
IGSTK: Development Process and Project
Management Best Practices for an Open Source Software

Toolkit for Image-Guided Surgery Applications

Kevin Gary1, M. Brian Blake2, Stephen Aylward3, Julien Jomier3, David Gobbi4,
Hee-su Kim5, Rick Avila6, Luis Ibanez6, and Kevin Cleary5

1 Division of Computing Studies, Arizona State University, Mesa, Arizona, 85212, USA
kgary@asu.edu

2 Department of Computer Science, Georgetown University, Washington, DC, 20007, USA
blakeb@cs.georgetown.edu

3 Computer-Aided Diagnosis and Display Laboratory, University of North Carolina, Chapel
Hill, NC, 27599, USA

aylward@unc.edu, jjomier@cs.unc.edu,
4 Atamai Inc., London, Ontario, N6B 2R4, Canada

dgobbi@atamai.com
5 Imaging Science and Information Systems (ISIS) Center, Department of Radiology,

Georgetown University Medical Center, Washington, DC, 20007, USA
hkim@isis.imac.georgetown.edu, cleary@georgetown.edu

6 Kitware Inc., Clifton Park, NY, 12065, USA
rick.avila@kitware.com, luis.ibanez@kitware.com

Abstract. Open source technologies are increasing in popularity for software
development. Many open source projects rely on skilled development teams
whose members are distributed throughout the world. Often, agile development
methods are employed by these teams, as the focus is on concurrent
development and fast production over requirements management and quality
assurance. The image-guided surgery toolkit (IGSTK) is an open source
development project that relies on the collaboration of a skilled and distributed
development team, yet addresses a domain that demands managing
requirements as well as implementing a high degree of robustness and
addressing safety concerns. Due to this unique cross-section of open source
technology and the surgical domain, the IGSTK team has developed a set of
best practices and requirements techniques to augment commonly applied agile
methods. This paper presents the lessons we have learned as we have engaged
in the software development process.

1 Introduction

The image-guided surgery toolkit (IGSTK) is an open source project aimed at
developing robust software for medical applications. Image-guided surgery involves
the use of pre-operative medical images to provide image overlay and instrument
guidance during procedures. Image-guided surgery systems have been commercially

2 Kevin Gary1, M. Brian Blake2, Stephen Aylward3, Julien Jomier3, David Gobbi4, Hee-su
Kim5, Rick Avila6, Luis Ibanez6, and Kevin Cleary5

available for about ten years now, but this field of research is still active, and
challenges still exist. These systems are software intensive and a lot of work is needed
to develop them. Also, the software must be robust and well-tested since it will be
used in a medical environment.

The IGSTK project was designed to address these issues. The toolkit contains the
basic software components to construct an image-guided system, including a tracker
and a four-quadrant view incorporating image overlay. Robustness and quality have
been the highest priority in the design of the toolkit, which is based on the following
existing opening source components: ITK for segmentation and registration, VTK for
visualization, and FLTK for the user interface.

Managing an open source project with multiple geographically distant developers,
complex application requirements, and a desire to produce a framework for extensible
and reusable architecture components is a tremendous challenge. The IGSTK team
has created its software processes to balance an agile development philosophy with an
integrated requirements elicitation and management approach, and consequently has
arrived at a methodology that is fast and flexible, yet meets the stringent needs of this
application domain. In this paper we present this approach, describing the process
implementation, supporting tools, and focus on requirements.
 The IGSTK toolkit is Open Source software distributed under a BSD-like license
equivalent to VTK and ITK licenses. The software is developed following the
practices of Agile Programming and therefore is made available from the very early
stages of development. Basic information related to IGSTK can be found at the web
site http://www.igstk.org and the Wiki pages http://public.kitware.com/IGSTKWIKI.
Instructions for configuring and building the toolkit are available at
http://public.kitware.com/IGSTKWIKI/index.php/How_to_build_IGSTK. You are
welcome to try the software, review the source code and send your comments to the
IGSTK development team. The software is currently in beta form and evolving, but
we expect a stable release by the end of 2005. Note that this software should only be
use in clinical cases under IRB approval. You are allowed to use IGSTK for free in
commercial applications but it is your responsibility to perform the tests and
validations required by regulatory bodies such as the U.S. Food and Drug
Administration (FDA).

2 Software Development Process

IGSTK development presents interesting challenges from a software development
methodology perspective. These complexities derive from the nature of the
requirements, the makeup of the team, the dependence on pre-existing software
packages, and the need for high quality standards within this domain. We discuss
these complexities in this section and suggest a working set of best practices that
attempt to provide solutions.

The first challenge to IGSTK development derives from the nature of the
requirements, which come in multiple flavors. Application-specific requirements exist
for a set of applications that IGSTK is required to support upon completion. However,
most requirements are framework-level requirements, which are difficult to

IGSTK: Development Process and Project Management Best Practices for an Open Source
Software Toolkit for Image-Guided Surgery Applications 3

completely understand before development itself begins in earnest. Furthermore,
IGSTK aims not only to support the fixed set of applications it is required to support
contractually, but also to serve as a platform for further research and production-
worthy software products. Because of these process requirements, waterfall-style
development methodologies [8] that attempt to define requirements completely before
development begins are not considered suitable. Additionally, Rational Unified
Process oriented use-case driven analysis modeling [7] is only selectively applied, as
we cannot assume that the non-functional requirements derived from the known set of
applications today represent a complete set of such requirements for the future. Given
the complex nature of our requirements process and our application domain, we will
detail this issue in Section 3.

The second challenge to IGSTK development is the makeup of the team, which is
comprised of academic and commercial partners collaborating in a widely distributed
setting. Most if not all of the team members have other demands on their time. These
factors create challenges for setting project deliverables and expectations over
medium- and long-term horizons. Fortunately, most of the development team has
worked with a common set of source code upon which IGSTK is based (VTK and
ITK), and has great familiarity with common tools such as CMake and DART, which
are further discussed below.

The requirements, team composition, and use of pre-existing software suggest that
agile methods [4] should be applied to IGSTK. All team members have significant
exposure to agile methods; some have even developed agile-ready tools that are
employed on IGSTK [9]. However, the fourth challenge to IGSTK development – the
high quality standards demanded the application domain – suggests that some agile
practices need to be reinforced by best practices that address this issue. For example,
FDA guidelines for approval of medical devices require traceability of requirements
through implementation and testing. Agile methods, in general terms, tend to de-
emphasize the value of requirements management processes. Therefore, some means
of managing requirements while remaining open to change is needed. Given that
requirements are also evolving as code is actively developed, code repository
management needs to be in some way synchronized with requirements management.

To address these complexities, IGSTK has adopted an agile approach augmented
by the following set of best practices:

Best Practice #1. Above all, recognize that people are the most important mechanism

available for ensuring high quality software. This practice agrees with the
philosophy espoused by the agile community [4]. The IGSTK team is comprised
of developers with a high degree of training and experience with the application
domain, supporting software, and tools. Their collective judgment is weighted
over a high-level process mandate.

Best Practice #2. Facilitate constant communication. The evolution of a new
framework and of supporting software upon which the framework is layered
(particularly ITK, which is relatively young and still evolving), plus the
distributed nature of the team, has been addressed by facilitating constant
communication. IGSTK members participate in a weekly teleconference and

4 Kevin Gary1, M. Brian Blake2, Stephen Aylward3, Julien Jomier3, David Gobbi4, Hee-su
Kim5, Rick Avila6, Luis Ibanez6, and Kevin Cleary5

meet in person twice per year. IGSTK employs a mailing list and a Wiki for
online collaboration.

Best Practice #3. Produce iterative releases. IGSTK’s external release cycle includes
twice-yearly releases that coincide with IGSTK advisory board meetings.
Internally, six months was considered too long a horizon to manage development,
so releases are broken down into approximately month-long “sprints” called
iterations. At the end of an iteration, the team can stop, assess and review
progress, and determine what code is considered stable enough to move to the
main code repository. For one week at the end of an IGSTK iteration, developers
perform code reviews of all new and modified code, and ensure high code
coverage and passing unit tests across the entire code base.

Best Practice #4. Employ a Sandbox for evolving code. Providing a separate code
line with a different check-in policy allows developers to share code that may not
yet meet more stringent check-in policies on the main code base. Developers
may check-in to the sandbox before corresponding requirements have been
accepted, with a lower level of code coverage for their unit tests, and before the
code has been reviewed by the rest of the team. Exploiting configuration
management approaches even at this early informal sandbox phase helps to
document and track project changes.

Best Practice #5. Emphasize continuous builds and testing. IGSTK uses the open
source DART tool (http://public.kitware.com/Dart/HTML/Index.shtml) to
produce a nightly dashboard of build and unit test results across all supported
platforms. Developers are required to ensure that code coverage stays as close as
possible to 100%, that their source code builds on all supported platforms, and
that all unit tests pass. The dashboard is reviewed during the weekly
teleconference.

Best Practice #6. Support the process with robust tools. Best Practice #5 describes
the use of the DART tool for continuous testing. IGSTK also employs an open
source cross-platform build solution called CMake (http://www.cmake.org/) and
an open source documentation system called Doxygen
(http://www.stack.nl/~dimitri/doxygen/). These tools are augmented with
defined best practices for coding and documentation posted on the Wiki.

Best Practice #7. Emphasize requirements capture and management in lockstep with
code management. As requirements evolve and the code matures, it is necessary
to adopt flexible yet defined processes for managing requirements and code
repositories. The organization and tracking of requirements is a complex process
for a project such as IGSTK, and thus is detailed in Section 3.

Best Practice #8. Allow the process to evolve. Through constant communication,
IGSTK members recognize when the complexities they face can be approached
within the current process framework, when “tweaks” are required, or when
entirely new practices should be adopted. Best Practices #1 and #2 above
(people and communication) are emphasized here, and Best Practice #3 (iterative

IGSTK: Development Process and Project Management Best Practices for an Open Source
Software Toolkit for Image-Guided Surgery Applications 5

development) provides a means to manage not only an evolving software
product, but an evolving software process as well.

We believe that these best practices represent workable techniques for IGSTK and
may work for other development teams facing similar complexities. However, as we
have noted in our last best practice, we also recognize that these practices are
themselves open to change and improvement, and we look forward to working with
the emerging open source communities in such domains to continue developing these
techniques.

3 Requirements Definition and Tracking of Requirements

The development of requirements in IGSTK consists of two phases. The initial phase
is understanding the subject matter areas or taxonomy of all requirements relevant to
the project. Although most of the developers have some familiarity with the medical
domain, it is difficult for them to prioritize the needs of the solution applications
without significant direction from a domain subject matter expert. We have
investigated this initial phase in earlier work [1].

Here, we will describe the second phase of requirements definition: the discovery
and management of requirements at development time. As previously discussed in
Best Practice #7, requirements management and code management are significantly
integrated. Although IGSTK development has not been a pure agile process, our
project does see requirements for development as coming from the “bottom-up”.
Developers introduce new requirements for further capabilities as components are
being developed. The IGSTK project has employed a new collaborative process for
reviewing, implementing, validating, and archiving these requirements, and it is
integrated with application development. This process is illustrated as a UML state
diagram in Fig 1 and discussed next.

The two phases of requirements definition interact as follows.. In the initial
requirements phase, for example, general requirements for tracking devices
(localizers) were discovered. As the components for these initial requirements were
developed, we discovered that additional requirements existed (i.e. perhaps specific
validation requirements). Once a developer identifies new potential requirements
(Conceptualized box in Figure 1), the developer will post a text description (Defined)
on the shared web site (Wiki). At the same time, the initial code that fulfills the
requirements is entered into the sandbox repository. The requirement would then
undergo an iterative review sub-process where the team members would review,
discuss, and potentially modify the requirement. Based on the team’s decision, the
requirements can be rejected/aborted or accepted. Rejected requirements are archived
on the Wiki (Logged) so that they can be reopened later, if necessary. A unique
approach in the IGSTK project is the use of an on-line open source bug tracker (PHP
BugTracker) to store requirements. This approach is particularly effective as defect
reports and resulting actions are also stored in the bug tracker. The accepted
requirements are entered into the bug tracker and marked as “open.” Once the
supporting software is implemented and its functionality is confirmed, the

6 Kevin Gary1, M. Brian Blake2, Stephen Aylward3, Julien Jomier3, David Gobbi4, Hee-su
Kim5, Rick Avila6, Luis Ibanez6, and Kevin Cleary5

requirement is marked as ‘verified.” As the nightly builds takes place, all verified
requirements are automatically extracted into Latex and PDF files, and are archived.
Custom scripts were developed for this purpose.

In Review

Defined Reviewed
Discuss

as
Group

Conceptualized Post to Wiki/
^Code.CheckInSandbox

Modifications
requestedPendingRevise

UnacceptedReject

Accepted Accept

REQ Open for
Implementation

Enter into PHP BugTracker/
^Code.CheckInMainBranch

Abort

Logged

Move to log
area of Wiki/

^Code.RemoveFromSandbox

Reopen

Implemented REQ VerifiedDevelopment

Code Review &
Inspections/
^Code.Run

NightlyDashboard

Nightly Generation as
Latex/PDF Files

Continuous
REQ Archival

REQUIREMENT

Fig. 1. Requirements Management for the IGSTK project as a UML state diagram.

4 Conclusions

The focus on requirements in the IGSTK project is novel, both within the medical
image analysis community and among open source projects employing agile
methodologies in general. Most open source projects originate from developers who
are already intimately familiar with a particular application domain, and IGSTK is no
different. However, there are important distinctions. The domain addressed by
IGSTK mandates that requirements be documented, tracked as they are changed, and
organized according to the type of information captured. IGSTK’s goal is to serve as
a framework for a pre-existing set of applications, as well as for applications
anticipated by the community. Finally, because IGSTK addresses the surgical
domain, its primary goal is to ensure program safety and functional quality. Such
requirements and quality standards are unusual in open source collaborative
development.
 A significant part of IGSTK’s response to the high quality demanded by the project
is designed into the software itself, as it must be. However, IGSTK has created a set
of best practices and a requirements process to address these unique needs. In this
paper we have reported the lessons we have learned and the principles we believe are
unique in this open source effort. Ultimately, a development approach that allows for
evolution may demonstrate that open source technology can address critical domains.

IGSTK: Development Process and Project Management Best Practices for an Open Source
Software Toolkit for Image-Guided Surgery Applications 7

5 Acknowledgements

This research is supported by the National Institute of Biomedical Imaging and
Bioengineering (NIBIB) at the National Institute of Health (NIH) under grant
R42EB000374 and by U.S. Army grant W81XWH-04-1-0078. The content of this
manuscript does not necessarily reflect the position or policy of the U.S. Government.
The authors would like to thank the IGSTK advisory board for their advice
throughout the project: Will Schroeder of Kitware; Ivo Wolf of the University of
Heidelberg; Peter Kazanzides and Anton DeGuet of Johns Hopkins University; and
Ingmar Bitter, Matt McAuliffe, and Terry Yoo from the NIH.

References

1. Blake, M.B., Cleary, K., Ibanez, L., Ranjan, S.R., and Gary, K.: "Use Case-Driven
Component Specification: A Medical Applications Perspective to Product Line
Development," ACM Symposium on Applied Computing (SAC 2005), pp 1470 - 1477
Santa Fe, NM (2005).

2. Booch, G. Rumbaugh, J, and Jacobson, I.: “The Unified Modeling Language User Guide,”
Addison Wesley, Reading, MA (1999).

3. Cleary, K., Ibanez, L., Ranjan, S.R., and Blake, M.B.: “IGSTK: A Software Toolkit for
Image-Guided Surgery Applications,” Proceedings of the 18th International Conference on
Computer-Assisted Radiology (CARS2004),pp 473-479, Chicago, IL, June (2004).

4. Cockburn, A.: Agile Software Development. Addison-Wesley (2002).
5. Cockburn, A.: “Characterizing People as Non-linear, First-order Components in Software

Development.” 4th International Multi-Conference on Systems, Cybernetics and
Informatics, Orlando, Florida, (2000).

6. Ibanez, L., Schroeder, W., Ng, L., Cates, J., and the Insight Software Consortium: The ITK
Software Guide, Kitware, Inc. Publishers, Clifton Park, NY (2003).

7. Kruchten, P.: The Rational Unified Process—An Introduction, Second Edition, Addison-
Wesley (2000).

8. Royce, W.W.: “Managing the development of large software systems: concepts and
techniques.” IEEE WestCon, Los Angeles (1970).

9. Schroeder, W.J., Ibanez, L. Martin, K.M.: “Software Process: The Key to Developing
Robust, Reusable and Maintainable Open-Source Software.” Proceedings of the 2004 IEEE
International Symposium on Biomedical Imaging: from Nano to Macro. pp 648-651
Arlington, VA (2004).

10. Sommerville, I., Sawyer, P.: Requirements Engineering. Wiley (1997).

