IGSTK: An Open Source Platform for Image-Guided Surgical Application Development

Kevin Gary1, Brian Blake2, Luis Ibanez3, Rick Avila3, David Gobbi4, Stephen Aylward5, Julien Jomier5, Patrick Cheng6, Mwaffaq Otoom1, and Kevin Cleary6

1 Division of Computing Studies, Arizona State University, Mesa, Arizona, 85212, USA
kgary@asu.edu
2 Department of Computer Science, Georgetown University, Washington, DC, 20007, USA
blakeb@cs.georgetown.edu
3 Kitware Inc., Clifton Park, NY, 12065, USA
rick.avila@kitware.com, luis.ibanez@kitware.com
4 Atamai Inc., London, Ontario, N6B 2R4, Canada
dgobbi@atamai.com
5 Computer-Aided Diagnosis and Display Laboratory, University of North Carolina, Chapel Hill, NC, 27599, USA
aylward@unc.edu, jjomier@cs.unc.edu,
6 Imaging Science and Information Systems (ISIS) Center, Department of Radiology, Georgetown University Medical Center, Washington, DC, 20007, USA

hkim@isis.imac.georgetown.edu, cleary@georgetown.edu

The basic concept of image-guided surgery
 is to provide the physician with a real-time update of the anatomy located in the region of a surgical instrument. This capability is provided by tracking the location of the instrument and the patient using devices known as trackers. Tracking then allows display of the instrument location on a pre-operative medical image showing the anatomy of interest. This display can help guide the physician to the precise anatomical target and also provides the physician with a type of “x-ray vision” in that the physician can see what lies beneath a surgical instrument before starting the procedure
.

Image-guided surgical procedures typically mean substantially less trauma for the patient. Image guidance was originally developed for neurosurgical applications as navigation in the brain requires great precision (Bucholz 1998). This technology allows the physician to use pre-operative computed tomography (CT) or magnetic resonance imaging (MRI) scans to guide minimally invasive procedures. Image guidance was then extended to spinal and orthopedic applications, such as pedicle screw placement (Foley and Smith 1996). Commercial image-guided surgery systems are now available for brain, spine, and ENT applications.

A typical image-guided system is a complex merger of three major components: 1) a control computer; 2) software for image processing, control, and the user interface; and 3) a tracker for localizing instruments and the patient in three-dimensional space. Figure 1 shows a typical commercial computer-aided surgery system, the Stealthstation Treon™ from Medtronic Sofamor Danek. On the left hand side is the optical localizer, and on the right hand side is the control computer and display.

[image: image1.jpg]

Figure 1: Typical image-guided surgery system

(courtesy of Medtronic Surgical Navigation Technologies)

The following is a typical sequence of steps in using an image-guided surgery system:

1. A pre-operative CT or MRI scan is obtained – fiducials may be placed on the anatomy before this scan for later use in registration during the procedure.

2. The CT or MRI images are imported into the computer – DICOM
 is the most common format used, although many vendors support proprietary formats as well.

3. A reference target is attached to the anatomy to compensate for any inadvertent motion of the camera or patient.

4. Registration – this procedure maps the image data set to physical locations on the patient’s anatomy.

5. The system can now track surgical instruments, including probes or pointers, and display the anatomy beneath these instruments. A typical four quadrant view (axial, sagittal, coronal, and 3D) is shown in Figure 2.

6. Multiplanar reconstructions (i.e. oblique reformats) can also be provided at any angle to help carry out the procedure.

[image: image2]
Figure 2: Typical four quadrant display (axial, saggital, coronal, and 3D)

(courtesy of Medtronic Surgical Navigation Technologies)

An Example Surgical Application: Guidewire Tracking

XXX – use this or the Liver Lesion application (are we still doing that one?)

A Need for Safe Software

The critical component of this system is the software. The software must integrate information from the tracking system, correlate this information with the patient location, and display real-time updates of the underlying anatomy. These components are very tightly coupled, the mathematics involved is complex, and proper synchronization is critical. Traditional development techniques do not provide the necessary tools to adequately validate such software for clinical use.

Image-guided and minimally invasive techniques are continuing to grow in popularity and the international research community is rapidly expanding as well. However, because there is no readily available open-source software for image-guided surgery, many research groups are forced to develop their own software at a substantial cost both in time and effort, and they do not gain the benefit of widespread testing of a single code base. The main contribution of this project to the research community is the development of a high quality software toolkit (IGSTK) suitable for use in new image-guided surgery applications. Given that IGSTK software is intended for use in life-critical applications, it must be carefully designed and managed to ensure ease of use, robustness, and stability.

IGSTK: An Open-Source Alternative for Image-Guided Surgery

The Image-Guided Software Toolkit (IGSTK: pronounced IGstick) is an open source project aimed at developing robust software for medical applications. Most of the effort in developing a new image-guided system is creating the software for implementing the algorithms, controlling the system, and displaying the results. As these systems are intended for patient care in a hospital setting, the robustness of the software is of primary
 importance. These considerations led us to form a multidisciplinary team of software engineers and medical imaging scientists to develop the image-guided software toolkit, IGSTK. The toolkit contains the basic software components to create an image-guided system, including a component for controlling the tracker and a display component for providing image overlay of the patient anatomy and the surgical instruments. Robustness and quality are the highest priority requirements in the development of the toolkit
.

There is a critical need for software packages such as IGSTK in the image-guided surgery community. This field is a very active area in terms of research and the potential for new applications, but one of the barriers to entry is that it can take significant time to develop a new system from scratch. A toolkit that provides a reusable infrastructure of an image-guided system can greatly reduce the time it takes a researcher or small business to develop a new image-guided system. As mentioned earlier, robustness and safety are critical requirements for any image-guided system. Many academic research groups and small businesses in this field of research will not have the infrastructure or appropriately trained individuals to develop software that has been carefully designed and tested. Through our software process, we believe it is possible to create robust software in an open source project. Finally, if a research group develops a new image-guided system that may eventually be commercialized, there are stringent regulatory requirements imposed by the Food and Drug Administration (FDA) that must be met. We are guided by these requirements during our development process and believe IGSTK will provide a strong platform to pursue approval of commercial image-guided applications.

Architecture

IGSTK supports safety-critical surgical applications, where software errors may lead to catastrophic results. Since our aim is that use of IGSTK become widespread, in order to minimize the chance of harm to any patient it is crucial that the components are robust against negligent or accidental misuse. This goal of safety-by-design is achieved by adherence to the following principles:
1. Every component is based on a State Machine abstraction, where each component has been designed to have a finite number of states. The state of a component is explicit and always known, and all states are valid and meaningful.
2. IGSTK uses a component-based layered architecture style. Every component has a minimal set of features. Only features providing necessary functionality are implemented. Strongly-typed interfaces provide enforceable interaction contracts between components.

3. The interface to each component provides validation to ensure that only explicitly defined transitions between states occur, thereby guaranteeing that the component is always left in one of the explicitly defined states.
This section presents the IGSTK architecture by focusing on these principles.

State Machine Pattern

State machines are a fundamental concept in computer programming. A state machine is defined by a set of states, a set of inputs, and a set of directed transitions between states. Transitions in a state machine change the current state of the state machine in response to some stimulus, or input. Specific actions will execute upon entry into a particular state, upon exit from a particular state, or upon transition between two states.A full treatment of the formal semantics of state machines is beyond the scope of this paper. However, it is worth noting that the presence of formal semantics and a wide field of study on state machines influenced our decision to go with this trusted architectural pattern. An example state machine for a Spatial Object instance in IGSTK is shown in Figure XXX.

[image: image3.png]SpatialObjectValidinput

NonTrackedState

TrackingEnabledInput /TrackingDisabledInput

TrackedState rackingDisabledinput

TrackingLostInput \JrackingRestoredInput

TrackedL ostState

Figure 3. State Machine for an IGSTK Spatial Object.

Component-based architectures are naturally described in terms of state machines. Unfortunately, a lack of formality in traditional programming leads topoorly definedstates. Such relaxed programming practices produce programs that behave unpredictably, which is unacceptable for surgical applications. We chose to explicitly define and enforce the states for each component, so that the application can be guaranteed to only ever be in one of the states that was considered during the design process.
State Machine Validation and Testing

The predictability of state machines is a boon for the testing of components: since all code paths are defined by transitions between states, full coverage of all lines of code, and in fact of all possible code paths, is possible by using the interface of a component to drive that component through all possible state transitions.

The use of a state machine architecture also necessitates careful consideration in the definition of the states and inputs of each component. This leads to a clean design with a simple API where all code paths, which are defined in the transitions between states, are predictable and thought-out by the designer. Flexibility and abundance of features are not a goal of IGSTK. Our aim is to provide a minimal but sufficient level of functionality for each of our applications, and to thoroughly validate and test that functionality.

·
·
·
·
·

� Also known as computer-aided surgery in the field.

� DICOM stands for Digital Imaging and Communications in Medicine and has become the standard medical image file format 5. DICOM reference guide. Health Devices, 2001. 30(1-2): p. 5-30.. All major medical vendors of CT and MRI scanners provide a DICOM capability.

�Does anyone have some sample pictures we can get here of these systems in action? I can ask David Simon of Medtronic if we need some but if Stephen or David Gobbi has some let us go with this first. I do not have any from our hospital of us using image-guided systems

�I left this in from Stephen’s earlier edits – I assume it refers to our later material on state machines – may need some more elaboration here

�Wanted to say something even stronger here but overriding seemed a little awkward: KC 11/25

�Of course if we say this we have to back it up later with our process: testing, multiple builds, code coverage, etc. KC 11/25

�From KC: I can see adding some more material here from the MICCAI best practices paper such as a line about the three open source packages the toolkit is based on and how you can download and try the toolkit but maybe that should go later: KC 11/25

�Intro based on Luis’ miccai architecture section intro

�From Wiki

