Supplementary Material for "Studying Cerebral Vasculature Using Structure Proximity and Graph Kernels

R. Kwitt, D. Pace, M. Niethammer and S. Aylward

1 Graph-Kernel Computations

In Sect. 3 of the paper, two graph kernel values are computed for the toy example shown in Fig. 3. These kernel values are $k(\mathcal{G}_1, \mathcal{G}_2) = 11$ for the labeling scheme γ^a and $k(\mathcal{G}_1, \mathcal{G}_2) = 19$ for the labeling scheme γ^d . Eq. (1) specifies the formula for computing these kernel values:

$$k(\mathcal{G}_{u}, \mathcal{G}_{v}) = \langle [c_{0}(\mathcal{G}_{u}, l_{01}), \dots, c_{h}(\mathcal{G}_{u}, l_{h|E_{h}|})], [c_{0}(\mathcal{G}_{v}, l_{01}), \dots, c_{h}(\mathcal{G}_{v}, l_{h|E_{h}|})] \rangle.$$
(1)

1.1 Case 1: using labeling scheme γ^a

According to Fig. 4, we have 8 nodes in total which are sequentially numbered $1, \ldots, 8$. Consequently, our initial label set at h = 0 is $E_{h=0} := \{1, \ldots, 8\}$. The label set for h = 1 is $E_{h=1} := \{9, \ldots, 18\}$. $E_{h=1}$ contains the *newly* created labels after one WL iteration (see text). The following table lists the occurrences (as counted by $c_h(\mathcal{G}, l_{hj})$) for each label (label counter is j) at h = 0 and h = 1. The labels that occur in both \mathcal{G}_1 and \mathcal{G}_2 are highlighted in **bold**.

	$E_{h=0}$								$E_{h=1}$										
j	1	2	3	4	5	6	7	8	j	9	10	11	12	13	14	15	16	17	18
$c_0(\mathcal{G}_1, l_{0j})$	1	1	1	1	1	1	1	1	$c_1(\mathcal{G}_1, l_{1j})$	1	1	1	1	1	1	1	0	0	0
$c_0(\mathcal{G}_2, l_{0j})$	1	1	1	1	1	1	1	1	$c_1(\mathcal{G}_2, l_{1j})$	1	0	1	1	0	0	0	0	1	1

The scalar product in Eq. (1) can thus be written as

 $k(\mathcal{G}_1, \mathcal{G}_2) = \langle [1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 0\ 0]^\top, [1\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 1]^\top \rangle = \mathbf{11}$

1.2 Case 2: using labeling scheme γ^d

For labeling scheme γ^d the initial label set at h = 0, i.e., $E_{h=0} := \{1, \ldots, 6\}$ is smaller than for γ^a . In fact, label 5 occurs three times in both graphs. The label set at h = 1, i.e., $E_{h=1} := \{7, \ldots, 14\}$ is reduced as well. The following table lists the occurrences of each label in both graphs with common labels highlighted in **bold**.

			E_h	n=0			$E_{h=1}$								
j	1	2	3	4	5	6	j	$\overline{7}$	8	9	10	11	12	13	14
$c_0(\mathcal{G}_1, l_{0j})$	1	1	1	1	3	1	$c_1(\mathcal{G}_1, l_{1j})$	1	1	1	1	1	1	1	0
$c_0(\mathcal{G}_2, l_{0j})$	1	1	1	1	3	1	$c_1(\mathcal{G}_2, l_{1j})$	1	0	1	1	1	1	0	1

Again, the scalar product in Eq. (1) takes the form

$$k(\mathcal{G}_1, \mathcal{G}_2) = \langle [1\ 1\ 1\ 1\ 3\ 1\ 1\ 1\ 1\ 1\ 1\ 1\ 0]^\top, [1\ 1\ 1\ 1\ 3\ 1\ 1\ 0\ 1\ 1\ 1\ 0\ 1]^\top \rangle = \mathbf{19}$$