very popularin clinical procedures. The normal
vector defines the view-up direction of the system coordinate. Those two parameters are easy
to measure by the geometry shape design profile of the tools. The rotation matrix can be built
from the principal axis and normal vector using the following equation:

Mori =

px py pz

nx ny nz

lx ly lz

 (15.7)

108 Chapter 15. Calibration

IdleState

InitialOrientationSetState

InitialOrientationInput

DesiredOrientationSetState

DesiredOrientationInputResetCalibrationInput

OrientationAllSetState

DesiredOrientationInput

ResetCalibrationInput

InitialOrientationInput

ResetCalibrationInput

RotationCalculatedState

CalculateRotationInput

ResetCalibrationInput

Figure 15.5:State Diagram of the PrincipalAxisCalibration class.

where(px, py, pz) is the normalized principal axis vector,(nx,ny,nz) is the normalized orthog-
onal view-up vector, and(lx, ly, lz) is the vector along the third direction which is made by the
cross production of the first two vectors.

15.2.3 State Machine Diagram

Figure15.5illustrates the State Machine of theigstk::PrincipalAxisCalibration class.
There are five states inside this class: ’Idle,’ ’InitialOrientationSet,’ ’DesiredOrientationSet,’
’OrientationAllSet,’ and ’RotationCalculated.’ ’Idle’ is the initial state for all IGSTK classes.
Subsequently, a class’s state will be ’InitialOrientationSet,’ ’DesiredOrientationSet,’ or ’Orien-
tationAllSet,’ depending on whether the initial or desiredorientations of the tracker are put into
the class. Only when a class has reached the ’OrientationAllSet’ state will a request to calculate
the calibration function bring the class into the final ’RotationCalculated’ state.

15.2.4 Component Interface

From the description, the core functions of the igstkPrincipalAxisCalibration class include:

1. Set the initial principal axis and view-up normal;

- igstkPrincipalAxisCalibration::RequestSetInitialOrientation();

2. Set the desired principal axis and view-up normal;

- igstkPrincipalAxisCalibration::RequestSetDesiredOrientation();

3. Automatically adjust the plane normal to make it perpendicular with the principal axis;

4. Calculate the rotation matrix from those two orientations;

- igstkPrincipalAxisCalibration::RequestCalculateRotation();

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PrincipalAxisCalibration.html

15.2. Principal Axis Calibration 109

15.2.5 Example

The source code for this section can be found in the file
Examples/PrincipalAxisCalibration/PrincipalAxisCalibration1.cxx.

This example illustrates how to use IGSTK’s princiapl axis calibration class to determine the
rotation matrix for the tracker tools.

To use the principal axis calibration component, the headerfile for
igstk::PrincipalAxisCalibration should be added.

#include "igstkPrincipalAxisCalibration.h"

After defining the headers, the main function implementation is started.

int main(int argc, char * argv[])
{

All the necessary data types in the principal axis calibration are defined. VectorType and Covari-
antVectorType are used to represent the vectors along the principal axis and the plane normal.

typedef igstk::PrincipalAxisCalibration PrincipalAxisCalibrationType;

typedef PrincipalAxisCalibrationType::VectorType VectorType;
typedef PrincipalAxisCalibrationType::CovariantVectorType CovariantVectorType;
typedef itk::Logger LoggerType;
typedef itk::StdStreamLogOutput LogOutputType;

At the beginning, a principal axis calibration class is initialized as follows:

PrincipalAxisCalibrationType::Pointer principal
= PrincipalAxisCalibrationType::New();

A logger is then created for logging the process of calibration computation, and then attached
to the principal axis calibration class

LoggerType::Pointer logger = LoggerType::New();
LogOutputType::Pointer logOutput = LogOutputType::New();

logOutput->SetStream(std::cout);
logger->AddLogOutput(logOutput);
logger->SetPriorityLevel(itk::Logger::DEBUG);

principal->SetLogger(logger);

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PrincipalAxisCalibration.html

110 Chapter 15. Calibration

Before the computation, it is better to reset the calibration class to to remove all necessary
information which may come from the previous codes.

principal->RequestReset();

Some parameters, such as axis and normal, are defined to storethe input information to deter-
mine the initial and desired orientations

VectorType axis;
CovariantVectorType normal;

An initial orientation is given as the default one for the tracker tools

axis[0] = 0.0;
axis[1] = 1.0;
axis[2] = 0.0;
normal[0] = 0.0;
normal[1] = 0.0;
normal[2] = 1.0;
principal->RequestSetInitialOrientation(axis, normal);

A desired orientation of the tracker tools are also specified

axis[0] = 0.0;
axis[1] = 0.0;
axis[2] = 1.0;
normal[0] = 0.0;
normal[1] = 1.0;
normal[2] = 0.3;
principal->RequestSetDesiredOrientation(axis, normal);

Then a RequestCalculateRotation function is invoked to compute the final results

principal->RequestCalculateRotation();

Before the final calibration transform is retrieved, the user should check the tag to see whether
a valid calibration has been computed. The sample code is as follows:

if (!principal->GetValidRotation())
{
std::cout << "No valid calibration!" << std::endl;

return EXIT_FAILURE;
}

15.3. Calibration Data I/O 111

else
{
std::cout << "Initial Principal Axis:"

<< principal->GetInitialPrincipalAxis() << std::endl;
std::cout << "Initial Plane Normal:"

<< principal->GetInitialPlaneNormal() << std::endl;
std::cout << "Desired Principal Axis:"

<< principal->GetDesiredPrincipalAxis() << std::endl;
std::cout << "Desired Plane Normal:"

<< principal->GetDesiredPlaneNormal() << std::endl;
std::cout << "Calibration Transform:"

<< principal->GetCalibrationTransform() << std::endl;

principal->Print(std::cout);

}

15.3 Calibration Data I/O

15.3.1 Data Format

IGSTK needs a common file format for storing tool calibrationtransformations. Because the
tools must be calibrated before the surgery, it is necessaryto verify that the correct calibration
file is applied to the correct tool.

The tool calibration file must contain the following information:

1. The date and time that the calibration was performed (in DICOM date/time format:
YYYYMMDD HHMMSS.SSSS);

2. Information about the method and the equipment used to calibrate the tool;

3. Identification information for the tool, including the manufacturer, part number, and serial
number for the tool;

4. The transform type (which will be limited to rigid quaternion transforms for now);

5. The transform parameters;

6. A description of the error associated with the calibratedtransform.

A sample pre-computed calibration file is like:

<?xml version=”1.0”?>

<IGSTKFile type=”ToolCalibration” version=”0.1”>

112 Chapter 15. Calibration

<Creation date=”20050824” time=”070907.0705” method=”PivotCalibration”
/>

<Tool type=”Pointer” manufacturer=”Traxtal” partNumber=”023-X” serialNum-
ber=”200501268” />

<Transform type=”Rigid3D”>

<ParameterNames>

translation x translation y translation z

quaternion x quaternion y quaternion z quaternionw

</ParameterNames>

<ParameterValues>

5.0 2.0 3.0

9.7467943448089631 -0.20519567041703082 0.9233805168766388
0.30779350562554625

</ParameterValues>

<ErrorParameterNames>

rms

</ErrorParameterNames>

<ErrorParameterValues>

0.187876234

</ErrorParameterValues>

</Transform>

<IGSTKFileCRC32>

4f6a3b2d

</IGSTKFileCRC32>

</IGSTKFile>

TheCRC32 is a 32-bitCRCthat can be checked to validate the integrity of the data. TheCRC
is calculated from the start of the<IGSTKFile> tag to the end of the</IGSTKFile> tag, not
for the whole file. A properDTD is specified for the above XML file. The following error
parameters could be defined:

1. rms: the root-mean-square error for the translation (Fiducical Registration Error for land-
mark registration)

2. centroid x, y, z: the landmark centroid (or the center of rotation that was used for
image registration)

3. Additional parameters to express rotational error

15.3. Calibration Data I/O 113

IdleState

ObjectFileNameReadState

ObjectFileNameValidInput

ObjectAttemptingReadState

ReadObjectRequestInput

ObjectReadingErrorInput

ObjectReadState

ObjectReadingSuccessInput

ObjectFileNameIsEmptyInput ObjectFileNameIsDirectoryInput ObjectFileNameDoesNotExistInput

ObjectFileNameValidInput

Figure 15.6:State Diagram of the PivotCalibrationReader class.

As the calibration data format is to handle all calibration information and is still improving, it
is better to check the online update of the current calibration file format4.

15.3.2 Data Reader

For the convenience of reading/writing the calibration data, IGSTK also provides some utility
classes to handle the input and output of calibration data. Figure 15.6 illustrates the State
Machine of theigstk::PivotCalibrationReader class. This class provides the function to
input the calibration from the pivoting routine.

15.3.3 Example

The source code for this section can be found in the file
Examples/PivotCalibrationReader/PivotCalibrationReader1.cxx.

This example illustrates how to use IGSTK’s pivot calibration reader class to read the calibration
matrix from an offline calibration file.

To use the pivot calibration reader component, the header file for
igstk::PivotCalibrationReader should be added.

#include "igstkPivotCalibrationReader.h"

At the very beginning of the program, two kinds of event and observers are defined to track
the information from the reader. The first event is igstk::CalibrationModifiedEvent, which is to
retrieve the calibration class from the reader. The second one is igstk::StringEvent, which is to
retrieve some string-like information from the general calibration class.

namespace ToolCalibrationTest
{
igstkObserverMacro(Calibration,::igstk::CalibrationModifiedEvent,

4 http://public.kitware.com/IGSTKWIKI/index.php/Calibration Data

http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PivotCalibrationReader.html
http://public.kitware.com/IGSTK/NightlyDoc/classigstk_1_1PivotCalibrationReader.html

114 Chapter 15. Calibration

::igstk::PivotCalibration::Pointer)
igstkObserverMacro(String,::igstk::StringEvent,std::string)
}

After defining the headers, the main function implementation is started.

int main(int argc, char * argv[])
{

A pivot calibration reader is created and then a logger is attached.

LoggerType::Pointer logger = LoggerType::New();
LogOutputType::Pointer logOutput = LogOutputType::New();

logOutput->SetStream(std::cout);
logger->AddLogOutput(logOutput);
logger->SetPriorityLevel(itk::Logger::DEBUG);

// Create the pivot calibration reader and attach the logger
igstk::PivotCalibrationReader::Pointer reader =

igstk::PivotCalibrationReader::New();

reader->SetLogger(logger);

The pivot calibration file’s name is passed through the argument. After the filename is desig-
nated, a RequestReadObject function is invoked to parse thedata file. The information in the
reader can be easily dumped by default Print function.

reader->RequestSetFileName(argv[1]);
reader->RequestReadObject();

reader->Print(std::cout);

To retrieve the whole calibration data information, the previous defined observer is attached
to the reader class. After the RequestGetCalibration function is called, the calibration info is
passed by observer’s GetCalibration function. The sample code is as follows.

typedef ToolCalibrationTest::CalibrationObserver CalibrationObserverType;
CalibrationObserverType::Pointer calibrationObserver

= CalibrationObserverType::New();

reader->AddObserver(::igstk::CalibrationModifiedEvent(),calibrationObserver);
reader->RequestGetCalibration();

igstk::PivotCalibration::Pointer calibration = NULL;

15.3. Calibration Data I/O 115

std::cout << "Testing Calibration: ";
if(calibrationObserver->GotCalibration())
{
calibration = calibrationObserver->GetCalibration();
}

else
{
std::cout << "No calibration!" << std::endl;
return EXIT_FAILURE;
}

std::cout << "[PASSED]" << std::endl;

To retrieve some specific information, like serial number and manufacturer, from the trackers,
another string even and observer is attached to the calibration class we just get. For each request,
the information content will be passed by observer’s GetString function. Some sample codes
are shown as below:

typedef ToolCalibrationTest::StringObserver StringObserverType;
StringObserverType::Pointer stringObserver = StringObserverType::New();
calibration->AddObserver(::igstk::StringEvent(), stringObserver);

std::cout << "Testing Date: ";
calibration->RequestGetDate();
if(stringObserver->GotString())
{
std::cout << stringObserver->GetString().c_str() << std::endl;
std::cout << "[PASSED]" << std::endl;
}

else
{
std::cout << "No date!" << std::endl;
return EXIT_FAILURE;
}

std::cout << "Testing Manufacturer: ";
calibration->RequestGetToolManufacturer();
if(stringObserver->GotString())
{
std::cout << stringObserver->GetString().c_str() << std::endl;
std::cout << "[PASSED]" << std::endl;
}

else
{
std::cout << "No tool manufacturer!" << std::endl;
return EXIT_FAILURE;
}

116 Chapter 15. Calibration

std::cout << "Testing Serial Number: ";
calibration->RequestGetToolSerialNumber();
if(stringObserver->GotString())
{
std::cout << stringObserver->GetString().c_str() << std::endl;
std::cout << "[PASSED]" << std::endl;
}

else
{
std::cout << "No tool serial number!" << std::endl;
return EXIT_FAILURE;
}

15.4 Future Extension

Calibration, as well as registration, play an important role in the IGSTK toolkit. It serves like a
broker between the tracker device and the physical and imagespace, and its role is to precisely
guide the surgical tools and display them in the correct positions.

Currently igstkPivotCalibration, igstkPrincipalAxisCalibration and igstkLandmarkUltrasound-
Calibration are implemented in IGSTK’s main and sandbox repositories. These classes works
with surgical tracker tools and a tracked ultrasound probe.The calibration data I/O classes,
which provide the off-line processing of those calibrationtransforms, are another important
part for calibration components. Definitely it covers only asmall part of the calibration field.
Following IGSTK’s requirement-driven implementation style, some other features, such as dis-
tortion calibration for the specific electro-magneticallytracking, can be provided when it is
required by the user.

