2 Luis Ibanez1, Julien Jommier2, David Gobbi3, Rick Avila1, Brian Blake4, Hee-su Kim5, Kevin Gary6, Stephen Aylward2, and Kevin Cleary6
IGSTK: Architecture and State Machine - Based Implementation for an Open Source Software Toolkit for Image-Guided Surgery Applications 3

IGSTK: Architecture and State Machine - Based Implementation for an Open Source Software Toolkit for Image-Guided Surgery Applications
Luis Ibanez1, Julien Jommier2, David Gobbi3, Rick Avila1, Brian Blake4, Hee-su Kim5, Kevin Gary6, Stephen Aylward2, and Kevin Cleary6
1 Kitware Inc., Clifton Park, NY, 12065, USA
luis.ibanez@kitware.com, rick.avila@kitware.com
http://kitware.com/
2 Department of Radiology, University of North Carolina, Chapel Hill, NC, 27599, USA
jjomier@cs.unc.edu, aylward@unc.edu

3 Atamai Inc., London, Ontario, N6B 2R4, Canada
dgobbi@atamai.com
4 Department of Computer Science, Georgetown University, Washington, DC, 20007, USA
blakeb@cs.georgetown.edu
5 Department of Computer Science, Arizona State University, Mesa, Arizona 85212, USA
kgary@asu.edu
6 Imaging Science and Information Systems (ISIS) Center, Department of Radiology, Georgetown University Medical Center, Washington, DC, 20007, USA

cleary@georgetown.edu, hkim@isis.imac.georgetown.edu
Abstract. The Image Guided Surgery Toolkit (IGSTK) is an Open Source software developed under NIBIB-NIH funding that will provide a common platform for implementing image guided surgery applications and for fostering research in this field. The toolkit is based on three other Open Source toolkits ITK, VTK and FLTK. Its architecture is based on the use of medium size classes each one of them containing an explicit State Machine and a minimized API that enforces security-by-design. This paper describes the details of the architecture and its rationale.
1 Introduction

The image-guided software toolkit (IGSTK) is an open source project aimed at developing robust software for medical applications. Image-guided surgery involves the use of pre-operative medical images to provide image overlay and instrument guidance during the procedure. Image-guided surgery systems have been commercially available for about ten years now but this is still an active field of research and many researchers are developing prototype systems. These systems are software intensive and a lot of work is needed to develop the software for a prototype system. In addition, it is important that the software be robust and well-tested since it will be used in the medical environment.
The IGSTK project was designed to fill these needs. The toolkit contains the basic software components to construct an image-guided system including a tracker and a four-quadrant view incorporating image overlay. The highest priority in the design of the toolkit has been robustness and quality. The toolkit is based on the existing open source components ITK, VTK, and FLTK.
Creating robust software is not an easy task. From the earliest stages of the project, the developers discussed possible strategies for meeting this challenge. One of the early architecture decisions was to use a State Machine construct for all of the key software components. In this paper, we will describe the overall software architecture and the state machine implementation. While the toolkit is still in a development stage, several key components have been developed including the base state machine, spatial objects, tracker objects and communications, viewers and logging. Each component will be presented and the paper will conclude with a short example application.

2 Architecture
Contrary to what is commonly find in software toolkits, IGSTK professes a very Spartan approach to features and functionalities. Given that IGSTK is intended to be used for developing applications that will run in the surgical room; the nature of such critical applications imposes very particular restrictions on what is desirable or not in the toolkit. IGSTK has been designed in such a way that risk of harm to the patient resulting from misuse of the classes, whether it is by negligence or by accident, is minimized. In order to achieve this goal of safety by design the architecture was based on the following principles:

1. Requirements are generated by studying the types of surgical applications where the toolkit may be used in a clinical context.

2. Every component has a minimal set of features. Only features that are necessary for providing functionalities requested in the requirement get to be implemented.

3. Every component is based on a State Machine abstraction. In this way the state of the class is always known, and precautions are taken for making sure that the class is never set in an invalid state, by oversight or by negligence.
The combination of a limited API and the use of State Machines makes possible to implement a high level of software testing and to enforce high quality standards for code coverage and run-time validation. Limited API is achieved by creating middle size components that put together all the elements needed for providing a specific functionality. In this way, a minimum number of parameters are left free for the application developers to define, and therefore the opportunities for error are drastically reduced.
Figure 1 presents a UML collaboration diagram of the major IGSTK components involved in a typical image guided surgery application.

[image: image1.emf]View-2D-Axial

View-2D-Coronal

View-3D

Fluorocopy Representations Fluoroscopy-SpatialObject

Group-SpatialObject

CT-Image SpatialObject

Needle SpatialObject

Needle Representations

CT Image Representations

Tracker-1

Tools

P

u

s

h

i

n

g

Hardware

Pulling

Pulling

Position and Orientation

from the Tracker

View-2D-Sagittal

PulseGenerator

Pulling

Pulling

Tic

PulseGenerator

Tic

Figure 1 : Architecture of Typical image Guided Surgery Application
The elements on the left are those that will be visible to the clinician performing the surgical intervention. Those are the View classes representing the abstraction of a visualization window in the screen of the application. The view classes are a combination of FLTK and VTK classes that restrict user interaction to a set of safe and well defined operations. Each viewer is refreshed at a rate that can be specified by the application developer. The pulses for triggering the refresh of the viewers are provided by a PulseGenerator class indicated in the upper left corner of the Figure.
View classes display renderings of the surgical scene that are composed of the minimal number of elements required to provide useful information to the clinician. The actual physical objects are modeled using SpatialObjects, represented in the central part of the Figure. They include images of various modalities as well as simple geometrical shapes such as Cylinders and Ellipsoids. The aspect that is used for presenting the SpatialObjects to the surgeon is defined by SpatialObject-Representation classes. These classes provide the connection between the Views and the SpatialObject. A representation class defines properties such as color, transparency and the actual rendering methodology used for presenting the object in the scene. Some of the objects in the scene are static, while some of them are moving in space. In the surgical environment, it is critical to track the spatial positions and orientations of some of the surgical instruments. IGSTK provides support for come of the trackers that are commonly used in medical applications. This includes optical and electromagnetic trackers. The role of the tracker class is illustrated in the right side of the Figure. It updates the position and orientation of a particular spatial object. This object may be representing a surgical needle for example.

3 State Machine
State Machines are a fundamental concept in computer programming. They were introduced by Alan Turing in 1936 [2] as a formalism for supporting his work on determining whether the execution of an algorithm will ever stop or not. This problem is also known as the “Entscheidungsproblem problem”. A State Machine is defined by a set of states, a set of inputs and a set of transitions from one state to another. A Finite State Machine (FSM) is a state machine where the number of states is finite, and a Deterministic State Machine (DSM) is one where a given input presented to a given state will always led to a unique state.
In practice all computers are state machines, unfortunately their possible number of states is so large that they can barely be considered to be FSMs. An alternative way of looking at this large number of states is to assume that some of those states are not modeled and then become random elements on the behavior of the state machine. In this interpretation, the state machine is a Non-Deterministic State Machine. Transitions in a State Machine result in actions being taken. Some State Machine paradigms execute the actions when leaving the old state, while some others do it when entering the new state.
Computer programs, in particular those that are modeled using Object Oriented programming are naturally described in terms of state machines. Unfortunately, the lack of formality in traditional programming leads to under-defined state machines, where the states are poorly defined, and the transitions between states are rarely defined explicitly. Such relaxed programming practices produce programs that behave erratically and unpredictably. Those are exactly the kind of programs that are unacceptable in a critical application such as image guided surgery. The sake of reliability and robustness in IGSTK lead the development team to select the State Machine model on the very early stages of the project. State Machines are an excellent way of limiting the number ensuring that a program will always be in a valid condition and that all possible behavior has been studied in advance by the developer team in order to guarantee repeatability and deterministic behavior.
A generic State Machine class is available in the toolkit and provides the abstraction of the set of states, the set of inputs and the set of transitions. Each IGSTK component instantiate internally its own state machine and at construction time programs the full behavior of the State Machine. This organization makes possible to anticipate how the classes will work when their methods are invoked in any order. It is rare to find object oriented classes that will behave correctly or at least without run-time failures when their methods are invoked in random order.

When using State Machines, it is clear very early in the development cycle that API simplicity is a must for supporting robustness and reliability. In the context of surgical guidance, we must consider flexibility and abundance of features to be undesirable, because each one of them brings more opportunities for thing to go wrong during the surgical intervention. State Machines make possible to exercise full coverage, not only in the sense of number of lines executed during the testing cycle, but also in the sense of all possible execution paths of the code, at least at a single-class level.
A number of C++-Language features have been used in order to enforce the safety and integrity of the State Machine. For example, the methods that actually perform actions are all declared private and can only be invoked by the State Machine itself. Encapsulation and enforcement of const-correctness are also used at great lengths in order to reduce the risks of misusing the code.

4 Components

{Each person gets ½ a page a most and perhaps just 1/3 a page in final version – but go ahead and write more and we can easily edit – Kevin 6/17}
4.1 Spatial Objects / Viewers

Julien / Rick

4.2 Tracker / Communications

The IGSTK tracking component was adopted from a set of C++ tracker classes donated to the project by Atamai Inc. [1]. We have reorganized the code to fit our state machine architecture and to connect seamlessly with the spatial object classes described in the previous section.

Incorporation of a finite state machine into the tracker component is perhaps one of the most remarkable aspects of the IGSTK architecture. Since the state machine is a mirror of the actual states of the physical tracking device, it ensures that only commands that the device is ready to correctly respond to will be sent to the device. Furthermore, this safety is provided purely through the design of the state machine transition table, without the need for if/else error checking throughout the code. The ultimate goal, as far as code safety is concerned, is for unexpected responses from the device to occur only in the unlikely event of a device malfunction.

The tracking component consists of a Tracker base class, with specialized subclasses to support the support the AURORA and POLARIS tracking devices (Northern Digital Inc., Waterloo, Canada). The Tracker object does not communicate directly with these devices via the serial port, but instead communicates via a SerialCommunication object that acts as a proxy between the Tracker object and the tracking device. The use of this communication proxy serves several purposes:

1. All platform-dependent serial port control code is contained within the communication object, while the Tracker code is fully platform independent.

2. The communication proxy can be replaced with a “simulator” that replays previously recorded serial data streams for testing or demo purposes.

3. The communication proxy can be replaced with an object that sends the data stream to a remote device over a network via TCP/IP.

Our goal for the immediate future is to extend these classes to support multi-threading, so that the tracking information can be passed to the display component at the chosen display refresh rate while, simultaneously, a “safety thread” can run at the full data rate of the tracking system for the purpose of collision avoidance.
4.3 Logging

Hee-su

5 Example Application

{Luis or his designee to complete this}

5 Conclusion

Acknowledgement

This research is supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) at the National Institute of Healths (NIH) under grant R41 EB000374-01A1 and by U.S. Army grant W81XWH-04-1-0078. The content of this manuscript does not necessarily reflect the position or policy of the U.S. Government. We also acknowledge the fruitful conversations from Will Schroeder from Kitware Incorporated. {Luis and others: maybe we should put Will as one of the authors on these papers – he did attend the review meeting and provide helpful advice – let us discuss on the tcon}
References
1. Gobbi, D.G., Comeau, R.M., Peters, T.M.: "Ultrasound/MRI overlay with image warping for neurosurgery." MICCAI 2000, Pittsburg, PA, October 11-13: 106-114, 2000.
2. Turing, A.: "On Computable Numbers, with an application to the Entscheidungsproblem.", 1936.

_1183210548.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

View-2D-Axial�

View-2D-Coronal�

Static Structure�

View-3D�

Needle Representations�

CT Image Representations�

Fluorocopy Representations�

Fluoroscopy-SpatialObject�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Needle SpatialObject�

�

�

�

�

�

�

�

�

�

CT-Image SpatialObject�

�

�

�

�

�

�

�

�

�

Position and Orientation

from the Tracker�

Group-SpatialObject�

�

�

�

�

�

�

�

�

�

�

�

�

�

View-2D-Sagittal�

�

�

�

Tracker-1�

Tools�

Pushing�

�

�

�

Hardware�

Pulling�

Orientation�

Pulling�

�

�

�

Pulling�

�

�

�

�

�

�

�

�

�

PulseGenerator�

Pulling�

�

�

�

Pulling�

�

�

�

Tic�

PulseGenerator�

Tic�

