
Adding Programmable HW Shaders to VTK

Gary Templet
Sandia National Laboratories

Visualization and Scientific Computing - 8963
November 15, 2004

Abstract

VTK and ParaView architecture extensions and changes are proposed to
allow the incorporation of programmable hardware shader technologies. Al-
though the current target hardware libraries are NVidia’s Cg and OpenGL2.0,
the approach is general enough to allow incorporation of additional hardware
libraries as they become available and are requested by VTK and ParaView
developers and users. The architecture proposed here considers the needs of
the application developer as well as the expectations of the end-user. Sandia
is currenlty prototyping these changes for inclusion into VTK and ParaView.



1 Motivation

Modern graphics cards allow developers to create custom fragment and vertex shaders
that replace the standard OpenGL vertex and fragment operations. Various shaders
can be loaded by the application at any time during rendering, allowing each object in
the scene to be rendered with a different shader, or, multiple objects can be rendered
with the same shader. This new approach to graphics programming will have a great
impact on the techniques used to produce rendered images and the quality of those
images. At Sandia, the most immediate impact will be in the areas of Scientific
Visualization and CAD (Computer-Aided Design) visualization.

1.1 Scientific Visualization

Sandia has done a large amount of work in developing hardware-based unstructured
volume rendering techniques. The first versions of these renderers were written with
extensions to the OpenGL library. The availability of programmable graphics hard-
ware technologies in VTK and ParaView will make these techniques easier to use
and develop.

1.2 CAD Visualization

Programmable graphics hardware will impact the CAD visualization world in two
major areas.

First - Adding realism to interactive visualization applications. CAD users have
long grumbled about unrealistic colors in visual representations of their models.
While this certainly helps to distinguish between objects, there are many instances
where it is desireable to have more realistic renderings.

Second - Fostering the development and use of Non-Photorealistic rendering.

1.3 Custom Visualization

Any new technology has an investigatory phase where all manner of unforeseen appli-
cations are applied to it. Much work has been done with GPUs (Graphics Processing
Units) to leverage their computational capabilities to perform more than traditional
redering techniques. It is hoped that the work proposed here will facilitate new and
exciting applications of GPUs.

1



2 Very Brief HW Shader Overview

Programmable Vertex and Fragment shaders are designed to replace the default
OpenGL fragment and vertex programs. At any given time a rendering pipeline
may use a combination of programable hardware shaders and the default OpenGL
shaders with the restriction that only one vertex and one fragment shader are active
at any one time. The input parameters to hardware shaders are of basic two types,
Uniform Parameters and Varying Parameters. Typically, uniform parameters are
meant to be constant while a shader processes a set of uninterrupted primitives.
Varying parameters correspond to specific hardware registers associated with each
vertex or fragment. Their values are specified relative to and ther are processed with
a specific vertex and fragment.

Modern programmable hardware shader technologies have been designed to facil-
itate incorporation with OpenGL applications. Once a shader has been defined, the
mechanics of using it in the rendering pipeline can be generalized into a few steps:

Load the shader into application memory
Compile the shader either in the cpu or on the gpu
Bind the shader to the hardware rendering pipeline
Intialize Uniform parameters
Render Shader

Here ’Render Shader’ implies sending graphics primitives to hardware as well as
sending their corresponding varying parameters.

An application designed to render using hardware shaders bears the responsibility
to perform the above steps. Since VTK’s architecture lends itself to encapsulation
and delegation of functionality, it is possible to provide an intuitive and flexible
interface to working with hardware shader libraries. When considering how the steps
above should be achieved in VTK and ParaView, two groups should be considered,
shader developers, and end users of VTK-based applications, include ParaView.

2.1 Shader Developer’s Interface

The first goal of the architecture changes proposed here is to isolate the shader
developer from the mechanics of loading, compiling, binding, setting variables, etc.
for their hardware shaders. It should be enough for a developer to completely specify
a consistent shader in a specific shader language along with it’s varying and uniform
paramters, and have VTK handle the rest. If a problem arises with a shader, VTK
report the error through it’s error macros and default to use the standard OpenGL

2



pipeline or provide some other reasonable default.
There are two main hurdles for those wishing to incorporate specific shader tech-

niques into their applications. The first is understanding the shading language itself
and the second is the mechanics of integrating a hardware shader with an applica-
tion. There is no way to avoid learning a new language if you wish to program with
it, but through a few extensions of the VTK architecture, the mechanics of inserting
a shader into the hardware pipeline can be encapsulated and delegated, thus freeing
the application developer to focus on shader development.

2.2 End User’s Interface

The second goal of this proposal is to present an inuitive interface to the end-user
where the focus is on the end-result of the visualization and not specific shader
techniques. In this vein, the XML material file also provides a consistent interface for
shader developers; they simply define a shader and assign it to a vtkActor. Since it is
applied at runtime, it also facilites changing hardware shaders ’on-the-fly’. Although
it’s not a focus of this proposal, the material file could also be extended to define
members of vtkRIBProperty or vtkMESAProperty.

While the VTK/ParaView developer has a focus on developing any manner of
hardware shaders, the end-user will not want to know how a particular rendering
is achieved, or even what their fancy new graphics card might be doing. Instead,
their focus will be on the stunning images produced by their application. From
their perspective, these results are achieved by simply assigning the correct visual
properties to each actor in the scene through an intuitive interface. To that end, the
visual representation should be selected in a single operation from a set of predefined
materials that are labeled with familiar terms that detail familiar idioms such as
material composition, finishing techniques, processes, etc.

Many CAD applications achieve this intuitive interface by presenting to the end-
user the concept of a materials library. These libraries typically contain enough
information to fully specify the visual properties of an object, as defined by the
application.

It is proposed that VTK and ParaView implement the concept of a material
library, which consists of an extensible set of xml material files. When assigned to an
vtkActor/vtkPVActor in a VTK/ParaView scene, the materials library can be used

3



to do the following in any combination:

Set some or all values for vtkProperty members
Define a Vertex Shader and it’s parameters
Define a Fragment Shader and it’s parameters

Of course, each application field would have it’s own set of favorite and fa-
miliar materials, and developers would create new materials as needed. Just as
VTK/ParaView developers contribute code they would also contribute materials li-
braries which would be available in Kitware’s repository.

3 Extending VTK

Here is a brief summary of the proposed extensions to VTK that would realize these
objectives. It should be noted that ’HW’ refers to ’Hardware’. It is abbreviated
in this document to facilitate the production of images and charts which would be
quite cumbersome with ’Hardware’ spelled out. The purpose of this document is to
propose the architecture presented, the names of the objects used are simply working
names and can be finalized later.

vtkProperty extended to access a vtkXMLMaterialParser
vtkXMLMaterialParser provides access to material library files
vtkHWShaderProperty SubClass vtkProperty, manages vtkHWshaders
vtkHWShader Base class for handling shader mechanics
vtkHWCgShader Concrete vtkHWShader to handle NVidia’s Cg
vtkHWGLSLShader Concrete vtkHWShader to handle OpenGL20
vtkHWShaderChooser Proxy vtkHWShader
vtkCgContext Manage access to Cg run-time libraries
vtkGLSLContext Manage access to OpenGL20 run-time libraries
vtkPainter et. al. Alternative to vtkPolyDataMapper

Figure 1 is an informal representation of the data flow from the XML Material File
to the uniform variable registers in a vertex and fragment program when using Cg
(VP20 profile) shaders. Other hardware shader libraries would simply have their own
instance of vtkHWShader in place of vtkHWCgShader. In this figure, as in Figure
2, arrows represent data flow and interior boxes indicate a ’Has A’ relationship.

Similarly,Figure 2 shows the data flow for varying parameters for a vertex pro-
gram. Here point fields are mapped as varying parameters to specific vertex at-
tributes.

4



Cg Compile/Load/Bind

Uniform
Parameters

Cg Compile/Load/Bind

Uniform
Parameters

XYZW

XYZW

vtkProperty

vtkLight

vtkProperty

vtkLight

vtkHWCgShader
VertexUniform

Parameters
vtkProperty
Members
Vertex
Shaders

Shaders
Fragment

vtkHWShaderProperty

vtkHWShaderChooser

vtkCgContext

vtkHWShaderChooser

vtkCgContext

vtkHWCgShader
Fragment

vtkActor

XML Material File

Figure 1: Data Flow Diagrm for Uniform Variables, Cg

5



 

X Y Z W

Point Fields
glBegin(...)

glEnd()

Parameters

vp20
Per−Vertex Parameters

ATTR15
ATTR14
ATTR13

ATTR0 
ATTR1 
ATTR2 
ATTR3 
ATTR4 
ATTR5 
ATTR6 
ATTR7 
ATTR8 
ATTR9 
ATTR10 
ATTR11 
ATTR12 

Varying

vtkHWShaderAwarePolyDataMapper

Figure 2: Data Flow Diagrm for Uniform Variables, Cg

6



3.1 vtkXMLMaterialParser: Access to a Material Definition

Access to the aforementioned XML material file will be provided by a new class,
vtkXMLMaterialParser, which will parse the material file and provide accessors to
the data contained therein. vtkProperty and vtkHWShader both hold references to
a vtkXMLMaterialParser and use it to populate their members. To minimize disk
access, any given vtkXMLMaterialParser may be assigned to multiple instances of
vtkProperty. The result is that vtkActors that are defined to be of the same material
will not only use the same material library but can reference the same instance of
vtkXMLMaterialParser. This reduces the number of times a material file is accessed
from the number of vtkActors in a scene to the number of unique materials used in
the scene.

It should be noted that the materials library can be used to specify visual prop-
erties of vtkProperty even without the added functionality of hardware shader. As
Brian Wylie would say, the two issues are somewhat orthogonal.

3.2 Extending vtkProperty: Assigning a Material Definition

Since the manner is which an object is rendered is essentially a visual property, it’s
logical to assign hardware shaders on a per-vtkActor basis. This can best be done by
extending vtkProperty to reference a vtkXMLMaterialParser, which vtkProperty will
use to populate it’s members. Where the XML file defines new values for vtkProperty
members, vtkProperty will override it’s default value for those members with the
values defined in the XML file.

While having the developer assign a specific material for each vtkActor is a good
option for this prototype, it’s worth investigating an object that manages mapping
vtkActors to specific materials libraries.

It seems tempting to task vtkMapper with loading particular shader. But this
is not in line with the design intent of VTK where vtkProperty sets the OpenGL
rendering state and vtkMapper send graphics primitives to the hardware. The main
assumption here is that hardware shaders should be considered part of the OpenGL
state and are not part of set of graphics primitives. Just as each vtkProperty cur-
rently changes the OpenGL state to suite it’s actor, it would also specify a specific
hardware renderer as part of the OpenGL state. A descendent of vtkMapper would
still be responsible for mapping graphics primitives to hardware. However, the cur-
rent implementation of vtkOpenGLPolyDataMapper severely limits the ability to
use hardware shaders.

7



vtkProperty
vtkXMLMaterialParser

LoadMaterial()
Render()

vtkRIBProperty

Render()
LoadMaterial()

LoadMaterial() LoadMaterial()
Render()Render()

LoadMaterial()
Render()

vtkMESAProperty vtkOpenGLProperty vtkHWShaderProperty

vtkHWShaderChooser

Figure 3: vtkProperty Class Diagram

3.3 vtkOpenGLPolyDataMapper: Sending Graphics Primi-
tives to HW

HW shader programs have access to the 16 (as defined by the vp20 Cg profile) or so
hardware registers associated with each vertex as defined in the OpenGL standard.
Since these hardware registers map to the complete set of possible varying parameters
for a given hardware shader, an application must be able to populate all registers in
any combination to take full advantage of the hardware shaders.

The current implementation of vtkOpenGLPolyDataMapper only allows a VTK
application to populate 4 of these registers, ATTR0, ATTR2, ATTR3, and one
texture coordinate, ATTR8. These correspond to the OpenGL aliases ’Position’,
’Normal’, ’Color0’, and ’TexCoord0’ respectively and are set by calls to glVertex*,
glNormal*, glColor*, and glTexCoord*. Extending vtkOpenGLPolyDataMapper to
cover all possible comibinations of the 16 hardware registers is nearly impossible since
it’s use of macros require each possible case to be enumerated. Figure 4 shows the
hardware registers provided for varying and uniform parameters for vertex and frag-
ment programs. An application will typically set the varying vertex parameters and
the vertex shader will typicall set the varying shader parameters. The ’grey’ vertex

8



registers are those that VTK cannot access through vtkOpenGLPolyDataMapper,
or any other class.

ATTR0

ATTR8

ATTR9

ATTR10

ATTR11

ATTR12

ATTR13

ATTR14

ATTR15

ATTR5

ATTR7

ATTR6

ATTR4

ATTR2

ATTR3

ATTR1

BLENDINDICES

BLENDWEIGHT

POSITION

TEXCOORD7

TEXCOORD6

TEXCOORD5

TEXCOORD4

TEXCOORD3

TEXCOORD2

TEXCOORD1

TEXCOORD0

PSIZE

FOGCOORD

COLOR1

NORMAL

COLOR0

X Y Z W

COLOR0

DEPTH

Output

Not Set by VTK

X Y Z W

Uniform Vertex Parameters

X Y Z W

Uniform Fragment Parameters

X Y Z W X Y Z W

TEXCOORD7

TEXCOORD6

TEXCOORD5

TEXCOORD4

TEXCOORD3

TEXCOORD2

TEXCOORD1

TEXCOORD0

COLOR1

COLOR0

WPOS

vp20
Per−Vertex Parameters

Per−Fragment Parameters
fp20

Figure 4: vtkOpenGLPolyData HW Mappings

Sandia has prototyped a direct extension of vtkOpenGLPolyDataMapper that al-
lows use of POSITION, NORMAL, COLOR0 and all available TEXCOORD* hard-
ware registers but limits these to combinations that monotonically increase in register
id from ATTR8 to ATTRN, where N in not greater than 15. This exploratory class
enumerates this limited set of ATTR* combinations but still does not have the flex-
ibility required to fully implement all hardware shaders.

A viable solution is the proposed vtkPainter classes detailed in Ken Moreland’s
”vtkPainter: An Improved Poly Data Mapper” proposal. These classes leverage the
latest versions of OpenGL and some OpenGL extensions to allow a vtkMapper to
populate in any combination the vertex program hardware registers of a video card.

The only step required by the application is to flag vtk cell or point fields that
are to be sent to hardware and to specfify what registers they should occupy. These
fields can be specified through the shader definition in the material file.

3.4 vtkHWShader: Rendering With a HW Shader

The mechanics of rendering a vtkActor with a hardware shader are encapsulated
in descendants of vtkHWShader. Figure 5 depicts a class diagram that highlights
vtkHWShader and it’s descendants.

9



vtkXMLMaterialParser

Render()

Render() Render() Render() Render()

LoadMaterial()

vtkHWShader

vtkCgHWShader vtk???Shader vtkHWShaderChooser

CreateShaders()

vtkGLSLShader

Figure 5: vtkHWShaders

vtkHWShader is a base class that provides an interface for rendering with a
hardware shader. It holds a pointer to a vtkXMLMaterialParser (passed to it by
vtkHWShaderProperty) from which it obtains the hardware shader and parameter
specifications to be use when it is rendered.

Two concrete implementations of vtkHWShader, vtkHWCgShader and vtkHWGLSLShader,
will render with NVidia’s Cg library and OpenGL2.0. Other concrete implemen-
tations of vtkHWShader will be developed as users and developer request and or
contribute them.

vtkHWShaderChooser is a proxy class [GoF] that delegates the mechanics of ren-
dering with a hardware shader to the correct subclass of vtkHWShader. The main
advantage of this approach is that it delays until runtime the instantiation of a par-
ticular concrete implementation of vtkHWShader. This is important since we can’t
be sure until the material file has been read which shader library will be required.
It’s also possible that a machine could have multiple hardware shader libraries in-
stalled, any of which could be used to render given the correct shader. Considering
all this, VTK’s standard ’New’ methods will not have enough information to select
the proper hardware library.

10



3.5 vtkHWShaderProperty: HW Shader Management

vtkHWShaderProperty is a descendant of vtkProperty that holds a reference to two
vtkHWShaderChoosers. The first manages any vertex shaders defined in the material
file while the second manages any fragment shaders defined in the material file.

Figure 6 depicts a typical object diagram to illustrate how a vtkHWShaderProp-
erty would render a vtkActor under this proposed architecture. Each object loads it’s
respective definitions from the XML material file when a call is made to ’LoadMate-
rial()’. Rendering is delegated in the same manner, with the concrete implementation
of vtkHWShader sending it’s shader to the graphics hardware.

vtkHW???Shader

vtkHW???Shader

vtkXMLMaterialParser

vtkHWShaderProperty

Render()

vtkHWShaderChooser

vtkHWShaderChooser

vtkHWCgShader

vtkHWCgShader

Render()

Render()

Render()

Render()LoadMaterial()
LoadMaterial()

LoadMaterial()

LoadMaterial()

LoadMaterial()

VertexShader

FragmentShader

Parse()

Figure 6: Shader Object Diagram

4 ParaView

Once the functionality described above is implemented in VTK, the next logical step
is to add the same capability to ParaView. The concept of a materials library is a

11



logical extension to the ParaView interface. It would simply be added as a option
in the ’Display’ tab of a pipeline actor. Just as there is an option for ’Actor Color’,
’Actor Material’ can be added as another choice. Upon selecting this choice the
user would be prompted to select from a set of pre-defined material libraries. The
mapping of material file to objects could also be done with a configuration file.

5 Ongoing Issues

A few outstanding issues remain before this proposal is complete.

5.1 Mapping Textures to HW Shaders

While a strategy for mapping textures to hardware shaders in VTK is goal of this
proposal, no work has been done in this area.

5.2 XML Schema

An initial XML schema is being developed to represent visual properties stored in
vtkProperty and vertex and fragment shaders and their parameters. It is proposed
that these be stored in one file and used together to define a material familiar to
end-users.

5.3 Acknowledgements

The proposal presented here benefited from discussions with Ken Moreland, Andy
Wilson, and Dave Thompson. The initial vtkXMLMaterialParser was prototyped by
David Karelitz. LATEX formatting used to create this document was taken from a
model provided by David Thompson.

This work was done at Sandia National Laboratories. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the
United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

12


	Motivation
	Scientific Visualization
	CAD Visualization
	Custom Visualization

	Very Brief HW Shader Overview
	Shader Developer's Interface
	End User's Interface

	Extending VTK
	vtkXMLMaterialParser: Access to a Material Definition
	Extending vtkProperty: Assigning a Material Definition
	vtkOpenGLPolyDataMapper: Sending Graphics Primitives to HW
	vtkHWShader: Rendering With a HW Shader
	vtkHWShaderProperty: HW Shader Management

	ParaView
	Ongoing Issues
	Mapping Textures to HW Shaders
	XML Schema
	Acknowledgements


