6 Kevin Gary1, Brian Blake2, Stephen Aylward3, Julien Jommier3, David Gobbi4, Hee-su Kim5, Rick Avila6, Luis Ibanez6, and Kevin Cleary5
IGSTK: Development Process and Project Management Best Practices for an Open Source Software Toolkit for Image-Guided Surgery Applications 7

IGSTK: Development Process and Project Management Best Practices for an Open Source Software Toolkit for Image-Guided Surgery Applications

Kevin Gary1, Brian Blake2, Stephen Aylward3, Julien Jommier3, David Gobbi4, Hee-su Kim5, Rick Avila6, Luis Ibanez6, and Kevin Cleary5
1 Division of Computing Studies, Arizona State University, Mesa, Arizona 85212, USA
kgary@asu.edu
2 Department of Computer Science, Georgetown University, Washington, DC, 20007, USA
blakeb@cs.georgetown.edu
3 Department of Radiology, University of North Carolina, Chapel Hill, NC, 27599, USA
jjomier@cs.unc.edu, aylward@unc.edu

4 Atamai Inc., London, Ontario, N6B 2R4, Canada
dgobbi@atamai.com
5 Imaging Science and Information Systems (ISIS) Center, Department of Radiology, Georgetown University Medical Center, Washington, DC, 20007, USA

cleary@georgetown.edu, hkim@isis.imac.georgetown.edu
6 Kitware Inc., Clifton Park, NY, 12065, USA
rick.avila@kitware.com, luis.ibanez@kitware.com

Abstract. Open source is an increasingly popular development and distribution model for software. Many open source projects rely on the dedicated and highly skilled members of distributed development teams. Often, agile development methods are employed by these teams, as the focus is on community and fast production over requirements management and stringent quality criteria. The image-guided surgery toolkit (IGSTK) is an open source development project that relies on the collaboration of a skilled and distributed development team, yet addresses a domain that demands managed requirements and a high degree of robustness and attention to safety concerns. Due to the unique cross-section of the open source model and the surgical domain, the IGSTK team has evolved a set of best practices and requirements techniques to augment commonly applied agile methods. This paper presents the current state of the software development process and lessons learned.

1 Introduction

The image-guided surgery toolkit (IGSTK) is an open source project aimed at developing robust software for medical applications. Image-guided surgery involves the use of pre-operative medical images to provide image overlay and instrument guidance during the procedure. Image-guided surgery systems have been commercially available for about ten years now but this is still an active field of research and many researchers are developing prototype systems. These systems are software intensive and a lot of work is needed to develop the software for a prototype system. In addition, it is important that the software be robust and well-tested since it will be used in a medical environment.

The IGSTK project was designed to fill these needs. The toolkit contains the basic software components to construct an image-guided system including a tracker and a four-quadrant view incorporating image overlay. The highest priority in the design of the toolkit has been robustness and quality. The toolkit is based on the existing opening source components ITK for segmentation and registration, VTK for visualization, and FLTK for the user interface.

Managing an open source project, with multiple geographically distant developers, complex application requirements, and a desire to produce a framework for extensible and reusable architecture components is a tremendous challenge. The IGSTK team has evolved its software processes to balance an agile development philosophy with an integrated requirements elicitation and management approach to arrive at a methodology that is fast and flexible, yet meets the stringent needs of this application domain. In this paper we present this approach, describing the process implementation, supporting tools, and focus on requirements.

2 Software Development Process

IGSTK development presents some interesting challenges from a software development methodology perspective. These complexities derive from the nature of the requirements, the makeup of the team, the dependence on pre-existing software packages (VTK and ITK), and the need for high quality standards within this domain. We discuss these complexities in this section and suggest a working set of best practices that attempt to provide solutions.

First and foremost, complexity derives from the nature of IGSTK requirements. IGSTK requirements come in multiple flavors. Application-specific requirements exist for a set of applications IGSTK is required to support upon completion. However, most requirements are framework-level requirements. Framework-level requirements, as experienced developers recognize, are difficult to completely understand before development itself begins in earnest. Furthermore, IGSTK desires to support not just the fixed set of applications it is required to support contractually, but serve as a platform for further research and production-worthy software products. Because of these process requirements, waterfall-style development methodologies [8] that attempt to define requirements completely before development begins were not considered suitable. Additionally, Rational Unified Process oriented use-case driven analysis modeling [7] is only selectively applied, as we cannot assume that the non-functional requirements derived from the known set of applications today represents a complete set of such requirements for the future. Given the complex nature of our requirements process and our application domain, this issue is presented in detail in Section 3.

The IGSTK development team is comprised of academic and commercial partners collaborating in a widely distributed setting. Most, if not all of the team members also have other demands on their time. This creates challenges for setting project deliverables and expectations over medium and long-term horizons. Fortunately, most of the development team has worked with a common set of source code upon which IGSTK is based (VTK and ITK), and have great familiarity with common tools such as CMake and DART, which are discussed more below.

The requirements, team composition, and use of pre-existing software suggest the application of agile methods [4] to IGSTK. All team members have significant exposure to agile methods, including prior development of agile-ready tools that are employed on IGSTK [9]. However, the high quality standards forced on IGSTK by the application domain suggest that some agile practices need to be reinforced by best practices that address these needs. For example, FDA guidelines for approval of medical devices require traceability of requirements through implementation and testing. Agile methods, in general terms, tend to de-emphasize the value of requirements management processes. Therefore some means of managing requirements while remaining open to change was needed. Given that requirements are also evolving as code is actively developed also implies that code repository management needed to be in some way synchronized with requirements management.

To address these complexities, IGSTK has adopted an agile approach augmented by the set of best practices summarized below.

Best Practice #1. Above all, recognize that people are the most important mechanism available for ensuring high quality software. This goes in line with the philosophy espoused by the agile community [4]. The IGSTK team is comprised of developers with a high degree of training and experience with the application domain, supporting software, and tools. Their collective judgement is weighted over a high-level process mandate.

Best Practice #2. Facilitate constant communication. The evolution of a new framework, the evolution of supporting software upon which the framework is layered (particularly ITK which is relatively young and still evolving), plus the distributed nature of the team are addressed by facilitating constant communication. IGSTK members participate in a weekly teleconference and meet in person twice per year. IGSTK employs a mailing list and a Wiki for online collaboration.

Best Practice #3. Produce iterative releases. IGSTK’s external release cycle includes twice-yearly releases that coincide with IGSTK advisory board meetings. Internally, six months was considered too long a horizon to manage development, so releases are broken down into approximately month-long “sprints” called iterations. The end of an iteration provides a time for the team to stop, assess and review progress, and determine what code is considered stable enough to move to the main code repository. For one week at the end of an IGSTK iteration, developers perform code reviews of all new and modified code, and ensure high code coverage and passing unit tests across the entire code base.

Best Practice #4. Employ a Sandbox for evolving code. Providing a separate code line with a different check-in policy allows developers to share code that may not yet meet more stringent check-in policies on the main code base. Developers may check-in to the sandbox before corresponding requirements have been accepted, with a lower level of code coverage for their unit tests, and before the code has been reviewed by the rest of the team. Exploiting configuration management approaches even at this early informal sandbox phase helps document and track project changes.

Best Practice #5. Emphasize continuous builds and testing. IGSTK uses the open source DART tool (http://public.kitware.com/Dart/HTML/Index.shtml) to produce a nightly dashboard of build and unit test results across all supported platforms. Developers are required to ensure code coverage stays as close as possible to 100%, their source code builds on all supported platforms, and all unit tests pass. The dashboard is reviewed during the weekly teleconference.

Best Practice #6. Support the process with robust tools. The previous best practice describes the use of the DART tool for continuous testing. IGSTK also employs an open source cross-platform build solution named CMake (http://www.cmake.org/) and the open source documentation system Doxygen (http://www.stack.nl/~dimitri/doxygen/). These tools are augmented with defined best practices for coding and documentation posted on the Wiki.

Best Practice #7. Emphasize requirements capture and management in lockstep with code management. As requirements evolve as the code matures, it is necessary to adopt flexible yet defined processes for managing requirements and code repositories. The organization and tracking of requirements is a complex process for a project such as IGSTK, and is described in detail in Section 3.

Best Practice #8. The process itself must evolve. Through constant communication, IGSTK members recognize when the complexities they face can be dealt within the current process framework, when “tweaks” are required, or when entirely new practices should be adopted. Best Practices #1 and #2 above (people and communication) are emphasized here, and Best Practice #3 (iterative development) provides a means not only to manage an evolving software product, but an evolving software process as well.

We suggest that these best practices represent workable techniques for IGSTK and other development teams facing similar complexities. However, as we note in our last best practice, we also recognize that these practices are themselves open to change and improvement, and look forward to working with the emerging open source communities in such domains to continue to develop these techniques.

3 Requirements Definition and Tracking of Requirements

The development of requirements in IGSTK consists of two phases. The initial phase is understanding the subject matter areas or taxonomy of all requirements relevant to the project. Although most of the developers have some familiarity with the medical domain, it is difficult for these software specialists to prioritize the needs of the solution applications without significant direction from a domain subject matter expert. This initial phase was investigated in earlier work [1].
In this paper, we focus on the second phase, the discovery and management of requirements at development time. As previously discussed in Best Practice #7, requirements management and code management are significantly integrated. Although not a pure agile development process, the IGSTK project similarly conceptualizes requirements from development from the “bottom-up”. Developers introduce new requirements for further capabilities as components are being developed. The IGSTK project has employed a new collaborative process for reviewing, implementing, validating, and archiving these requirements that is integrated with application development. This process is illustrated as a UML state diagram in Fig 1.

In
 the initial requirements phase, general requirements for tracking devices (localizers) were uncovered. In developing components for these initial requirements, developers discovered that additional requirements exist (i.e. perhaps specific validation requirements). Once a developer identifies potential new requirements (Conceptualized box in Figure 1), the developer will post a text description (Defined) on the shared web site (Wiki). At the same time, the initial code that fulfills the requirements is entered into the sandbox repository. The requirement would then undergo an iterative review sub-process where the team members would review, discuss, and potentially modify the requirement. Based on the team’s decision, the requirements can be rejected/aborted or accepted. Rejected requirements are archived on the Wiki (Logged) so that they can be reopened later, if necessary. A unique approach in the IGSTK project is the use of an on-line open source bug tracker (PHP BugTracker) to store requirements. This approach is particularly effective as code changes are also stored in the bug tracker
. The accepted requirements are entered into the bug tracker and marked as “open”. Once the supporting software is implemented and the functionaliy confirmed, the requirement is marked as ‘verified”. In concert with the nightly builds, all verified requirements are automatically extracted nightly into Latex and PDF files and archived. Custom scripts were developed for this purpose.

[image: image1.wmf]In Review

Defined

Reviewed

Discuss

as

Group

Conceptualized

Post to Wiki

/

^

Code

.

CheckInSandbox

Modifications

requested

Pending

Revise

Unaccepted

Reject

Accepted

Accept

REQ Open for

Implementation

Enter into PHP BugTracker

/

^

Code

.

CheckInMainBranch

Abort

Logged

Move to log

area of Wiki

/

^

Code

.

RemoveFromSandbox

Reopen

Implemented

REQ Verified

Development

Code Review

&

Inspections

/

^

Code

.

Run

NightlyDashboard

Nightly Generation as

Latex

/

PDF Files

Continuous

REQ Archival

REQUIREMENT

Fig. 1. Requirements Management for the IGSTK project as a UML state diagram
.

4 Conclusions

The focus on requirements in the IGSTK project is novel, both within the VTK/ITK community and open source projects employing agile methodologies in general. Most open source projects originate from developers who are already intimately familiar with a particular application domain – and IGSTK is no different. However, there are important distinctions. The domain addressed by IGSTK mandates that requirements be documented, tracked as they changed, and organized according to the type of information captured. IGSTK’s goal is to serve as a framework for a set of applications, and to applications yet anticipated from the community. Finally, as it must be in the surgical domain, IGSTK has a primary goal to ensure program safety and functional quality. Such requirements and quality standards are unusual in open source collaborative development.

A significant part of the IGSTK solution to the quality needs of the project is designed into the software itself, as it must be. However, IGSTK has evolved a set of best practices and a requirements process to address these unique needs. In this paper we have reported on our lessons learned, what principles we believe are unique in this open source effort, and a still-evolving process approach that may hopefully serve as a starting point for showing open source technology can address critical domains.

5 Acknowledgements
This research is supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB) at the National Institute of Health (NIH) under grant R42EB000374 and by U.S. Army grant W81XWH-04-1-0078. The content of this manuscript does not necessarily reflect the position or policy of the U.S. Government. The authors would like to thank the IGSTK advisory board for their advice throughout the project: Will Schroeder of Kitware, Ivo Wolf of the University of Heidelberg, and Ingmar Bitter, Matt McAuliffee, and Terry Yoo from the NIH.
References

1. Blake, M.B., Cleary, K., Ibanez, L., Ranjan, S.R., and Gary, K.: "Use Case-Driven Component Specification: A Medical Applications Perspective to Product Line Development", ACM Symposium on Applied Computing (SAC 2005), Sante Fe, NM (2005).
2. Booch, G. Rumbaugh, J, and Jacobson, I.: “The Unified Modeling Language User Guide”, Addison Wesley, Reading, MA (1999).

3. Cleary, K., Ibanez, L., Ranjan, S.R., and Blake, M.B.: “IGSTK: A Software Toolkit for Image-Guided Surgery Applications”, Proceedings of the 18th International Conference on Computer-Assisted Radiology (CARS2004), Chicago, IL, June (2004).
4. Cockburn, A.: Agile Software Development. Addison-Wesley (2002).

5. Cockburn, A.: “Characterizing People as Non-linear, First-order Components in Software Development”. 4th International Multi-Conference on Systems, Cybernetics and Informatics, Orlando, Florida, (2000).
6. Ibanez, L., Schroeder, W., Ng, L., Cates, J., and the Insight Software Consortium: The ITK Software Guide, Kitware, Inc. Publishers, Clifton Park, NY (2003).

7. Kruchten, P.: The Rational Unified Process—An Introduction, Second Edition, Addison-Wesley (2000).

8. Royce, W.W.: “Managing the development of large software systems: concepts and techniques. IEEE WestCon, Los Angeles (1970).

9. Schroeder, W.J., Ibanez, L. Martin, K.M.: “Software Process: The Key to Developing Robust, Reusable and Maintainable Open-Source Software”. Proceedings of the 2004 IEEE International Symposium on Biomedical Imaging: from Nano to Macro. Arlington, VA (2004).
10. Sommerville, I., Sawyer, P.: Requirements Engineering. Wiley, (1997).

�Brian: I did not think it was necessary to include this scenario here nor did I think it fit into the flow here. If people think it is needed, I can add it back in. Kevin C. 7/24.

�Can Brian clarify this? Are code changes really stored in the bug tracker??? Kevin C. 7/23

�The diagram is good but the text looks “squished” – it does not view well or print well to me – if this is a Visio diagram I might be

_1183542559.vsd
N

N

Defined

Reviewed

Discuss
as
Group

Conceptualized

Post to Wiki/
^Code.CheckInSandbox

Modifications
requested

Pending

Revise

Unaccepted

Reject

Accepted

Accept

REQ Open for Implementation

Enter into PHP BugTracker/
^Code.CheckInMainBranch

Abort

Logged

Move to log
area of Wiki/
^Code.RemoveFromSandbox

Implemented

Reopen

REQ Verified

Nightly Generation as
Latex/PDF Files

Development

Code Review &
Inspections/
^Code.Run
NightlyDashboard

Continuous
REQ Archival

In Review

REQUIREMENT

