
IGSTK: A State Machine Architecture for an Open
Source Software Toolkit for Image-Guided Surgery

Applications

Luis Ibanez1, Julien Jomier2, David Gobbi3, Rick Avila1, M. Brian Blake4, Hee-su
Kim6, Kevin Gary5, Stephen Aylward2, and Kevin Cleary6

1 Kitware Inc., Clifton Park, NY, 12065, USA
luis.ibanez@kitware.com, rick.avila@kitware.com

http://www.kitware.com/
2 Computer-Aided Diagnosis and Display Laboratory, University of North Carolina, Chapel

Hill, NC, 27599, USA
jjomier@cs.unc.edu, aylward@unc.edu

3 Atamai Inc., London, Ontario, N6B 2R4, Canada
dgobbi@atamai.com

4 Department of Computer Science, Georgetown University, Washington, DC, 20007, USA
blakeb@cs.georgetown.edu

5 Division of Computing Studies, Arizona State University, Mesa, Arizona 85212, USA
kgary@asu.edu

6 Imaging Science and Information Systems (ISIS) Center, Department of Radiology,
Georgetown University Medical Center, Washington, DC, 20007, USA

cleary@georgetown.edu, hkim@isis.imac.georgetown.edu

Abstract. The Image-Guided Surgery Toolkit (IGSTK) is an Open Source
software project being developed under NIH/NIBIB funding. The toolkit will
provide a common platform for implementing image-guided surgery
applications and for fostering research in the field. The toolkit is based on
several other open source toolkits including ITK, VTK and FLTK. Its
architecture is based on the use of medium size classes, each one of them
containing an explicit State Machine and a minimized API that enforces fault
tolerance by design. This paper describes the architecture and its rationale.

1 Introduction

The image-guided surgery toolkit (IGSTK) is an open source project aimed at
providing robust software for developing image-guided surgery applications. Image-
guided surgery (IGS) involves the use of pre-operative medical images to guide
instruments during minimally invasive procedures.
 IGS systems have been commercially available for about ten years, but the
development of such systems is still an active area of research. This research includes
image analysis method development as well as the exploration of new clinical
applications.

2 Luis Ibanez1, Julien Jomier2, David Gobbi3, Rick Avila1, M. Brian Blake4, Hee-su
Kim6, Kevin Gary5, Stephen Aylward2, and Kevin Cleary6

 Image-guided surgery systems, however, require significant programming time
and expertise to prototype and deploy. In addition, an IGS system must be well-tested
since it will be used in a patient-critical environment. These programming and
validation requirements challenge all forms of IGS systems research.

The IGSTK project addresses the challenges of IGS systems research. The toolkit
contains the basic software components to construct an image-guided system
including a tracker and a default graphical user interface that includes a four-quadrant
view with image overlay. The highest priority in the design of the toolkit has been
robustness and quality. The toolkit is based on the existing open source components,
such as ITK, VTK, and FLTK [8,9,10]. One of the early IGSTK architecture
decisions was to use State Machines for all of the key software components. The state
machines inherently provide fault tolerance and thereby address patient safety.

In this paper, we describe the overall IGSTK software architecture, its state
machine, and other key components. Key components that are available in the current
beta release include the base state machine, spatial objects, tracker objects, and
tracker communications, viewers and logging. Each component is presented, and the
paper concludes with a short example application.

The IGSTK toolkit is Open Source software distributed under a BSD-like license
equivalent to VTK and ITK licenses [11]. The software is developed following the
practices of Agile Programming and therefore is made available from the very early
stages of development. Basic information related to IGSTK can be found at the web
site www.igstk.org and the Wiki pages http://public.kitware.com/IGSTKWIKI/.

Instructions for configuring and building the toolkit are available at
http://public.kitware.com/IGSTKWIKI/index.php/How_to_build_IGSTK. You are
welcome to try the software, review the source code and send your comments to the
IGSTK development team. The toolkit is currently in Beta form and evolving, and a
stable release is anticipated toward the end of the year. Note that this software should
only be use in clinical cases under IRB approval. You are allowed to use IGSTK for
free in academic and commercial applications but it is your responsibility to perform
the tests and validations required by regulatory bodies such as the U.S. Food and
Drug Administration (FDA) [4,5,6,7].

2 Architecture

Contrary to what is commonly found in software toolkits, IGSTK professes a very
Spartan approach to features and functionalities. Given that IGSTK is intended to be
used for developing applications that will run in the surgical room; the nature of such
critical applications imposes very particular restrictions on what is desirable or not in
the toolkit. IGSTK has been designed in such a way that risk of harm to the patient
resulting from misuse of the classes, whether it is by negligence or by accident, is
minimized. In order to achieve this goal of safety-by-design the architecture was
based on the following principles:

1. Requirements are generated by studying the types of surgical applications
where the toolkit may be used in a clinical context.

IGSTK: A State Machine Architecture for an Open Source Software Toolkit for Image-
Guided Surgery Applications 3

2. Every component has a minimal set of features. Only features that are
necessary for providing functionalities requested in the requirements are
implemented.

3. Every component is based on a State Machine abstraction. In this way the
state of the class is always known, and precautions are taken for making sure
that the class is never set in an invalid state, due to oversight or negligence.

The combination of a restrictive API and the use of State Machines makes possible

to implement a high level of software testing and to enforce high quality standards for
code coverage and run-time validation. A restricted API is achieved by creating
middle size components that put together all the elements needed for providing a
specific functionality. In this way, a minimum number of parameters are left free for
the application developers to define, and therefore the opportunities for error are
drastically reduced [3].

Figure 1 presents a UML collaboration diagram of the major IGSTK components

involved in a typical image-guided surgery application.

Figure 1 : Architecture of Typical Image-Guided Surgery Application

The elements on the left are those that will be visible to the clinician performing the
surgical intervention. Those are the View classes representing the abstraction of a
visualization window in the screen of the application. The view classes are a
combination of FLTK and VTK classes that restrict user interaction to a set of safe
and well defined operations. Each viewer is refreshed at a rate that can be specified by
the application developer. The pulses for triggering the refresh of the viewers are
provided by a PulseGenerator class indicated in the upper left corner of the Figure.
View classes display renderings of the surgical scene that are composed of the
minimal number of elements required to provide useful information to the clinician.
The actual physical objects are modeled using SpatialObjects, represented in the
central part of the Figure. They include images of various modalities as well as simple
geometrical shapes such as Cylinders and Ellipsoids. The aspect that is used for

4 Luis Ibanez1, Julien Jomier2, David Gobbi3, Rick Avila1, M. Brian Blake4, Hee-su
Kim6, Kevin Gary5, Stephen Aylward2, and Kevin Cleary6

presenting the SpatialObjects to the surgeon is defined by SpatialObject-
Representation classes. These classes provide the connection between the Views and
the SpatialObject. A representation class defines properties such as color,
transparency and the actual rendering methodology used for presenting the object in
the scene. Some of the objects in the scene are static, while some of them are moving
in space. In the surgical environment, it is critical to track the spatial positions and
orientations of some of the surgical instruments. IGSTK provides support for some of
the trackers that are commonly used in medical applications. This includes optical and
electromagnetic trackers. The role of the tracker class is illustrated in the right side of
the Figure. The Tracker updates the position and orientation of a particular spatial
object; this object may be representing a surgical needle for example.

3 State Machines

State Machines are a fundamental concept in computer programming. They were
introduced by Alan Turing in 1936 [2] as a formalism for supporting his work on
determining whether the execution of an algorithm will ever stop or not. This problem
is also known as the “Entscheidungsproblem problem”. A State Machine is defined by
a set of states, a set of inputs and a set of transitions from one state to another. A
Finite State Machine (FSM) is a state machine where the number of states is finite,
and a Deterministic State Machine (DSM) is one where a given input presented to a
given state will always led to a unique state. In practice all computers are state
machines, unfortunately their possible number of states is so large that they can barely
be considered to be FSMs. An alternative way of looking at this large number of
states is to assume that some of those states are not modeled and then become random
elements on the behavior of the state machine. In this interpretation, the state
machine is a Non-Deterministic State Machine. Transitions in a State Machine result
in actions being taken. Some State Machine paradigms execute the actions when
leaving the old state, while some others do it when entering the new state.

Computer programs, in particular those that are modeled using Object Oriented
programming are naturally described in terms of state machines. Unfortunately, the
lack of formality in traditional programming leads to under-defined state machines,
where the states are poorly defined, and the transitions between states are rarely stated
explicitly. Such relaxed programming practices produce programs that behave
erratically and unpredictably. Those are exactly the kind of programs that are
unacceptable in a critical application such as image-guided surgery. The sake of
reliability and robustness in IGSTK lead the development team to select the State
Machine model on the very early stages of the project. State Machines are an
excellent way of limiting the number of possible behaviors and ensuring that a
program will always be in a valid condition, and that all possible behavior has been
studied in advance by the developer team in order to guarantee repeatability and
deterministic behavior.

IGSTK: A State Machine Architecture for an Open Source Software Toolkit for Image-
Guided Surgery Applications 5

A generic State Machine class is available in the toolkit and provides the abstraction
of the set of states, the set of inputs and the set of transitions. Each IGSTK component
instantiate internally its own state machine and at construction time programs the full
behavior of the State Machine. This organization makes possible to anticipate how the
classes will work when their methods are invoked in any order. It is rare to find object
oriented classes that will behave correctly or at least without run-time failures when
their methods are invoked in random order.

When using State Machines, it is clear very early in the development cycle that API
simplicity is a must for supporting robustness and reliability. In the context of surgical
guidance, we must consider flexibility and abundance of features to be undesirable,
because each one of them brings more opportunities for thing to go wrong during the
surgical intervention. State Machines make possible to exercise full coverage, not
only in the sense of number of lines executed during the testing cycle, but also in the
sense of all possible execution paths of the code, at least at a single-class level.

A number of C++-Language features have been used in order to enforce the safety
and integrity of the State Machine. For example, the methods that actually perform
actions are all declared private and can only be invoked by the State Machine itself.
Encapsulation and enforcement of const-correctness are also used at great lengths in
order to reduce the risks of misusing the code.

4 Components

The following sections describe some of the main components available in the IGSTK
Toolkit. For further details please refer to the online documentation:

http://public.kitware.com/dashboard.php?name=igstk

You will also find useful to look at the design and development discussions

available on the IGSTK Wiki:

http://public.kitware.com/IGSTKWIKI/index.php/Main_Page

4.1 Spatial Objects / Viewers

Spatial Objects are the holders of the geometrical representation of physical objects
that must be presented to the surgeon. The characteristics of SpatialObject are
selected based on their capability for conveying useful information to the clinician.
The IGSTK SpatialObjects are classes that encapsulate ITK Spatial Objects inside a
restricted API subject to the control of a State Machine. In this way we obtain all the
functionality without the risk associated with exposing all the flexibility of the ITK
classes. IGSTK Spatial Objects can be attached to a Tracker object, their
corresponding State Machines make sure that one Spatial Object is associated one-to-

6 Luis Ibanez1, Julien Jomier2, David Gobbi3, Rick Avila1, M. Brian Blake4, Hee-su
Kim6, Kevin Gary5, Stephen Aylward2, and Kevin Cleary6

one to a Tracker, and that once they have been associated, it is no longer possible to
change the position of the object programmatically. This again, ensures safety-by-
design [3].

Viewers are the classes that take care of presenting the renderings of surgical

scenes to the clinician. These are critical since they are in many cases the main source
of information that is presented to the clinician, especially in cases of minimally
invasive surgery such as endovascular intervention and laparoscopy. Viewers are built
using VTK and FLTK classes that combined are encapsulated into a restrictive API
and subject to the control of a State Machine. Viewers limit the number of ways in
which a user can interact with the scene. These interactions are defined considering
that a surgeon may only have access to a touch screen in the surgery room, devoid of
a keyboard or a mouse. In other contexts, an assistant may be manipulating the
software under the verbal instructions given by the surgeon.

4.2 Tracker / Communications

The IGSTK tracking component was adopted from a set of C++ tracker classes
donated to the project by Atamai Inc. [1]. We have reorganized the code to fit our
state machine architecture and to connect seamlessly with the spatial object classes
described in the previous section.

Incorporation of a finite state machine into the tracker component is perhaps one of
the most remarkable aspects of the IGSTK architecture. Since the state machine is a
mirror of the actual states of the physical tracking device, it ensures that only
commands that the device is ready to correctly respond to will be sent to the device.
Furthermore, this safety is provided purely through the design of the state machine
transition table, without the need for if/else error checking throughout the code.
The ultimate goal, as far as code safety is concerned, is for unexpected responses
from the device to occur only in the unlikely event of a hardware device malfunction.

The tracking component consists of a Tracker base class, with specialized subclasses
to support the support the AURORA and POLARIS tracking devices (Northern
Digital Inc., Waterloo, Canada). The Tracker object does not communicate directly
with these devices via the serial port, but instead communicates via a
SerialCommunication object that acts as a proxy between the Tracker object and the
tracking device. The use of this communication proxy serves several purposes:

1. All platform-dependent serial port control code is contained within the
communication object, while the Tracker code is fully platform independent.

2. The communication proxy can be replaced with a “simulator” that replays
previously recorded serial data streams for testing or demo purposes.

3. The communication proxy can be replaced with an object that sends the data
stream to a remote device over a network via TCP/IP.

IGSTK: A State Machine Architecture for an Open Source Software Toolkit for Image-
Guided Surgery Applications 7

Our goal for the immediate future is to extend these classes to support multi-
threading, so that the tracking information can be passed to the display component at
the chosen display refresh rate while, simultaneously, a “safety thread” can run at the
full data rate of the tracking system for the purpose of collision avoidance.

4.3 Logging

Logging is a fundamental functionality for software intended to be used in critical
applications. In the context of image-guided surgery, logging of the events that occur
during an intervention makes possible to retrospectively evaluate the behavior of the
system and verify whether the assumptions made during the design and
implementation phases of the software still hold in practice or not. For example, if it
has been assumed that particular actions of the software would take a small amount of
time, this assumption can be verified after a surgery by simply analyzing the logging
report.

Logging is also an invaluable help for debugging the software during the development
phase. The capability for reporting the state and conditions of particular software
components facilitates to identify, isolate and correct for errors that may have been
introduced during the development phase, or that may even be rooted in design flaws.

The logging capabilities of IGSTK were considered to be so useful that they were
transferred to the Insight Toolkit (ITK). This code transfer is a remarkable example of
how a well defined design followed by careful implementation can result in source
code that is at the same time efficient, robust and maintainable.

The logging functionalities of IGSTK, now in ITK, are provided by the classes:
itkLoggerOutput, itkLogger and itkLoggerManager. A logger acts as a dispatcher that
receives messages from IGSTK objects and redirects those messages to
LoggerOutputs. The typical examples of Logger outputs are a file and the console. A
typical application may contain multiple Loggers. In this way it is possible to have
different levels of detail in the reporting and it is also possible to separate the logging
of critical activities such as optical and electro-magnetic tracking from the logging of
conventional tasks such as timing for reading and writing files. The LoggerManager
class allows controlling the behavior of all the Loggers presented in an application.

The classes involved in Logging present a particular design challenge because they
are required to be more robust than the rest of the components, if they are to be the
ones that report whenever one of the other components fail. They are also required to
run very efficiently because they may be invoked from sections of code that are
executed hundreds of times per second. The policies for defining the level of detail to
be used for logging during a surgical intervention are a matter of open discussion and
should be revisited as technology changes, for example, when faster Trackers become
available.

8 Luis Ibanez1, Julien Jomier2, David Gobbi3, Rick Avila1, M. Brian Blake4, Hee-su
Kim6, Kevin Gary5, Stephen Aylward2, and Kevin Cleary6

5 Example Applications

As set of minimal example applications are available in the source code distribution.
These applications progressively introduce the use of IGSTK components starting
from a simple combination of a viewer, a spatial object and its representation, and
going up to a four quadrant view with geometrical objects and connections to optical
and magnetic trackers. Details on these applications can be found in the IGSTK Wiki
pages http://public.kitware.com/IGSTKWIKI/index.php/Example_Applications.

5 Conclusions

The IGSTK toolkit demonstrates that high standards of quality control can be
achieved on mission-critical applications using Open Source software and modern
programming technologies such as Agile Programming. An Open Source approach
makes possible to subject the source code to the scrutiny of a larger community of
experts and by recovering their feedback it is possible to increase the general quality,
robustness and safety of the code.

Open Source repositories make possible to combine the experiences and efforts of

multiple research teams into a common resource and from it to foster the
advancement of the field since new groups do not have to keep reinventing the wheel.

6 Acknowledgements

This research is supported by the National Institute of Biomedical Imaging and
Bioengineering (NIBIB) at the National Institute of Health (NIH) under grant
R42EB000374 and by U.S. Army grant W81XWH-04-1-0078. The content of this
manuscript does not necessarily reflect the position or policy of the U.S. Government.
The authors would like to thank the IGSTK advisory board for their advice
throughout the project: Will Schroeder of Kitware; Ivo Wolf of the University of
Heidelberg; Peter Kazanzides and Anton DeGuet of Johns Hopkins University; and
Ingmar Bitter, Matt McAuliffe, and Terry Yoo from the NIH.

References

1. Gobbi, D.G., Comeau, R.M., Peters, T.M.: "Ultrasound/MRI overlay with image warping for
neurosurgery." MICCAI 2000, Pittsburg, PA, October 11-13: 106-114, 2000.

2. Turing, A.: "On Computable Numbers, with an application to the Entscheidungsproblem.",
1936.

3. Kohn, L.T., Corrigan, J.M., Donaldson M.S., “To Err is Human: Building a Safer Health
System”, National Academy Press, Washington D.C., 2000.

IGSTK: A State Machine Architecture for an Open Source Software Toolkit for Image-
Guided Surgery Applications 9

4. “Guidance for Industry and FDA Staff: Guidance for the Content of Premarket Submissions
for Software Contained in Medical Devices”, May 11, 2005, FDA Center for Devices and
Radiological Health. http://www.fda.gov/cdrh/ode/guidance/337.html

5. “Off-the-Shelf Software Use in Medical Devices”. September 9th 1999, FDA Center for
Devices and Radiological Health, http://www.fda.gov/cdrh/ode/guidance/585.html

6. “Guidance for Industry: Guidance for the Submission of Premarket Notifications for Medical
Image Management Devices”, July 27, 2000, FDA Center for Devices and Radiological
Health, http://www.fda.gov/cdrh/ode/guidance/416.html

7. “General Principles of Software Validation: Final Guidance for Industry and FDA Staff”,
January 11, 2002, FDA Center for Devices and Radiological Health,
http://www.fda.gov/cdrh/comp/guidance/938.html

8. Ibanez, L., Schroeder, W., “The ITK Software Guide”, ISBN 1-930934-10-6, 2005
http://www.itk.org/ItkSoftwareGuide.pdf

9. Schroeder, W., Martin, K., Lorensen, B., “The Visualization Toolkit, An Object Oriented
Approach to 3D Graphics”, Kitware Inc., 1998.

10. FLTK a cross-platform C++ GUI Toolkit, http://www.fltk.org/documentation.php/doc-
1.1/toc.html

11. Lawrence Rosen “Open Source Licensing: Software Freedom and Intellectual Property
Law”, ISBN: 0131487876, Prentice Hall, 2004.

