2 Kevin Cleary1, Brian Blake2, Kevin Gary3, Julien Jommier4,
Stephen Aylward4, David Gobbi5, Hee-su Kim1, Rick Avila6, and Luis Ibanez6
IGSTK: Development Process and Project Management for an Open Source Software Toolkit for Image-Guided Surgery Applications 7

IGSTK: Development Process and Project Management for an Open Source Software Toolkit for Image-Guided Surgery Applications

Kevin Cleary1, Brian Blake2, Kevin Gary3, Julien Jommier4,
Stephen Aylward4, David Gobbi5, Hee-su Kim1, Rick Avila6, and Luis Ibanez6
1 Imaging Science and Information Systems (ISIS) Center, Department of Radiology, Georgetown University Medical Center, Washington, DC, 20007, USA

cleary@georgetown.edu, hkim@isis.imac.georgetown.edu
http://www.caimr.georgetown.edu/
2 Department of Computer Science, Georgetown University, Washington, DC, 20007, USA
blakeb@cs.georgetown.edu
3 Division of Computing Studies, Arizona State University, Mesa, Arizona 85212, USA
kgary@asu.edu
4 Department of Radiology, University of North Carolina, Chapel Hill, NC, 27599, USA
jjomier@cs.unc.edu, aylward@unc.edu

5 Atamai Inc., London, Ontario, N6B 2R4, Canada
dgobbi@atamai.com
6 Kitware Inc., Clifton Park, NY, 12065, USA
rick.avila@kitware.com, luis.ibanez@kitware.com

Abstract. The abstract should summarize the contents of the paper and should contain at least 70 and at most 150 words. It should be set in 9-point font size and should be inset 1.0 cm from the right and left margins. There should be two blank (10-point) lines before and after the abstract. …

1 Introduction {Kevin Cleary draft 16 July 2005}

The image-guided software toolkit (IGSTK) is an open source project aimed at developing robust software for medical applications. Image-guided surgery involves the use of pre-operative medical images to provide image overlay and instrument guidance during the procedure. Image-guided surgery systems have been commercially available for about ten years now but this is still an active field of research and many researchers are developing prototype systems. These systems are software intensive and a lot of work is needed to develop the software for a prototype system. In addition, it is important that the software be robust and well-tested since it will be used in the medical environment.

The IGSTK project was designed to fill these needs. The toolkit contains the basic software components to construct an image-guided system including a tracker and a four-quadrant view incorporating image overlay. The highest priority in the design of the toolkit has been robustness and quality. The toolkit is based on the existing opening source components ITK, VTK, and FLTK.

Managing an open source project, particularly where multiple developers that are geographically distant are involved, is a challenge. A requirements-based software development process has been created in an attempt to satisfy the design goals of robustness and quality. A collaborative framework for project management has also been established using a Wiki environment.

This paper will describe our development process and project management for this effort. The paper will include an overview of the software development process including the use of multiple iterations and a project sandbox, the creation and tracking of requirements, and project management practices.

{pasted comments from Stephen here – I have no doubt Stephen can help edit this first section – can do now or wait until we see what Brian Blake and Kevin Gary write – 16 July 2005 – Kevin Cleary}

For paper 1,

I would emphasize requirements-based software development process. This has never been done before - it goes against ITK's style of programming.

 It is a new style - combining extreme programming with requirements.

The sandbox makes this possible. My suggestion for the outline

Introduction

Need to assure software quality for image-guided interventions

- never in an unknown state

- only the necessary capabilities

- known performance / operating speeds

Solution: requirements-based software using open-source tools

Tools: vkt, fltk, itk, soviewers, trackerlib

Methods:

Usage cases

Requirements

Conflict with extreme programming

Use sandbox, iterations, and cvs checkin with requirements Also tcons, dashboards, etc.

Results

IGSTK is good....

2 Software Development Process

IGSTK development presents some interesting challenges from a software development methodology perspective. These complexities derive from the nature of the requirements, the makeup of the team, the dependence on preexisting software packages (VTK and ITK), and the need for high quality standards within this domain. We discuss these complexities in this section and suggest a working set of best practices that attempt to provide solutions.

First and foremost, complexity derives from the nature of IGSTK requirements. IGSTK requirements come in multiple flavors. Application-specific requirements exist for a set of applications IGSTK is required to support upon completion. However, most requirements are framework-level requirements. Framework-level requirements, experienced developers recognize, are difficult to completely understand before development itself begins in earnest. Furthermore, IGSTK desires to support not just the fixed set of applications it is required to support contractually, but serve as a platform for further research and production-worthy software products. Because of these process requirements, waterfall-style development methodologies that attempt to define requirements completely before development begins were not considered suitable. Additionally, RUP-oriented use-case driven analysis modeling is only selectively applied, as we cannot assume that the non-functional requirements derived from the known set of applications today represents a complete set of such requirements for the future. Given the complex nature of our requirements process and our application domain, we present our process in more detail in Section 3.

The IGSTK development team is comprised of academic and commercial partners collaborating in a widely distributed setting. Most, if not all of the team members also have other demands on their time. This creates challenges for setting project deliverables and expectations over medium and long-term horizons. Fortunately, most of the development team have worked with a common set of source code upon which IGSTK is based (VTK and ITK), and have great familiarity with common tools such as CMake and DART, which are discussed more below.

The requirements, team composition, and use of preexisting software seemingly suggest application of Agile methods to IGSTK. All team members have significant exposure to Agile methods, including prior development of Agile-ready tools that are employed on IGSTK [XXX]. However, the high quality standards forced on IGSTK by the application domain suggest that some Agile practices need to be reinforced by best practices that address these needs. For example, FDA guidelines require traceability of requirements through implementation and testing. Agile methods, in general terms, tend to de-emphasize the value of requirements management processes. Therefore some means of managing requirements while remaining open to change was needed. Given that requirements are also evolving as code is actively developed also implies that code repository management needed to be in some way synchronized with requirements management.

To address these complexities, IGSTK has adopted an Agile approach augmented by the set of best practices summarized below.

Best Practice #1. Above all, recognize that people are the most important mechanism available for ensuring high quality software. This goes in line with the philosophy espoused by the Agile community [ref: People as 1st-order process variables]. The IGSTK team is comprised of developers with a high degree of training and experience with the application domain, supporting software, and tools. Their collective judgement is weighted over a high-level process mandate.

Best Practice #2. Facilitate constant communication. The evolution of a new framework, the evolution of supporting software upon which the framework is layered (particularly ITK), plus the distributed nature of the team is addressed by facilitating constant communication. IGSTK members join a weekly teleconference and meet in person twice per year. IGSTK employs a mailing list and a Wiki for online collaboration.

Best Practice #3. Produce iterative releases. IGSTK’s external release cycle includes twice-yearly releases that coincide with IGSTK advisory board meetings. Internally, six months was considered too long a horizon to manage development, so releases are broken down into approximately month-long “sprints” called iterations. The end of each iteration provides a time for the team to stop, assess and review progress, and determine what code is considered stable enough to move to the main codeline. For one week at the end of each IGSTK iteration, developers perform code reviews of all new and modified code, and ensure high code coverage and passing unit tests across the entire codebase.

Best Practice #4. Employ a Sandbox for evolving code. Providing a separate code repository with a different checkin policy allows developers to share code that may not yet meet more stringent checkin policies on the main codeline. Developers may checkin to the sandbox before corresponding requirements have been accepted, with a lower level of code coverage for their unit tests, and before the code has been reviewed by the rest of the team.

Best Practice #5. Emphasize continuous builds and testing. IGSTK uses the DART tool [ref: DART] to produce a nightly dashboard of build and unit test results across all supported platforms. Developers are required to ensure code coverage stays as close as possible to 100%, their source code builds on all supported platforms, and all unit tests pass. The dashboard is reviewed during the weekly teleconference.

Best Practice #6. Support the process with robust tools. The previous best practice describes the use of the DART tool for continuous testing. IGSTK also employs a cross-platform build solution named CMake [ref] and the DOxygen [ref] documentation system. These tools are augmented with defined best practices for coding and documentation posted on the Wiki.

Best Practice #7. Emphasize requirements capture and management in lockstep with code management. As requirements evolve as the code matures, it is necessary to adopt flexible yet defined processes for managing requirements and code repositories. The organization and tracking of requirements is a complex process for a project such as IGSTK, and is described in detail in Section 3.

Best Practice #8. The process itself must evolve. Through constant communication, IGSTK members recognize when the complexities they face can be dealt within the current process framework, when “tweaks” are required, or when entirely new practices should be adopted. Best practices 1 and 2 above (people and communication) are emphasized here, and Best practice 3 (iterative development) provides a means not only to manage an evolving software product, but an evolving software process as well.

We suggest that these best practices represent workable techniques for IGSTK and other development teams facing similar complexities. However, as we note in our last best practice, we also recognize that these practices are themselves open to change and improvement, and look forward to working with the emerging open source communities in such domains to arrive at stable techniques.

2.1 Sample sub-header – just kept as a placeholder

Just in case anyone wants to break into subsections – but not sure we have room in a 4 page paper

2.2 Second sample sub-header- just a placeholder again

Just an example again

3 Requirements Definition and Tracking of Requirements

{Brian Blake to write this section – would be good to include a diagram of the requirements process}

{just an example figure and figure heading below}
[image: image1.png]0.025,

002/

0.015)

001

0.005|

10

Fig. 1. One kernel at xs (dotted kernel) or two kernels at xi and xj (left and right) lead to the same summed estimate at xs. This shows a figure consisting of different types of lines. Elements of the figure described in the caption should be set in italics, in parentheses, as shown in this sample caption. The last sentence of a figure caption should generally end without a period

4 Project Management

{Kevin Gary to write this section: overall strategy, use of wiki, weekly tcons, etc}

References {example only – replace with ours}

1. Baldonado, M., Chang, C.-C.K., Gravano, L., Paepcke, A.: The Stanford Digital Library Metadata Architecture. Int. J. Digit. Libr. 1 (1997) 108–121

2. Bruce, K.B., Cardelli, L., Pierce, B.C.: Comparing Object Encodings. In: Abadi, M., Ito, T. (eds.): Theoretical Aspects of Computer Software. Lecture Notes in Computer Science, Vol. 1281. Springer-Verlag, Berlin Heidelberg New York (1997) 415–438

3. van Leeuwen, J. (ed.): Computer Science Today. Recent Trends and Developments. Lecture Notes in Computer Science, Vol. 1000. Springer-Verlag, Berlin Heidelberg New York (1995)

4. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. 3rd edn. Springer-Verlag, Berlin Heidelberg New York (1996)

