Supplementary Material for "Studying Cerebral Vasculature Using Structure Proximity and Graph Kernels

R. Kwitt, D. Pace, M. Niethammer and S. Aylward

1 Graph-Kernel Computations

In Sect. 3 of the paper, two graph kernel values are computed for the toy example shown in Fig. 3. These kernel values are $k\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)=11$ for the labeling scheme γ^{a} and $k\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)=19$ for the labeling scheme γ^{d}. Eq. (1) specifies the formula for computing these kernel values:

$$
\begin{equation*}
k\left(\mathcal{G}_{u}, \mathcal{G}_{v}\right)=\left\langle\left[c_{0}\left(\mathcal{G}_{u}, l_{01}\right), \ldots, c_{h}\left(\mathcal{G}_{u}, l_{h \mid E_{h}}\right)\right],\left[c_{0}\left(\mathcal{G}_{v}, l_{01}\right), \ldots, c_{h}\left(\mathcal{G}_{v}, l_{h \mid E_{h}}\right)\right]\right\rangle \tag{1}
\end{equation*}
$$

1.1 Case 1: using labeling scheme γ^{a}

According to Fig. 4 , we have 8 nodes in total which are sequentially numbered $1, \ldots, 8$. Consequently, our initial label set at $h=0$ is $E_{h=0}:=\{1, \ldots, 8\}$. The label set for $h=1$ is $E_{h=1}:=\{9, \ldots, 18\} . E_{h=1}$ contains the newly created labels after one WL iteration (see text). The following table lists the occurrences (as counted by $c_{h}\left(\mathcal{G}, l_{h j}\right)$) for each label (label counter is j) at $h=0$ and $h=1$. The labels that occur in both \mathcal{G}_{1} and \mathcal{G}_{2} are highlighted in bold.

$E_{h=0} \quad E_{h=1}$																			
j	1	2	3	4	5	6	7	8	j	9	10	11	12	13	14	15	16	17	18
$c_{0}\left(\mathcal{G}_{1}, l_{0 j}\right)$	1	1	1	1	1	1	1	1	$c_{1}\left(\mathcal{G}_{1}, l_{1 j}\right)$	1	1	1	1	1	1	1	0	0	0
$c_{0}\left(\mathcal{G}_{2}, l_{0 j}\right)$	1	1	1	1	1	1	1	1	$c_{1}\left(\mathcal{G}_{2}, l_{1 j}\right)$	1	0	1	1	0	0	0	0	1	1

The scalar product in Eq. (1) can thus be written as

$$
k\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)=\left\langle\left[\begin{array}{llllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0
\end{array}\right]^{\top},\left[\begin{array}{lllllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}\right)\right.
$$

1.2 Case 2: using labeling scheme γ^{d}

For labeling scheme γ^{d} the initial label set at $h=0$, i.e., $E_{h=0}:=\{1, \ldots, 6\}$ is smaller than for γ^{a}. In fact, label 5 occurs three times in both graphs. The label set at $h=1$, i.e., $E_{h=1}:=\{7, \ldots, 14\}$ is reduced as well. The following table lists the occurrences of each label in both graphs with common labels highlighted in bold.

Again, the scalar product in Eq. (1) takes the form

$$
k\left(\mathcal{G}_{1}, \mathcal{G}_{2}\right)=\left\langle\left[\begin{array}{lllllllllll}
1 & 1 & 1 & 3 & 1 & 1 & 1 & 1 & 1 & 1 & 0
\end{array}\right]^{\top},\left[\begin{array}{lllllllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]^{\top}\right\rangle=19
$$

