<div dir="ltr"><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small">Hi Gavin,</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small"><br></div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small">your plan sounds good! There is no 1:N registration, so you should proceed with N 1:1 registrations. Pick one as a reference (#0 is good), register all the other time points to it. You can initialize the k+1-st iteration by the resulting transform of k-th registration to speed things up.</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small"><br></div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small">And yes, you can do super-resolution by resampling all these images onto a higher resolution grid, e.g. same origin and direction, 2x higher size and 2x smaller spacing.</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small"><br></div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small">ITK has all the required classes for this process. Will you let us know how satisfactory the result was? Ideally with some images :)</div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small"><div dir="ltr"><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small"><br></div><div class="gmail_default" style="font-family:verdana,sans-serif;font-size:small">Regards,</div><div class="gmail_default"><font face="verdana, sans-serif">Dženan Zukić, PhD, Senior R&D Engineer, Kitware (Carrboro, N.C.)</font></div></div></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Tue, Jun 6, 2017 at 4:00 AM, Gavin Baker <span dir="ltr"><<a href="mailto:gavinb+itk@antonym.org" target="_blank">gavinb+itk@antonym.org</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Hello!<br>
<br>
I have a time series of 3D data (relatively low resolution), captured in<br>
sequence, with small positional changes (eg. translation). I would like<br>
to perform a super-resolution resampling by first co-registering each<br>
volumetric dataset (using rigid registration) in order to reduce noise<br>
and improve detail.<br>
<br>
Is there a registration process that is 1:N (fixed:moving)?<br>
<br>
Or is the recommended method to pick a fixed image (ie. #0) and register<br>
each 1..N individually to it?<br>
<br>
Given a set of transforms that map each of the 1..N moving images back<br>
to the fixed image for registration, is it possible to then resample the<br>
volume at a higher spatial resolution, combining all image data? IOW<br>
super-resolution resampling?<br>
<br>
I tried searching for the above and didn't have much luck finding<br>
relevant info.<br>
<br>
Thanks -<br>
<br>
:: Gavin<br>
______________________________<wbr>_______<br>
Powered by <a href="http://www.kitware.com" rel="noreferrer" target="_blank">www.kitware.com</a><br>
<br>
Visit other Kitware open-source projects at<br>
<a href="http://www.kitware.com/opensource/opensource.html" rel="noreferrer" target="_blank">http://www.kitware.com/<wbr>opensource/opensource.html</a><br>
<br>
Kitware offers ITK Training Courses, for more information visit:<br>
<a href="http://www.kitware.com/products/protraining.php" rel="noreferrer" target="_blank">http://www.kitware.com/<wbr>products/protraining.php</a><br>
<br>
Please keep messages on-topic and check the ITK FAQ at:<br>
<a href="http://www.itk.org/Wiki/ITK_FAQ" rel="noreferrer" target="_blank">http://www.itk.org/Wiki/ITK_<wbr>FAQ</a><br>
<br>
Follow this link to subscribe/unsubscribe:<br>
<a href="http://public.kitware.com/mailman/listinfo/insight-users" rel="noreferrer" target="_blank">http://public.kitware.com/<wbr>mailman/listinfo/insight-users</a><br>
</blockquote></div><br></div>